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Abstract 
On-line discussions are composed of multiple inter-woven 
threads, regardless of whether that threaded structure is 
made explicit in the representation and presentation of the 
conversational data.  Recovering the thread structure is 
valuable since it makes it possible to isolate discussion 
related to specific subtopics or related to particular 
conversational goals.  In prior work, thread structure has 
been reconstructed using explicit meta-data features such as 
“posted by” and “reply to” relationships.  The contribution 
of this paper is a novel approach to recovering thread 
structure in discussion forums where this explicit meta-data 
is missing. This approach uses a graph-based representation 
of a collection of messages where connections between 
messages are postulated based on inter-message similarity.  
We evaluate three variations of this simple baseline 
approach that exploit in different ways the temporal 
relationships between messages.  The results show that the 
three proposed approaches outperform the simple threshold-
cut baseline. 

Introduction  
As the language technologies community focuses more and 
more on the analysis of social media rather than primarily 
focusing on expository text, the characteristics that set 
conversational data apart must be considered explicitly.  
Whereas expository text is organized around the 
information that is presented, typically in a single coherent 
argument, conversation is organized around a shared task 
where multiple participants act and react to one another as 
the scenario unfolds.  Because the interaction is not, and 
indeed cannot, be fully planned out ahead of time, the 
structure emerges from the complex and intertwined 
separate intentions of each of the actors as they participate 
in their joint task.  It has been widely noted that the 
temporal ordering of contributions to an ongoing 
conversation can be exploited in the analysis of social 
media (Kleinberg, 2002; Kumar et al., 2003; Dubinko et al., 
2006).  Nevertheless, with multiple actors, each with their 
own goals and discourse intentions, it cannot be assumed 
that the conversation proceeds with a single focus at a 
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time, which would result in a simple, treelike structure 
(Grosz and Sidner, 1986).  Rather, conversational data may 
have a complex, multi-threaded structure (Rose et al., 1995; 
Wolf and Gibson, 2005).  Thus, limiting the structural 
representation of conversational data to a singular 
sequential ordering is overly simplistic and limiting.   
 Isolating the individual threads that make up a complex, 
multi-party interaction plays a pivotal role in making sense 
out of the individual contributions on multiple levels.  For 
example, from a group knowledge building perspective, 
teasing out the individual threads is valuable for 
characterizing the consensus building style of the actors 
(Wang et al., 2007).  On the level of conversation acts, 
identifying which contributions fit together on a single 
thread is useful for identifying adjacency pairs and thus 
leveraging the notion of sequential relevance for 
disambiguating the actions performed (Stolcke et al., 
2000).  Thread structure can also be used to identify 
particularly influential contributions by analyzing 
backward links between messages to identify which 
contributions were responsible for stimulating the longest 
discussion threads.   Polarity prediction within the area of 
sentiment analysis may benefit from the identification of 
thread structure.  For example, if Participant C disagrees 
with B’s disagreement with A’s opinion, then C agrees 
with A.  This cannot be correctly resolved from the 
characteristics of individual contributions in the absence of 
the discourse structure. 
 Consistent with this view, thread structure has been 
advantageously applied to many different research 
problems in the area of social media analysis, such as 
email summarization (Carenini et al., 2007), text 
classification task in discussion forums (Wang et al., 
2007), and newsgroup search (Xi et al., 2004).  In this prior 
work, meta-data that makes the thread structure explicit 
played an important role in identifying the parent child 
relationships between conversational contributions.  
Unfortunately, there are many popular conversation 
streams that are not organized explicitly into threads.  The 
lack of explicit thread representation may limit the 
exploitation of thread structure in the analysis of social 
media.  In contrast to this prior work, we develop an 
algorithm for recovering thread structure where it is not 
made explicit in associated meta-data that accompanies 
conversational contributions. 
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 As an example of such a data set, for our analysis, we 
use a data set collected within a multi-party educational 
game environment called LegSim (Wilkerson and Fruland, 
2006).  The LegSim environment is a simulated legislature 
where students play the roles of state representatives, who 
are responsible for proposing and examining bills.  In this 
environment, students engage in debates possessing a 
complex, threaded structure.  However, that thread 
structure is neither explicit in the stored representation of 
the data nor from the interface that the students use to 
engage in the multi-party conversation. 
 The contribution of this paper is a novel approach to 
recovering thread structure in discussion forums where 
explicit meta-data for reconstructing the thread structure is 
missing.  We refer to this task as the thread structure 
recovery task.  In particular, thread structure recovery is 
the process whereby a parent message is explicitly linked 
to one or more responding child messages.  Our approach 
consists of two steps.  First, we use a connectivity matrix 
constructed using a shallow message similarity measure to 
represent the implicit relationships between messages 
within the same conversation stream.  Each element in the 
matrix is a weighted link between a message pair, which 
measures the content similarity between the messages.  
The second step is to determine parent-child relationships 
using the connectivity matrix.  A simple baseline approach 
merely uses a threshold to identify which similarity 
measures are strong enough to constitute an explicit link.  
We propose three variations of this baseline approach that 
leverage in different ways the temporal relationships 
between messages. 
 In the remainder of the paper, we will first review some 
important related work in section.  Next, we will describe 
the formal definition of the task and dataset as well as the 
details of our algorithms.  Then, we will present our 
evaluation by comparing the effectiveness of the 
alternative versions of our basic approach.  We conclude 
with some directions for our continued investigation. 

