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Abstract

Social reputation (e.g., likes, comments, shares, etc.) on
YouTube is the primary tenet to popularize channels/videos.
However, the organic way to improve social reputation is
tedious, which often provokes content creators to seek ser-
vices of online blackmarkets for rapidly inflating content rep-
utation. Such blackmarkets act underneath a thriving collu-
sive ecosystem comprising core users and compromised ac-
counts (together known as collusive users). Core users form
the backbone of blackmarkets; thus, spotting and suspending
them may help in destabilizing the entire collusive network.
Although a few studies focused on collusive user detection on
Twitter, Facebook, and YouTube, none of them differentiate
between core users and compromised accounts.
We are the first to present a rigorous analysis of core users in
YouTube blackmarkets. To this end, we collect a new dataset
of collusive YouTube users. We study the core-periphery
structure of the underlying collusive commenting network
(CCN). We examine the topology of CCN to explore the be-
havioral dynamics of core and compromised users. We then
introduce KORSE, a novel graph-based method to automat-
ically detect core users based only on the topological struc-
ture of CCN. KORSE performs a weighted k-core decompo-
sition using our proposed metric, called Weighted Internal
Core Collusive Index (WICCI). However, KORSE is infea-
sible to adopt in practice as it requires complete interactions
among collusive users to construct CCN. We, therefore, pro-
pose NURSE, a deep fusion framework that only leverages
user timelines (without considering the underlying CCN) to
detect core blackmarket users. Experimental results show that
NURSE is quite close to KORSE in detecting core users and
outperforms nine baselines.

Introduction
In recent years, YouTube has grown as a primary video-
sharing platform, where content creators create channels and
upload videos. The videos are then recommended to the con-
tent consumers based on several factors, one of which is
the online social reputation of the creators and their con-
tent. Social reputation is usually quantified by the endorse-
ment of the viewers in terms of likes, (positive) comments,
shares, etc. However, an organic way of gaining reputation
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is a time consuming process, and often depends on sev-
eral other factors such as the quality and relevance of the
video, initial viewers and their underlying connections. Un-
fortunately, there exist a handful of online reputation ma-
nipulation services (aka blackmarkets) which help content
creators rapidly inflate their reputations in an artificial way
(Shah et al. 2017). Such services are built on a large thriv-
ing ecosystem of collusive network. The underlying net-
work comprising core users – fake accounts or sockpup-
pets (Bu, Xia, and Wang 2013), which are fully controlled
by the blackmarkets (puppet masters), and compromised ac-
counts which are temporarily hired to support the core users
– these two types of users are together called as collusive
users. Core users are the spine of any collusive blackmar-
ket; they monitor and intelligently control the entire fraud-
ulent activities in such a way that none of their hired com-
promised accounts are suspended. Therefore, detecting and
removing core blackmarket users from YouTube is of ut-
most importance to decentralize the collusive network and
keep the YouTube ecosystem healthy and trustworthy. In
this study, we deal with freemium blackmarkets (Shah et al.
2017) which invite customers to opt for the service for free,
in lieu of surrendering their accounts temporarily for black-
market activities. In doing so, customers gain virtual credit
and use it to grow their content’s reputation.

State-of-the-art and Motivation. Several efforts have
been made to detect fake activities in different online so-
cial networks (Cresci et al. 2015; Castellini, Poggioni, and
Sorbi 2017). However, as suggested by Dutta et al. (2021),
collusive activities are very different from usual fake activ-
ities. A few studies attempted to explore the dynamics of
blackmarkets, mostly for Twitter (Castellini, Poggioni, and
Sorbi 2017; Dutta and Chakraborty 2020) and Facebook
(Farooqi et al. 2017). On YouTube, there exists only one
method, named CollATe to detect collusive users (Dutta
et al. 2021). However, to our knowledge, none of these meth-
ods attempted to further divide collusive users into core and
compromised accounts.

One may argue that once a collusive account (be it core
or compromised) is detected, it should be banned. Then why
do we need to explicitly identify core and compromised ac-
counts, while both of them deserve punishment? We argue
that the role of a core user is different from a compromised
account in the collusive ecosystem; therefore, the extent of
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Figure 1: Visualization of the collusive commenting network
(CCN). Unlike conventional core-periphery structure where
peripheral nodes are sparsely connected internally, CCN con-
stitutes dense peripheral communities sparsely connected
with the core, indicating the growth of the network up to a
certain point where it may not require core users to support
compromised users for self-sustainability.

Notation Denotation
G(N,E) Collusive commenting network
V Set of sets where {vi} ∈ V indicates the

set of videos created and posted by user ni
vi,j jth video in the video set vi

comments(n, c) No. of comments posted by user n on
video c

wij Weight of the edge connecting nodes ni
and nj

wc weighted coreness score
coreth Coreness threshold
GC Core subgraph
GP Induced subgraph of the peripheral nodes
GLP Largest connected component in GP
WCSCore,C Weighted cut set between the core and a

peripheral community C

Table 1: Important notations and denotations.

punishment may differ. Compromised users are more inter-
ested in self-promotion; they join blackmarkets temporarily;
they gain appraisals for their online content both organically
(genuine interest by other users) and inorganically (through
blackmarket services). However, core users, being the back-
bone of the blackmarkets, always intend to grow and pop-
ularize their business. They are permanent members of the
blackmarkets; they provoke other users to join the services;
and they generally initiate the artificial inflation of the repu-
tation of online content. Therefore, they are more harmful to
pollute the online ecosystem. Due to such contrasting behav-
ior of core and compromised users, one may consider that
core users should be punished differently than compromised
users. For instance, a complete ban of core users would limit

the growth of the collusive blackmarkets. However, for com-
promised users, it may be wise to just warn them and restrict
their social network activities for a limited time, instead of
a complete ban. The authorities of a social media platform
may design suitable policies to handle these two cases.

To our knowledge, ours is the first attempt to identify
and explore the dynamics of core blackmarket users. It
is also the second attempt after CollATe (Dutta et al.
2021) to explore YouTube blackmarkets.