Related Work 
As discussed in the previous section, some recent work has 
demonstrated that explicit thread structure can be 
advantageously utilized in the analysis of social media.  
First, it can be used for boosting the performance of 
automatic analysis.  For example, Carvalho and Cohen 
(2005) exploited the sequential ordering among emails 
within the same conversation thread to improve the 
performance of email-act classification.  Also, Xi et al. 
(2004) introduced an effective ranking function for 
newsgroup search.  In that work, Xi and colleagues 
extracted a set of meta features related to the structure of 
newsgroup discussion threads, such as the number of 
children of the current message, the position of the current 
message in the thread tree, and so on.  Similarly, Wang and 
colleagues (2007) developed a novel approach to 
leveraging context for classifying newsgroup style 
discussion segments.  Their solution was to use the explicit 

thread structure to identify pairs of potentially related 
segments of text.  They then used shallow semantic 
similarity metrics to compute a feature that indicated the 
maximum similarity value between a segment contributed 
by one participant and other potentially related segments 
contributed by other participants in the discussion thread.  
This added feature significantly improved performance at 
identifying the consensus building style exhibited by the 
individual discussion contributions over a baseline using 
only word level features. 
 Recently, some research related to thread structure has 
been done in the context of email summarization work, 
where recovering thread structure is necessary for 
constructing coherent summaries of email conversations.  
To that end, Yeh et al. (2006) studied how to use quoted 
messages, string matching metrics, and email headers to 
reassemble the treelike thread structure of email 
conversations.  Inspired by Yeh et al.’s work, Carenini et al. 
(2007) proposed a new email summarization framework, 
ClueWordSummarizer.  They used what they refer to as a 
fragment quotation graph to organize conversations and 
subsequently construct lexical chains.  They utilized 
quotation markers (e.g., “>”) as well as quotation depth 
(the number of quotation marks in the beginning of every 
line) to build the quotation graph.  
 In addition to facilitating the automatic analysis of social 
media, identification of thread structure can be used to aid 
in the work that conversation analysts do with the data by 
hand.  For example Trausan-Matu et al. (2007) presented a 
conversation analysis support tool that provided a 
visualization of a threaded conversation.  Topics were 
identified by means of expressions such as “Let’s talk 
about” or “What about”, and then the WordNet ontology 
was used for recovering threads by means of automatically 
constructed lexical chains.  The visualization assisted 
analysts in identifying meaningful subsets of messages to 
examine together as a coherent conversational unit. 
 Our work is most related to Shen et al.’s work (2006), in 
which they introduced a partial solution to the thread 
reconstruction task for synchronous chat data.  In their 
work, a single-pass clustering algorithm was modified to 
exploit the temporal information in the streams by 
computing centroids that updated dynamically as the 
analysis proceeded sequentially through the data stream.  
The purpose of this analysis was to identify subtopic 
clusters of contributions.  Our work is similar in that we 
also exploit temporal relationships between contributions.  
However, their approach fell short of a complete solution 
in that it did not identify the explicit parent-child 
relationships between contributions, as we do in our work.  
Also, Shen et al. employed a different data structure and 
search technique.  Specifically, they employed an 
incremental clustering algorithm in which they 
dynamically computed centroids for their clusters based on 
a combination of semantic similarity and temporal 
proximity.  In our work, we introduce an approach to 
recover thread structure using a graph-based connectivity 
matrix, which similarly uses both similarity and temporal 
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information.  Our evaluation demonstrates the importance 
of both types of information, and contrasts alternative 
approaches to combining temporal cues with similarity 
based predictions. 