Present Work: KORSE. In this paper, we investigate the
dynamics of core users in YouLikeHits, one of the popu-
lar YouTube blackmarket services. We start by collecting
a novel dataset from YouLikeHits and YouTube, consisting
of collusive users, the videos they promote through black-
markets, and their comments on YouTube videos. In this
study, we deal with only one type of appraisals i.e., collusive
comment on YouTube videos. We then construct a collusive
commenting network (CCN) based on the co-commenting
activities among collusive users. We leverage the topolog-
ical structure of CCN to detect core users using our proposed
method, KORSE which utilizes k-core decomposition par-
ticularly designed based on our proposed metric, Weighted
Internal Core Collusive Index (WICCI).

Present Work: Core-periphery Structure. An exhaus-
tive analysis on the interactions of core and peripheral nodes
reveals a counter-intuitive core-periphery structure of CCN
– unlike a conventional network where peripheral nodes are
sparsely connected, and get disconnected upon removal of
the core, CCN constitutes peripheral nodes which form sev-
eral small and dense communities around the core (c.f. Fig.
1). We further observe that there exists a strong positive cor-
relation between the internal interactions within peripheral
communities and the interactions between the core and the
peripheral communities. This gives us the evidence that in
peripheral communities, compromised users who comment
heavily on videos that are co-commented by core users, tend
to contribute more to the collusive market. We also present a
case study to highlight the major differences between core
and compromised users based on their user timelines: (i)
Core users, although act as heavy contributors of the black-
market services, are not the top beneficiaries of the collu-
sive market. (ii) Core users indulge in less self-promotion
of videos. (iii) Core users are less active participants of the
collusive market than compromised users; they initiate the
fraudulent activities and let the compromised users finish the
remaining job.

Present Work: NURSE. Although KORSE is highly ac-
curate in detecting core users, it is practically infeasible to
deploy as it requires the complete snaphot of the collusive
market on a streaming basis and is also required to be re-run
on the introduction of each new user. Therefore, we consider
core users detected by KORSE as the ground-truth1 and de-

1Collecting the ground-truth for fake/genuine entity detection
is challenging, which usually requires annotations from annotators
with domain expertise (Shu, Wang, and Liu 2018). However, ob-
taining the ground-truth data of core blackmarket users is almost
impossible. We do not know any legal way to find “core” blackmar-
ket users. Therefore, we consider KORSE as an oracle, which can-
not be used in practice but can be used to create the ground-truth.
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velop NURSE, a deep fusion framework that only considers
user timeline (without the underlying CCN) and video sub-
mission information to detect core blackmarket users. Ex-
periments on our curated dataset show that NURSE is quite
close to KORSE with 0.879 F1-Score and 0.928 AUC, out-
performing nine baselines.

Contributions: In short, our contributions are four-fold:
• Novel problem: We are the first to address the problem

of core blackmarket user detection.
• Unique dataset: Our curated dataset is the first dataset,

comprising core and compromised collusive YouTube
users.
• Novel methods: Our proposed methods, KORSE and
NURSE, are the first in detecting core blackmarket users.
• Non-intuitive findings: Empirical analysis of the dy-

namics of core and compromised users reveals several
non-trivial characteristics of blackmarket services.

Reproducibility. Our full code and dataset are available
here - https://github.com/LCS2-IIITD/ICWSM-2022-Core-
Collusive-Youtube-BlackMarket

Related Work
We summarize related studies by dividing them in two sub-
sections: (i) blackmarkets and collusion, and (i) network
core detection.

Blackmarkets and Collusion: Recently, the activities
of blackmarket services have garnered significant attention
among the researchers due to the way they provide artifi-
cial appraisals to online media content. Shah et al. (2017)
provided a broad overview of the working of blackmar-
kets. Dutta and Chakraborty (2020); Dutta et al. (2018,
2020) attempted to detect collusive retweeters on Twitter.
The authors also mentioned how collusive users are asyn-
chronous in nature as compared to normal retweet fraud-
sters. Dutta and Chakraborty (2020) further studied the
working of premium and freemium blackmarket services
in providing collusive appraisals on Twitter. Arora et al.
(2020) further investigated the blackmarket customers en-
gaged in collusive retweeting activities using a multiview
learning based approach. Chetan et al. (2019) proposed
CoReRank, an unsupervised method to detect collusive
retweeters and suspicious tweets on Twitter. Farooqi et al.
(2017) showed how collusion networks collect OAuth ac-
cess tokens from colluding members and abuse them to
provide fake likes or comments to their members. Dhawan
et al. (2019) proposed DeFrauder, an unsupervised frame-
work to detect collusive behavior of online fraud groups in
customer reviews. We encourage the readers to go through
Dutta and Chakraborty (2020) for a comprehensive sur-
vey on blackmarket-based collusive activities in online me-
dia platforms. Dutta et al. (2021) is the closest to the cur-
rent research, which detects collusive blackmarket users

One can argue that the current way of creating the ground-truth
may be unconvincing. However, we perform several case studies to
provide strong empirical evidence which may validate our strategy
of collecting the ground-truth. We do not know any other way of
ground-truth creation for this problem unless blackmarkets them-
selves provide the same!
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Detect collusive users X X X
Detect core blackmarket users X X
Graph-based approach X X X X X X
Deal with weighted graph X X X
Consider profile information X X
Consider content information X X

Table 2: Qualitative comparison of KORSE and NURSE with
similar approaches.

on YouTube. However, it does not focus on detecting core
blackmarket users.

Network Core Detection: Due to the abundance of liter-
ature on network core detection, we restrict our discussion to
some selected works that we deem as pertinent to our study.
k-core decomposition (Batagelj and Zaversnik 2003) is con-
sidered to be the de facto to detect core nodes. It is based on
the recursive removal of vertices that have degree less than k
in the input network. Rombach et al. (2014) proposed an al-
gorithm to detect core-periphery structure in networks. The
goal of this algorithm is to identify densely connected core
nodes and sparsely connected peripheral nodes. Cucuringu
et al. (2016) detected core and periphery using spectral
methods and geodesic paths. Kojaku and Masuda (2017) dis-
covered multiple non-overlapping groups of core-periphery
structure by maximizing a novel quality function which
compares the number of edges of different types in a net-
work. (Xiang et al. 2018) detected multiple core-periphery
structures and communities based on network density. The
authors also proposed an improved version of their model
to detect active and overlapping nodes. Zhang et al. (2017)
studied the problem of collapsed k-core to identify a set of
vertices whose removal can lead to the smallest k-core in the
network. Shin, Eliassi-Rad, and Faloutsos (2016) showed
empirical patterns in real-world graphs related to k-cores.
Recently, it has been observed that the subgraphs of the de-
tected core users are used for several graph-related tasks,
such as community detection (Peng, Kolda, and Pinar 2014),
dense-subgraph detection (Hooi et al. 2020) etc. We encour-
age the readers to go through Malliaros, Papadopoulos, and
Vazirgiannis (2016) for a comprehensive survey on network
core detection.

Differences with Existing Studies: Table 2 compares our
methods (KORSE and NURSE) with a few relevant studies.
In short, our methods are different from others in five as-
pects – (i) we are the first to address core blackmarket
user detection problem; (ii) we are the second after (Dutta
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et al. 2021) to deal with YouTube collusive blackmarkets;
(iii) We propose both unsupervised (KORSE) and super-
vised (NURSE) methods for core detection; (iv) our dataset
comprising core blackmarket users is unique; and (v) we
provide a rigorous analysis to explore the dynamic of core
and compromised users.

Methodology
Dataset Description
In this work, we consider YouLikeHits2, a freemium black-
market service3. We designed web scrapers to extract the
ids of YouTube videos submitted to blackmarket services for
collusive comments. We used YouTube API4 to extract the
metadata details and comment history of these videos. We
extracted 26, 166 YouTube videos which were submitted to
YouLikeHits for collusive comments. These videos were up-
loaded to 11, 000 unique YouTube channels. To our knowl-
edge, this is the first dataset of its kind. Note that the entire
data collection process was performed after taking proper
Institutional Review Board (IRB) approval.

Figure 2: Cumulative distribution of (a) edge weights, and
(b) weighted coreness scores of nodes in CCN. Contrary to
the general observation that coreness score follows power
law, we observe that there are relatively large number of
nodes having high weighted coreness.

Preliminaries and Graph Construction
Here we present some important concepts used throughout
the paper. Table 1 summarises important notations.

[Collusive Users and Videos] We define collusive users
as those who are involved in the blackmarket activities.
There are two types of collusive users – core users and com-
promised users. We call the videos submitted to freemium
blackmarkets as collusive videos.

[Core Users] A limited set of online accounts are fully
controlled by the blackmarket authorities. These accounts
can be bots (fully automated), sockpuppets (controlled by
puppet masters) (Bu, Xia, and Wang 2013) or fake accounts.
However, they are used only to benefit blackmarkets. We call
these users core blackmarket users.

2https://www.youlikehits.com/
3Freemium blackmarkets offer customers to enjoy their services

for free with the condition that the customers will temporarily act
on behalf of the blackmarkets. Upon signing up, the social me-
dia accounts of customers are compromised for a limited time for
blackmarket activities, which in turn help them gain virtual credits

4https://developers.google.com/youtube/v3

Property Value
# nodes 1, 603
# edges 51, 424
Avg./max/min edge weight 1.392 / 78 / 1
Avg./max/min weighted degree of nodes 89.367 / 1638 / 1
Unweighted edge density 0.040
Unweighted clustering coefficient 0.737
Network diameter 8

Table 3: Topological properties of CCN.

[Compromised Users] These are YouTube content cre-
ators who submit their content to the freemium blackmarkets
in order to receive artificial comments within a short dura-
tion. Being freemium customers, their accounts are compro-
mised for a limited time to perform illegal activities by com-
menting on videos of other blackmarket customers.

[Collusive Commenting Network (CCN)] A CCN is an
undirected and weighted network G(N,E), where each
node n ∈ N represents a collusive user, and two nodes
ni and nj are connected by an edge eij = 〈ni, nj〉 if the
corresponding users co-commented on the same videos. The
weight wij of the edge eij is calculated as per Eq. 1.

Let us denote a set of sets, V = {{v1}, {v2}, {v3}, . . . },
where {vi} indicates the set of videos posted by collusive
user ni. {vi,j} indicates the jth video in the set vi.

[Inter-user Comment Count] The number of comments
posted by the collusive user n on video c is denoted
by comments(n, c). We define Inter-user comment count
(IUCC) for a video c and a pair of users ni and nj as the
minimum of the number of comments by ni and nj on c.

IUCC(n1, n2, c) = min
(
comments(n1, c), comments(n2, c)

)
(1)

[Edge weight] We measure the edge weight between two
nodes (collusive users) ni and nj as follows:

wij =

|V |∑
p=1
p 6=i,j

|vp|∑
q=1

IUCC(ni, nj , vp,q) (2)

The edge weight wij indicates the aggregated IUCC
across all the videos co-commented by ni and nj , exclud-
ing their own videos. We exclude the videos created by ni
and nj since the comments on these videos can be easily
manipulated (added or deleted) by the owners themselves.
Table 3 summarises the properties of CCN. Fig. 2(a) shows
the cumulative distribution of wij .