Problem Definition 
In this section, we introduce our dataset and offer an 
example to illustrate the thread reconstruction problem. 
 

LegSim Corpus 
The LegSim 1  corpus was provided to us by John D. 
Wilkerson at University of Washington in Seattle.  That 
dataset contains a collection of messages contributed 
within an educational multi-player web-based teaching tool 
called LegSim.  LegSim has been in instructional use since 
2000, and was used by approximately 1400 high school, 
community college and university students during the 
2005-06 school year.  It includes features that allow 
students to participate in the form of online discussions.  It 
simulates a legislative environment where students in a 
government or public policy course assume 
representational roles and advance legislative proposals 
that reflect their own political priorities.   

We chose the data from one college level Civics course 
from Fall 2006.  93 students participated in the course, 71 
of which actively participated in the on-line discussion.  
They were able to post comments and opinions regarding 
the proposed legislation (a.k.a. a bill).  Over the course of 
the semester, 478 messages were posted.  In this data, the 
messages were organized into 48 separate streams, as 
determined by which bill they referred to.  The histogram 
in Figure 1 shows the detailed distribution of number of 
messages per stream. The longest stream is composed of 
70 messages, while the shortest one contains only 1 
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message.  The average number of messages per stream is 
9.98. 

A Simple Thread Example 
Figure 2 displays a simplified conversation example from 
the LegSim dataset.  The nodes above the dashed arrow 
denote a discussion stream, arranged from left to right in 
the same order in which they were posted.  Every 
discussion stream consists of discussion related to a 
specific topic, in this case a proposed bill that is under 
debate.  For example, the topic of this example is whether 
the government should raise the minimum wage.  
Participant A posted the root message R to initiate the 
discussion.  Following that is a sequence of reply messages 
(M1 to M6), which respond to previous messages.  The 
graph illustrates the thread relationships among the 
messages in the discussion stream.  A directed link in the 
graph represents a parent-child relationship, with arrows 
that point from child to parent (e.g., M3M1).  In 
conversational data, it is possible for a message to have 
multiple parents (i.e., one message can reply to several 
previous messages at the same time.)  Take the message 
M6 as an example.  It expresses a disagreement with both 
M2 and M4.  Similarly, a parent may have more than one 
child.  For example, both M3 and M4 respond to M1. 
 Because of the lack of explicit thread structure 
information in the dataset, before we began any of our 
experimentation, we manually reconstructed the thread 
structure by assigning links between messages based on 

Figure 1. Distribution of Conversation Stream Size. 
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A: We should raise the federal 
minimum wage to $7.25 by 2008. 

 
 
 

M1 

B: I agree. Raising the 
minimum wage can help low-
income family. 

 
 
 

M2 

C: No. It will simply add more 
money to the economy, and 
devalue the dollar. 

 
 
 M3 

D: Yes. A higher 
minimum wage 
is necessary in 
showing worker 
empathy by the 
government. 

 
 
 

M4 

E: Poor people 
cannot benefit by 
it. Increasing the 
minimum wage 
will increase the 
cost of living. 

 
 
 

M5 

F: I disagree with D. We 
should allow states to 
decide the minimum wage 
for themselves 

 
 
 

M6 

A: I don’t think raising the 
minimum wage will 
increase the living cost nor 
devalue the dollar. 
Businesses would only be 
able to raise prices so 
much as the market will 
bear it 

 
 
 

Figure 2. A thread example in LegSim and the goal 
of thread recovery. 
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their observed semantic relationship and explicit discourse 
markers.  For example, the following is part of a discussion 
example from the dataset in which two “representatives” 
are discussing whether they should pass a bill that proposes 
“Local Law Enforcement Celebration Day”.   