Weighted k-core Decomposition
Given a graphG(N,E), the weighted k-core detection prob-
lem aims to find k-core (or core of order k), the maximal in-
duced subgraph denoted by Gk(Nk, Ek) such that Gk ⊆ G
and ∀n ∈ Nk : deg(n) ≥ k. The following two meth-
ods are often used to solve this problem: k-core decompo-
sition (Rombach et al. 2014) and core-periphery algorithm
(Della Rossa, Dercole, and Piccardi 2013). In our case, we
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choose k-core decomposition5. In (weighted) k-core decom-
position, to detect core users, we repeatedly delete nodes
with (weighted) degree6 less than k until no such node is
left (this is also known as “shaving” method (Shin, Eliassi-
Rad, and Faloutsos 2016)). The reasons behind choosing k-
core decomposition are as follows: (i) It has been empiri-
cally shown to be successful in modeling user engagement
(Zhang et al. 2016, 2017); (ii) Unlike k-core, core-periphery
algorithm fits more closely with networks where the nodes
are not closely connected to each other (Borgatti and Everett
2000). However, in blackmarket services, the sole purpose
of collusive users to join the services is to gain credits (by
providing collusive appraisals to the content of other users)
which can be used by them to artificially inflate their social
growth. This strengthens the connectivity among the collu-
sive users. The reason behind expecting high interactions
among users stems from the fact highlighted in (Dutta et al.
2021) that different collusive users retweet the same tweets
on the collusive market regardless of the topic of the tweets.
We expect a similar behavior in case of YouTube comments,
i.e., different collusive users tend to comment on the same
videos in order to earn credits. In our dataset, a collusive
video has an average of 3 comments by collusive users. This
would create more relations (edges) between nodes in CCN.

WICCI: Expected Behavior of Core Users
We frame the core detection problem in CCN as the weighted
k-core decomposition problem in CCN. k-core decomposi-
tion assigns a coreness value to each vertex. In our case,
the coreness value ranges from 1 to 193, with an average
value of 48.7. We obtain an ordered list of vertices sorted in
decreasing order of the coreness value. Typically, the node
assigned with the highest coreness value is said to be the
“most influential node” in the graph. The subgraph formed
with such highly influential vertices is known as degeneracy-
core or kmax-core. On running the weighted k-core decom-
position on CCN, we obtain a degeneracy-core consisting
of 8 users. We expect the distribution of nodes to continu-
ally decrease with increasing coreness, as observed in typi-
cal core-periphery structures. However, we observe that the
fraction of nodes with a high weighted coreness is unusually
high ( 12.1% users with ≥ 100 coreness score as shown in
Fig. 2(b)). This indicates the presence of a larger set of core
users.

Therefore, in CCN, to define the partition of core and com-
promised users, we propose a metric, called Weighted In-
ternal Core Collusive Index (WICCI) which is motivated
by Rombach et al. (2014). WICCI is used to partition the
list of decreasing weighted coreness values by a “coreness
threshold”. The nodes whose coreness is above the threshold
are eligible to be the core nodes, while the remaining nodes
are considered as compromised users. To define WICCI, we
consider two important properties of core users as follows:
1. Density: A core component of a network should be

5We use the weighted version of k-core decomposition to incor-
porate the edge weights (see Eq. 1 for more details).

6The weighted degree of a node is the sum over the edge
weights of the connected edges.

densely connected (Rombach et al. 2014; Borgatti and
Everett 2000). We attempt to understand the implications
of a dense core in CCN, by considering the flip-side first
– a sparse core. A sparse core in CCN would have less
number of edges connecting vertices internally. In the
current scenario, it implies that different users have com-
mented upon different sets of videos. However, the exis-
tence of such an entity would mean that there is no co-
hesion or strategy in the way core users operate. They
may be commenting randomly on different videos. The
existence of a dense core, however, would imply that dif-
ferent users are commenting on a same set of (collusive)
videos, indicating some cohesion or strategy. Note that
when we increase the coreness threshold, the subgraph
of the core formed has an increasing density (and a de-
creasing size).

WICCI ∝ densityβ (3)

where β is the density coefficient. We utilize β to vary
the proportionality of WICCI with density.

2. Fraction of weighted size of core: There is a major flaw
in considering only density to define a core. Density does
not take into account the edge weight i.e., the volume
with which the two users have commented together on
same videos. We intuitively expect that inside a core, a
high fraction of the commenting activities take place. We
define WG as the weighted size (sum of the weights of
edges) of CCN and WC as the weighted size of the core
subgraph GC . Correspondingly,

WICCI ∝ WC

WG
(4)

Combining (3) and (4), we get

WICCI = k × WC

WG
× densityβ (5)

where k is the constant of proportionality. We assume it
to be 1.

KORSE: A Graph-based Method for Core Detection
By considering the above properties of collusive entities, we
design KORSE (K-core decomposition for cORe colluSive
usErs detection), a modified version of (weighted) k-core
decomposition that is designed for detecting core users in
blackmarket services based only on the topological structure
of CCN. It takes CCN as input and detects core blackmar-
ket users (core subgraph GC). KORSE is implemented by
decreasing the coreness threshold and consequently making
larger subgraphs of the core. The subgraph with the largest
WICCI is our final core.

Algorithm 1 presents the pseudo-code of KORSE. Firstly,
we apply weighted k-core decomposition which gives the
weighted coreness score wc(n) for each vertex n ∈ N .
The vertices are then sorted in decreasing order of wc and
pushed into a stack S . The top of the stack is the node with
the maximum weighted coreness. Next, we create a running
set (coren) of core nodes initially with no node. The run-
ning coreness threshold coreth is set to the maximum value
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Figure 3: Variation of (a) density, (b) fraction of weighted size of core, and (c) WICCI with varying coreth. (a) Initially, the
density dominates over fraction of weighted size of the core and hence WICCI increases rapidly in (c). (b) In the later stages,
the inverse happens – fraction of weighted size of core dominates which results in WICCI declining steeply in (c). The WICCI
peak of 0.294 is observed at coreth = 0.73 in (c). All nodes with a weighted coreness above coreth are part of the core. Note
that despite varying the density of core w.r.t WICCI by changing the density coefficient (β), we observe a similar WICCI peak
in all cases.

of weighted coreness wcmax. Next, coreth is iteratively de-
creased, and the set of core nodes is updated by adding all
nodes n which have wc(n) greater than coreth. Next, Gcr,
an induced subgraph is created only by the core nodes. Fur-
ther, WICCI of Gcr is calculated. The induced subgraph
with the maximum WICCI (wiccimax) is the core of the
graph, and the corresponding coreth is the coreness thresh-
old.