Representative X said “Every day our Police Officers 
put their life in danger to protect and serve the people. 
I feel that this bill is the very least that we could do to 
express our gratitude. It is non-controversial so this 
should pass quickly.” 

Representative Y said “I agree... it is the least we can 
do to show our appreciation... I think it should easily 
pass also... Thanks Rep Tung for proposing it.” 

  
It is clear semantically that the message by Representative 
Y comments on the message by Representative X.  First, 
explicit discourse markers, namely “I agree” as well as 
“also”, mark that this message is a response to an earlier 
message.  The statement “It should pass” echoes part of the 
earlier message.  Also, its sequential position, adjacent to 
the earlier message, offers a clue.  So, during our manual 
annotation process, we assigned a parent-child link 
between these two message based on these types of clues.   
 We verified that our annotation of parent-child 
relationships was reliable.  Since we expected that the 
thread structure would tend to be more complicated for 
longer threads, we evaluated our agreement over three 
randomly selected threads from those with longer lengths 
(within the upper most quartile).  Altogether these three 
threads (of lengths 10, 19, and 32 respectively) constituted 
15% of the corpus.  Two humans annotated these three 
threads using the definition outlined above.  The Cohen’s 
kappa is 0.87 for the three threads.  This shows that the 
annotators achieved a high level of consensus for the link 
annotation task. 
 The two human annotators were trained to use the 
following discourse clues to identify parent-child links 
when doing annotation.  Response markers, namely “I 
agree with X” as well as “In response to X”, mark that a 
message is a response to an earlier message.  Addition 
markers, such as “We also have to remember…” and 
“That’s still wrong”, mark that the message has some 
additional comments for the earlier discussion or 
arguments against a previous post.  Echo markers echo part 
of the earlier messages.  Question and answer in a 
candidate parent and the current message respectively can 
link two messages together, too.  Finally, subtopic phrases 
have the potential to chain messages together.  For 
example, there are two subtopics (helping low-income 
families versus devaluing the dollar) in the discussion of 
the bill “whether the government should raise the 
minimum wage.”  The phrases “low-income family” and 
“poor people” mark that a message should belong to the 
former subtopic discussion. A phrase such as “devalue the 
dollar” or “economy”, on the other hand, suggests that the 
message is talking about the later subtopic. 

 Among the 48 streams mentioned above, 39 streams 
have two or more messages.  After manual reconstruction 
of the thread structure, 28 of these 39 streams contained at 
least one parent-child link.  We use these 28 streams in the 
experiments reported below.  

Definition of Thread Recovery Task 
Given a discussion stream in which messages are sorted by 
the posting time, the thread recovery task is to construct 
the thread graph (as in the example in Figure 2).  The links 
in the graph identify which of the previously contributed 
message the current message replies to.  In our problem, 
three assumptions are made: 
Assumption 1: The default parent of each reply message is 
the initial message of the stream.  Thus, that is the 
assignment made by the algorithm if no parent is identified 
further down the thread.  As we have mentioned above, all 
messages in the same stream are all about one single topic, 
and the root message is the one that starts the discussion.  
Assumption 2: We assume each message can only link 
back to those messages that were posted before it in time.   
Assumption 3: Except for the posting time of messages, 
no meta information is available, such as author names, 
quotation marks, and message titles.  We make this 
assumption since this information is not always available, 
and the purpose of our experimentation is to determine 
what can be used to recover thread structure in the absence 
of this meta-information.   
 These assumptions take the form of constraints that are 
enforced in all versions of our algorithm described below. 

Alternative Approaches to Thread Recovery 
In this section, we first explain how to build a connectivity 
matrix to reflect semantic similarity between messages.  A 
threshold is then applied to the weighted links in the matrix 
in order to identify the thread links.  To leverage the 
sequential nature of conversation streams, we describe 
three variations to the baseline algorithm, which are able to 
take temporal information into account. 