On applying KORSE on CCN, we obtain an ideal core-
ness threshold of 0.73 on a max-normalized scale, with a
peak WICCI value of 0.294 (c.f. Fig. 3) for different val-
ues of the density coefficient β. We explore the variation of
WICCI with coreth:
1. Initially, as coreth increases (0.1− 0.5), users of low wc

(which contribute less to the overall collusive activity of
the network) are removed from the core subgraph, lead-
ing to rapid increase in density of the core subgraph and
a relatively smaller decrease in the fraction of weighted
size of the core. Initially, density dominates the fraction
of weighted size of the core and hence WICCI increases
(c.f. Fig. 3(a)).

2. Towards the higher values of coreth (> 0.8), density
obtains its maximum value of 1. However, the fraction
of weighted size of the core decreases rapidly due to
the continued exclusion of more nodes with relatively
higher wc. As coreth increases further, the fraction of
weighted size of the core dominates density towards the
latter values of coreth, and hence WICCI decreases (c.f.
Fig. 3(b)).

3. In the mid-range values (0.6 − 0.7) of coreth, the peak
of WICCI is observed. The corresponding core formed
by the nodes (with wc higher than coreth) leverages both
the density and the fraction of weighted size of CCN (c.f.
Fig. 3(c)).

The core obtained on applying KORSE consists of 148
nodes and (surprisingly) is a complete graph. Nearly 30%
of the entire collusive commenting activities of the network
happens among 10% of the core nodes. The periphery con-

sists of 1, 455 nodes and has an edge density of 0.0355.
Nearly 60% of the commenting activities take place among
the peripheral nodes despite 90% of the users belonging to
it. The rest 10% activities are captured between the core and
the peripheral nodes (cross-edges between core and periph-
ery). We now investigate the connectivity of the core in our
proposed CCN network.

Impact of Core on CCN
To closely explore the connectivity of the core in the net-
work, we analyse the effect after removing the core from
CCN. Mislove et al. (2007) reported that in a conventional
social network, the removal of core breaks the graph into
small disconnected components. However, in our case we
notice that the graph does not break into smaller components
even after removing a large fraction of core nodes (c.f. Fig.
4). The possible reasons for such a behavior are as follows:
1. Estimated core may be incorrect: One may argue that

our metric WICCI to estimate the core may be flawed. It
may be possible that the core is larger than what we es-
timate. To verify this, we start by removing the vertices
from CCN in the decreasing order of the (i) weighted de-
gree (c.f. Fig. 4(a)), and (ii) weighted coreness wc (c.f.
Fig. 4(c)). We observe that the point where the size of
the largest connected component decreases and the num-
ber of small disconnected components increases drasti-
cally, should be the appropriate value of coreth. How-
ever, we notice that such a point arises only after re-
moving 50% and 60% of nodes based on weighted de-
gree and weighted coreness of vertices from CCN, re-
spectively. This would suggest that at least 50% of the
vertices belong to the core. However, the density of the
core reduces significantly (c.f. Fig. 5). This violates one
of the fundamental properties of a core that it should be
incredibly dense. Mislove et al. (2007) observed near-
complete degradation of the largest connected compo-
nent after only removing 10% of the nodes based on de-
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(a) Weighted degree (b) Unweighted degree (c) Weighted coreness (d) Unweighted coreness

Figure 4: The distribution of nodes in components of sizes present in CCN after removing nodes in the decreasing order of (a)
weighted degree, (b) unweighted degree, (c) weighted coreness, and (d) unweighted coreness. The network visibly disintegrates
into smaller components when at least (a) 50% (b) 55% (c) 60%, and (d) 60% are removed from the network. Despite a large
removal of nodes, the remaining network has a high connectivity.

Figure 5: Change in the density of core with the number of
nodes removed.

gree. Therefore, the observed pattern is not the artifact
of our proposed metric WICCI, but a result of the high
connectivity even among users of low coreness.

2. Weighted k-core decomposition may be incorrect:
One may argue that we should consider the traditional
unweighted k-core decomposition (Mislove et al. 2007),
instead of considering the weighted edges. We perform
similar experiments by removing vertices in the order of
the (i) unweighted degree (c.f. Fig. 4(b)) (as suggested in
Mislove et al. (2007)) and (ii) unweighted coreness (c.f.
Fig. 4(d)). We observe similar results in both the cases
where the network breaks into many small disconnected
components upon removing at least 55% of the nodes.
This would again make the core incredibly sparse (c.f.
Fig. 5). Therefore, applying weighted k-core decomposi-
tion is not a reason for the late disintegration of the graph
into smaller components.

Possible explanation: connected periphery. We examine
GP , the induced subgraph of the peripheral nodes indepen-
dently with specific focus on its largest connected compo-
nent GLP .
• GLP and GP have 1, 376 and 1, 455 nodes, respectively.
• GLP and GP have edge density of 0.03674 and 0.0355,

respectively.
• GLP has an average path length of 2.6355.
• Lastly, as stated earlier, when we progressively remove

the core from CCN, the periphery largely remains intact.
This indicates that there is a significant connectivity

among nodes in the periphery. This does not fall within
the conventional structure of the periphery which is gener-
ally described as small disconnected components. Instead,
we visualize the periphery in GLP as smaller and relatively
dense communities (c.f. Fig. 1). One possible reason for a
connected periphery may be that the graph has organically
grown to a stage where despite the detection of the core
users, the blackmarket service is in a self-sustainable stage
and is no longer driven by the core users alone. A solution
would be to detect the core users at an early stage to halt
the growth of the market. To identify the network at its in-
fancy, one would have to create multiple snapshots of the
blackmarket services over a period of time, which is a com-
putationally expensive task. We now examine the relation
between the core and peripheral communities present in the
proposed network.