Data Representation 
We utilize a vector space model to represent messages.  A 
message is a vector of terms2, which are weighed by the 
term frequency (TF) and inverse document frequency 
(IDF).  Here, TF stands for the number of times a term 
occurs in a message.  IDF is the log of the number of 
messages in the stream divided by the number of messages 
in the stream that contain the term.  TF is normalized, as 
displayed in the formula below.  There are many variations 
available for computing TF.IDF.  Following is the one we 
used, which is the UMass version of the leading Okapi 
algorithm (Robertson et al., 1994): 
                                                
2 In our experiment, we used non-stemmed unigrams as 
features. 
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where N is the number of messages in the conversation 
stream.   
 Intuitively, we selected TF.IDF for our term weights in 
order to emphasize the most salient terms in the messages 
in our message similarity measure.  This is based on the 
intuition that what makes a message distinctive within its 
stream is what is most likely to elicit a response.  However, 
there are instances where this may not be the case.  Thus, 
while using TF.IDF term weights may have some desirable 
consequences, we cannot rule out at this point the 
possibility that a different term weight scheme may have 
been more appropriate.  We leave experimentation along 
these lines for future research 

Message-to-Message Graph Building 
Given a time-ordered sequence of messages M={ mi | 
1≦i≦n } 3  in a conversation stream, we view each 
message as a node in a graph.  We then build a directed 
graph by creating edges from mj to all messages before it in 
time (i.e. mi where i<j).  The associated weight of the edge 
is computed with the cosine similarity measure.  We use a 
connectivity matrix W to represent the graph, where each 
element wij in W denotes the weighed edge from mi to mj in 
the graph.  The formal definition of similarity matrix 

nnijwW !=  ][ is given below: 

where 
i
m
r

is the term vector of message
i
m .  Note that 

according to the definition, W is a lower triangular matrix 
where the main diagonal is zero. 

Thread Structure Recovery 
Once we have the message-to-message matrix W, which 
represents semantic similarity between messages, we are 
ready to reconstruct the thread structure for M.  First, we 
describe our baseline algorithm (GRB).  In order to decide 
whether two messages should be linked by a parent-child 
relationship, a threshold is employed as the baseline.  Only 
when the cosine similarity between messages, i.e., wij in W, 
is larger than threshold we will assign a link for them.  
                                                
3 Note that m1 is the first message immediately following 
the start message.  The reason that we didn’t take the root 
message into account is because all messages in the same 
stream are supposed to discuss the same topic initiated by 
the root.  Thus, it is likely that the similarity score between 
root and any of its child messages will normally be high 
relative to that of other pairs of child messages, which 
could interfere with thread recovery.   

Considering each entry in W, we get the baseline thread 
graph nnijgG !=  ][ . 

where gij indicates a link from message mi to mj and is set 
to 1 only if wij is larger than threshold.  By adjusting the 
threshold, we can explore different degrees of similarity 
between messages. 
 After informally observing some thread instances in our 
dataset, we observed that a child message is usually not far 
away from its parent.  As a consequence, we introduced 
three penalizing functions for W, which can differently 
leverage the temporal ordering and distance between 
messages.   We consider the relative position of messages 
instead of using real time-stamps. 
Penalizing W Using Fixed Window Size (GRF).  The 
central idea behind the first variation on the baseline 
algorithm is that only messages within a certain window 
size are considered to be the potential parents of some 
message.  More specifically, a fixed time window is 
employed to transform the similarity matrix W.  This yields 
a new similarity matrix nnijaA !=  ][ : 

where s is the window size we consider; and ji ! is the 
distance between message mi and mj.  The algorithm for 
detecting links here (and also in the other two variations) is 
the same as the baseline except that we substitute the 
baseline similarity matrix W with A.  Note that there are 
two parameters – s and threshold – that need to be 
specified in this penalizing strategy. 
Penalizing W Using Dynamic Window Size (GRD).  
Considering that the length of different conversation 
streams may vary, it might be beneficial if the window size 
can dynamically reflect the length of the stream.  Thus, we 
use a dynamic window size and use it to compute the new 
weighted matrix nnijbB !=  ][  as shown below: 

where n is the number of messages belonging to the 
conversation stream M; p denotes the percentage of 
previous messages we want to consider when determining 
the parents of the current message.  This approach also 
involves two parameters – p and threshold. 
Penalizing W Using Time Distance (GRT).  Finally, 
instead of using an indicator function to indicate a subset 
of elements in W, we penalize the similarity by the time 
distance between the two messages.  The result similarity 
matrix nnijcC !=  ][ is defined as following: 
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where the reciprocal of ji !  is used to decrease the 
cosine similarity value in term of the distance between the 
two messages.  For this variation, we only need to consider 
the similarity threshold. 

Experiments 
We have described the baseline algorithm for recovering 
thread structure as well as the three variations of it that 
make use of temporal information.  In this section, we 
compare these algorithms in order to evaluate the 
contribution of temporal information to the thread structure 
recovery task.  We first introduce the evaluation metrics 
and then the experimental results.  The final part of this 
section shows the results of parameter tuning. 

Evaluation Methods 
We use precision, recall, and F-measure to evaluate our 
results.  We explain the definition for each of the three 
metrics in terms of the thread recovery task as follows: 
 
 

 

where we employ the balanced F-measure in which 
precision and recall are evenly weighted. 

Results 
In our evaluation, we compare the three variant algorithms 
with the baseline algorithm that only takes similarity into 
account.  The performance curves are shown in Figure 3.   
 Before we present a statistical comparison of tuned 
performance across conditions, we will first illustrate how 
our four approaches vary as we manipulate the parameters 
that are associated with them.  Both Time/Distance and 
Similarity are used to narrow the range of previous 
messages that are considered as potential parent messages.  
Thus, as the threshold on Time or Distance is made more 
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Figure 3. Performance of GRB, GRF, GRD, and GRT while parameters vary. 
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restrictive, precision tends to increase, whereas recall tends 
to decrease.  Similarly, as the threshold on Similarity is 
made more restrictive, we see the same pattern.   
 Figure 3 (a) displays how the results of baseline GRB 
vary as the threshold is manipulated.  The highest F-
measure score is 0.29, which is achieved when the 
threshold is 0.165.  Figure 3 (b) and (c) describe the results 
of GRF and GRD respectively.  To observe the sole effect of 
varying the window size, we fix the threshold at 0.125.  In 
(b), we find that the F-measure score decreases while 
increasing the fixed window size s from 2 to 20.  The best 
F-measure is 0.39, which is achieved when s is set to 3.  In 
Figure 3 (c), the percentage p is adjusted between 0 and 1.  
When p is fixed at 0.1 (i.e., so that about 10% of previous 
messages are considered to be parents of a current message 
based on the number of messages in each stream) the F-
measure reaches its highest value, specifically 0.37.  Figure 
3 (d) presents the results using time distance to discount 
the similarity between messages.  The highest F-measure 
score (0.41) is found when threshold is equal to 0.065. 
 Both GRF and GRT improve the performance over GRB by 
about 30% in terms of F-measure, which argues in favor of 
taking both similarity and Time/Distance into account 
when identifying parent-child relationships.  For GRD we 
have an improvement of 28%. This validates our initial 
assumption that child messages usually appear close to 
their parents. 

Parameter Tuning 
In this subsection, we evaluate the tuned performance of 
our algorithms.  We employ a leave-one-thread-out cross-
validation methodology to tune the parameters and 

evaluate the performance on the held-out test thread on 
each fold.  Note that the only parameter that is tuned for 
GRB and GRT is the similarity threshold (threshold).  In 
contrast, there are two parameters that need to be tuned for 
both GRF (threshold, s) and GRD (threshold, p). 
 During the training phase, we evaluate all combinations 
of parameter values in order to identify the parameter 
settings that optimize the F-measure for each algorithm 
over the training data, and then apply the tuned model to 
the test thread.  We then compute the weighted average of 
performance across threads (weighted by thread length so 
that decisions within long threads are valued equally to 
those within short threads).  From Table 1, we can see the 
average F-measure for the baseline algorithm as well as for 
the three variants.  We also include one additional baseline 
approach, which always selects the immediately previous 
message as the parent message.  We refer to this as GRP. 
 

Table 1.Evaluation results of leave-one-thread-out cross-
validation for each algorithm. 