Interplay Between Core and Peripheral
Communities

Here, we study the interactions between the core and periph-
ery, and highlight critical observations. We start by dividing
the videos V into three categories:
1. Core-core videos are the set of videos commented ex-

clusively by core users.
2. Core-periphery videos are the set of videos commented

by both core and peripheral users.
3. Periphery-periphery videos are the set of videos com-

mented exclusively by peripheral users.
Here, (1) and (2) are responsible for the formation of edges
within core; (2) and (3) are responsible for the formation
of edges within periphery; (2) alone is responsible for the
formation of edges between core and periphery.

Next, we define the community structure in CCN. A
“good” community in CCN is the one in which the users
of the community have co-commented heavily on a set of
videos. Due to the high connectivity observed in the periph-
ery (mentioned in the earlier section), we speculate that the
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Algorithm 1: KORSE algorithm
Input: CCN G(N,E)
Output: Gc: Subgraph containing core nodes

1 Initialize wiccimax ← 0;
. Running the weighted k-core decomposition on
G(N,E).

2 wc = List of weighted coreness scores for nodes in
G(N,E).
. Sort N by wc and push into stack S

3 S = Stack of nodes in G in descending order of
weighted coreness, wc.
. Running set of core nodes

4 coren ← [ ]
. Set coreness threshold as the max weighted

coreness
5 coreth ← max(wc)
6 while coreth > 0 do

. Get node with maximum coreness
7 n = S.pop()
8 while wc(n) >= coreth do

. Add n to coren
9 coren.add(n)

10 n = S.pop()
11 end

. As wc(n) < coreth, we push n back to S
12 S.push(n)

. Make induced subgraph of core using current
corev

13 Gcr ← InducedSubgraph(G, coren)
. Compute WICCI for the current core Gcr

14 wicci←WICCI(Gcr,G)
. Finding the Gcr with maximum WICCI

15 if wicci > wiccimax then
16 wiccimax ← wicci
17 Gc = Gcr
18 end

. Iteratively decrease the coreness threshold
19 coreth ← coreth − 1
20 end

periphery consists of several small communities. To check
this, we run the weighted version of the Louvain commu-
nity detection method (Blondel et al. 2008) for detecting pe-
ripheral communities CLP from GLP (the largest connected
component in the induced subgraph in the periphery). The
modularity of the community structure detected by Louvain
is 0.397, and the number of large communities (with size
> 40) is 9. It indicates that there exist large communities
of collusive users that comment on the same set of videos.
Next, we define the interaction within the peripheral com-
munity based on the amount of collusive commenting activi-
ties occurring inside the community. We categorize these in-
teractions using (a) weighted size, and (b) average weighted
degree of nodes in the peripheral community. We also quan-
tify the interactions between core and each of the peripheral
communities based on the amount of commenting activities

Figure 6: A strong positive correlation between weighted
cut-set WCS and – (a) average weighted degree, and (b)
weighted size of the peripheral communities. Different col-
ors indicate communities obtained in different executions of
Louvain method. The Pearson’s ρ is also reported.

on the core-periphery videos.
[Internal Interaction of Peripheral Community] We

define the internal interaction of a peripheral community as
a measure of the collusive commenting activities within the
community.
We further categorize the internal interaction using the fol-
lowing metrics:
1. Average weighted degree of nodes in the community:

It captures the average collusive commenting activities
taking place within the community.

2. Weighted size of the community: It is measured by the
sum of weights of all the internal edges of a community,
capturing the total intra-community collusive comment-
ing activities.

[Independent Interaction of Core and Peripheral
Community] We define the independent interactions of core
and a peripheral community as a measure of the collusive
commenting activities taking place between the core and the
peripheral community. This indicates the participation of the
peripheral users in commenting on core-periphery videos.

To capture independent interactions between core and
peripheral community C, we utilize the weighted cut-set
WCSCore,C as the sum of the weights of edges connecting
the core and C. Since the size of the peripheral communities
varies, we normalize WCSCore,C by only |C|.

WCScore,C =
Sum of weights of edges connecting core and C

|C|

The following observations are drawn from the above (c.f.
Fig 6):
1. There exists a positive correlation between the aver-

age weighted degree of a peripheral community and
WCScore,C (c.f. Fig 6(a)).

2. There exists a positive correlation between the weighted
size of a peripheral community and WCScore,C (c.f. Fig
6(b)).

From these observations, we conclude that there is a def-
inite positive correlation between the internal interaction
within the peripheral communities and that between the core
and peripheral communities. Peripheral communities which
actively participate in activities associated with the core
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(such as commenting on core-periphery videos), tend to con-
tribute more to the collusive market. We now discuss in our
detail our proposed deep fusion framework NURSE for the
identification of core blackmarket users.

NURSE: A Deep Fusion Framework
Although the network topology based weighted k-core de-
composition presented in KORSE is highly accurate to detect
core blackmarket users, it may not be feasible to adopt in
designing a real-world system because of the following rea-
sons: (i) data arrives in streaming fashion, and the generation
of CCN is not possible as the entire snapshot of the blackmar-
kets at a certain point is impossible to collect; (ii) CCN is of-
ten incomplete and highly sparse, and (iii) k-core decompo-
sition is comparatively slow. However, we consider KORSE
as an oracle and the core and compromised users it has
detected as the ground-truth to train and evaluate the
following model. To address the above issues and towards
designing a real-world system, we propose NURSE (NeUral
framework for detecting coRe colluSive usErs), a neural fu-
sion model to detect core blackmarket users in blackmarket
services based only on the user timeline and video sharing
information (without considering the underlying CCN).

NURSE: Model Components
NURSE comprises three components: metadata feature ex-
tractor (MFE), similarity feature extractor (SFE), and tex-
tual feature extractor (TFE); the output of which are fur-
ther concatenated to form the feature representation of
a YouTube user. The combined representation is passed
through to a core detector module which determines
whether the user is a core or a compromised user. The archi-
tectural diagram of NURSE is shown in Fig. 7. Individual
components of NURSE are elaborated below.

Figure 7: A schematic diagram of NURSE. The green col-
ored network is the metadata feature extractor (MFE), the
orange colored network is the similarity feature extractor
(SFE), and the blue colored network is the textual feature
extractor (TFE). We concatenate the output of the feature
extractors to form the feature representation of a YouTube
user. The final representation is passed through to a core de-
tector module to detect whether the given user is a core user
or a compromised user.

Metadata Feature Extractor (MFE). We extract 26
metadata features based on the profile information, and
videos uploaded by the users. These features are largely di-
vided into four categories:

(a) Self-comments (MFE1−5): These features are derived
from the comments made by the users on their own videos.
We observe that, on an average, compromised users tend to
write more self-comments (×1.778) than the core users, in-
dicating that core users are less involved in self-promotion.
We take the maximum, minimum, total, average and vari-
ance of the comments across self-posted videos as five dif-
ferent features.
(b) Number of videos uploaded (MFE6): It refers to the

total number of videos uploaded by the user. On average,
core users upload fewer videos, which is ×0.633 less than
that of compromised users. A core user’s efforts to bene-
fit from the blackmarkets are lesser (as they are created by
the blackmarket services themselves) than the compromised
users.
(c) Duration of uploaded videos (MFE7−11): These fea-

tures measure the duration of the videos uploaded by users.
On average, a core user uploads significantly shorter videos,
which is ×0.628 less than that of compromised users. The
possible reason could be that core users are less interested
in their own content; rather their primary objective is to arti-
ficially inflate the popularity of other customers’ videos. We
take the maximum, minimum, total, average and variance of
video duration per user as five different features.
(d) Other features: Apart from the above features, we also

consider the following features related to the rating of the
videos posted by a user (in each case, we take the maxi-
mum, minimum, total, average and variance as five different
features) – the number of likes (MFE12−16), the number
of dislikes (MFE17−21) and the number of views received
(MFE22−26).

Similarity Feature Extractor (SFE). Collusive users
have been shown to post similar/duplicate comments regard-
less of the topic of the content (Dutta et al. 2021). We extract
two sets of features based on the linguistic similarity of com-
ments posted on the video and video metadata:

(a) Comment-based features: We capture similarity fea-
tures based on the linguistic similarity of comments posted
by users. For a user, let the set of her comments on her own
videos and the set of comments on other videos be SC and
OC, respectively. We first generate embedding of individ-
ual comments using pre-trained BERT (Devlin et al. 2018).
We then measure the maximum, minimum, total, average
and variance of similarities (cosine similarity) between com-
ments in SC. Similarly, we obtain five similar features, each
from the comments withinOC and by comparing comments
in SC and OC. This results in 15 features (SFE1−15).

(b) Video metadata based features: In YouTube, a user
can upload her own videos (SV ) or act on videos posted by
other users (OV ). For each video, we combine the text of the
video title, video description and video genre. We then gen-
erate the embedding of the combined text using BERT. Next,
we extract the maximum, minimum, total, average and vari-
ance of similarities (cosine similarity) between video em-
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beddings, each from the videos within SV and and videos
across SV and OV . This results in 10 features denoted by
SFE16−25. We did not extract features from within OC be-
cause we observed that doing so heavily biased the model.

Textual Feature Extractor (TFE). We capture textual
features from the content of the comments posted by a
user. We generate embeddings for every comment using
pre-trained BERT (Devlin et al. 2018). To get a represen-
tative embedding for a user, we average out the embeddings
of all the comments posted by the user. As collusive users
tend to post repetitive text in their comments (Dutta and
Chakraborty 2020), we feed the resultant embedding into a
CNN to capture this inter-dependency. In literature, CNNs
have shown to perform well in capturing repetitive patterns
in texts (Lettry et al. 2017).

Core Detector. The core detector module consists of a
fully-connected layer (FC) with softmax to predict where a
YouTube user is core or compromised, denoted byGc(., θc),
where θc represents the model parameters. For the prediction
task, Gc generates the probability of a user u being the core
user based on the combined representation ~u.

Pθ(u) = Gc(~u; θc) (6)

We use the cross-entropy loss (Ld) for our model:

Ld(θ) = y log
(
Pθ(u)

)
+ (1− y) log

(
1− Pθ(u)

)
(7)

NURSE: Model Specifications
NURSE executes three parallel operations - (1) TFE: The
1× 784 textual vector is fed to a CNN (number of channels
= 32, filter size = 2, no padding). Next, the resultant vector is
passed to a max-pooling layer and then to a FC layer of size
64. The final output from this operation is a 1 × 64 vector.
(2) SFE: The 1 × 25 similarity vector is fed to a FC Layer
of size 32. A dropout of 0.3 is applied on the FC layer. The
final output from this operation is a 1× 32 vector. (3) MFE:
The 1 × 26 metadata vector is passed to a FC layer of size
16. A dropout of 0.25 is applied on the FC layer. The final
output from this operation is a 1× 16 vector.

The combined representation is a 1 × 112 vector. This
is then passed to another FC layer of size 16, followed by
a softmax layer of size 2 to obtain the final prediction. We
utilize the ReLu activation function for all other layers.

Experiments
Dataset and Ground-truth
Although we collected collusive users from the blackmar-
kets, it is unknown who among them are core blackmarket
users. Thus, the ground-truth information about the core and
compromised users are impossible to obtain unless black-
markets themselves provide the data! We, therefore, con-
sider the core and compromised users obtained from KORSE
as the ground-truth since it uses the topological structure of
the underlying collusive network to detect the core users.
We hypothesize that KORSE is highly accurate in detect-
ing core users. We also perform several case studies to val-
idate our hypothesis. We intend to show how much NURSE

(a non-topology based method) is close to KORSE (a pure
topology-based method). We also present a case study to
show whether the detected core users are really meaningful
or not.

Since the number of compromised users (1, 455) is 10
times higher than the number of core users (148), we gener-
ate two datasets for our analysis: (i) Dataset (1:1) is a bal-
anced dataset where equal number of compromised users as
that of core users are (randomly) sampled; (ii) Complete
dataset is an imbalanced dataset where all collusive users
are kept. We performed 10-fold stratified cross-validation
and report the average performance.

Baseline Methods
Since ours is the first work to detect core blackmarket users,
there is no existing baseline. We therefore design our own
baselines by considering individual components of NURSE
in isolation and their combinations:
1. MFE: This model uses only the metadata feature extrac-

tor.
2. SFE: This model uses only the similarity feature extrac-

tor.
3. TFE: This model uses only the textual feature extractor.

Each comment is represented as a 786 dimensional vec-
tor using BERT.

We further combine these three components and design
three more baselines: (4) MFE+SFE, (5) MFE+TFE, and
(6) SFE+TFE.

These baselines also in turn serve the purpose of feature
ablation to explain which features are important for NURSE.

Are core users the influential nodes in the network? To
answer this, we consider three other approaches as baselines
which aim to detect influential users:
7. INF: Huang et al. (2020) proposed a node influence in-

dicator, called INF, based on the local neighboring infor-
mation to detect influential nodes in a network.

8. Weighted Betweenness Centrality (WBC): Between-
ness centrality (BC) (Brandes 2001) is a measure of node
centrality based on the shortest paths. We utilize the ap-
proach in (Shin, Eliassi-Rad, and Faloutsos 2016) to run
the weighted version of BC on CCN and detect core users.

9. Coordination Game Model (CGM): Zhang and Zhang
(2017) proposed a coordination game model to find top-
K nodes to maximize influence under certain spreading
model.

Performance Comparison
Since all the competing methods return a score (or a proba-
bility), indicating the likelihood of a user being core, we first
rank all the users based on the decreasing order of the score,
and then measure the accuracy in terms of precision, recall,
F1-Score and Area under the ROC curve (AUC) w.r.t. the
‘core’ class. Fig. 8 shows that NURSE dominates other base-
lines for almost all values of k (the top k users returned from
the ranked list). Table 4 summarizes the performance (F1-
Score and AUC) of the models at k = 148 (as there are 148
core users; it is also known as break even point) – NURSE
turns out to be the best method, followed by MFE+SFE (for
balanced dataset) and SFE+TFE (for imbalanced dataset).
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Figure 8: Change in the performance of competing methods
with the increase of k (the number of results returned) for
detecting core users from our dataset (1:1). For better vi-
sualization, among the variations of NURSE, we report the
results of only the best variation (SFE+TFE).

Method Dataset (1 : 1) Dataset (1 : 4)
F1 (Core) AUC F1 (Core) AUC

MFE 0.638 0.559 0.268 0.294
SFE 0.816 0.857 0.516 0.472
TFE 0.665 0.773 0.530 0.365
MFE+SFE 0.824 0.882 0.682 0.718
MFE + TFE 0.696 0.767 0.415 0.631
SFE+TFE 0.819 0.865 0.721 0.792
INF 0.750 0.139 0.533 0.113
WBC 0.617 0.304 0.407 0.270
CGM 0.622 0.392 0.302 0.414
NURSE 0.879 0.928 0.833 0.845

Table 4: Performance (F1-Score and AUC for detecting core
users) of the competing methods at k = 148 (break-even
point). The results also explain feature ablation of NURSE.

Similarity feature extractor (SFE) seems to be the most im-
portant component of NURSE, followed by TFE and MFE.
Among influential node detection methods, both INF and
CGM seem to be quite competitive. Next, we examine the
core users identified by our proposed method KORSE and
NURSE.

Case Studies
We further delve deeper into the characteristics of some
of the core users detected by both KORSE and NURSE by
conducting some case studies. These provide us strong evi-
dences to validate our strategy of collecting the ground-truth
from KORSE.
1. Core users are heavy contributors: A core user, on

average, comments significantly (×2.665) more than a
compromised user, indicating that core users are the top
contributors to the freemium collusive market.

2. Despite being heavy contributors, core users are not
the largest beneficiaries of the collusive market: We
measure the average number of comments received by
the videos uploaded by collusive users, and rank them in
decreasing order of this quantity. We find only one core
user from the top 30 users. Upon further investigation, we
notice that only 8 out of the top 250 users are core users.

This suggests that core users, despite being heavy con-
tributors, are not the largest beneficiaries of the collusive
market.

3. Core users aggressively participate in the collusive
market: We observe that the average number of com-
ments made per collusive video by core users is twice
(×1.997) higher than that of compromised users. This
indicates an aggressive behavior to promote the videos
they comment on.

4. Channels controlled by core users are not popular:
We observe that the channels controlled by core users are
not the popular YouTube channels. More than 85% of the
channels have a subscriber count of less than 1, 000. This
clearly indicates that the primary objective of the core
users is not to promote their own videos/channels.

5. Channels controlled by core users have less uploaded
videos: We observe that the channels controlled by core
users usually do not contain much YouTube videos. More
than 90% of the channels have a video count of less
than 100. This further corroborates the theory behind the
working principle of core blackmarket users.

Despite the above suspicious characteristics exhibited by
core channels, we observe that till date, 93% of the core
channels continue to be active on YouTube. On average,
these core channels have been active on YouTube for over
4 years (1497 days). It indicates how core channels are able
to evade the current in-house fake detection algorithms de-
ployed by YouTube.

Conclusion

This paper addressed the problem of detecting core users
in YouTube blackmarkets. We curated a new dataset of col-
lusive YouTube users. We then proposed KORSE, a novel
graph-based method to segregate core users from compro-
mised accounts. Empirical studies revealed interesting dy-
namics of core and compromised users. As KORSE is prac-
tically infeasible to design due to its dependency on the
underlying collusive network, we further proposed NURSE,
a deep fusion model that leverages only the user timeline
and video submission information to detect core users. Ex-
tensive experiments on our dataset showed that NURSE is
highly similar to KORSE in detecting core users. Summariz-
ing, our study contributed in four aspects – problem defini-
tion, dataset, methods and empirical observation. As a future
work, it would be interesting to see how NURSE can merge
with existing collusive entity detection approaches to effec-
tively identify core, collusive and non-collusive users. We
also made the code and dataset publicly available.
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