 
Table 1 presents an overview of the results across 
approaches.  We see that the best approach overall is GRF, 

which uses a fixed window size in addition to bound the 
search for potential parent messages using similarity above 
a threshold.  Overall, the only statistically significant 
contrast is between the two endpoint approaches, namely 

ALGORITHM GRP GRB GRF GRD GRT 

F-MEASURE 0.36 0.28 0.39 0.34 0.40 

Figure 4. The leftmost graph shows how the three approaches compare with one another as thread length 
increases.  Here, bin 1 contains threads of length 2-5, bin 2 threads of length 6-13, and bin 3 threads of length 14-
70.  The rightmost graph shows that the three approaches compare with one another as average message length 
increases.  Here, bin 1 contains messages of length 0-40, bin 2 contains messages of length 40-60, bin 3 contains 
messages of length 60-85, bin 4 contains messages of length 85-120, and bin 5 contains messages of length greater 
than 120 
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the baseline that considers only similarity information 
(GRB), and the variant algorithm that combines a fixed 
window size with similarity information (GRF).  Below we 
conduct a more fine grained analysis, comparing the 
performance of the best performing variant approach 
(GRF), which we refer to as FixedWindow in the graphs 
below, with two baselines, namely SimilarityOnly (GRB) 
and LinkPrevious (GRP). 

Figure 4 illustrates the comparison of the three 
approaches for threads of different lengths and parent-child 
pairs of messages with different average message lengths.  
In particular, in the leftmost graph, we see performance of 
the three approaches over threads in 3 sets, with increasing 
average thread length.  We see that as thread length 
increases, performance decreases overall.  And in the most 
difficult two thread length bins, we see the greatest 
advantage of the FixedWindow approach over the two 
baseline approaches.  Within the set of threads that 
combines the threads from the most difficult two bins, the 
FixedWindow approach is significantly more effective than 
either of the two baseline approaches.  The simple 
approach of linking to the most recent previous message is 
surprisingly effective, especially for very short threads.  
However, similarity information becomes more valuable as 
thread length increases. 

In the rightmost graph in Figure 4, we see another 
comparison across the same three approaches, this time 
comparing performance across bins of pairs of potential 
parent-child messages of average message lengths within 
particular ranges.  Average message length was computed 
by averaging the parent message length and child message 
length within the pair.  Overall, performance tends to 
increase as average message length increases.  Our 
intuition is that when average message length is too short, 
there is not enough information to get a meaningful 
similarity measure.  For the longest messages, we don’t see 
an advantage for the FixedWindow approach over the two 
baseline approaches.  Our intuition is that similarity 
information is most useful for medium sized messages.  As 
average message length increases above a certain level, 
more text than is relevant for the parent-child link is 
considered.  We hypothesize that our approach could be 
improved further by taking discourse focus into account to 
select the most relevant portion of longer messages to use 
in the similarity comparisons. 

Conclusions and Future Work 
This paper introduced an approach to recover thread 
structure in discussion forums using a graph-based 
representation of messages.  In our model, a connectivity 
matrix based on inter-message similarity for each 
conversation stream was computed.  We presented three 
variations of a baseline approach, each of which exploit 
temporal information to reassemble thread structure on the 
basis of the similarity graph.  The results show that the best 
variant algorithm can significantly improve performance 
over two baseline approaches, particularly for longer 

threads, and for parent-child message pairs of medium 
length. 
 As mentioned above, one way in which we plan to 
investigate ways of improving our performance is by 
manipulating the vector representation of the messages.  In 
the work reported here, we have utilized term vectors using 
a TF.IDF weighting scheme.  Semantic ontologies such as 
WordNet might be leveraged to enable generalizing over 
alternative ways of expressing the same idea as Trausan-
Matu et al.’s work (2007).  Alternatively, a dimensionality 
reduction technique such as Principal Components 
Analysis or Latent Semantic Analysis might have a similar 
effect. 
 Beyond investigating alternative weighting schemes, we 
plan to investigate alternative types of features that might 
improve the effectiveness of the similarity measures that 
we compute in identifying candidate parent messages.  For 
example, features that take into account syntactic 
dependencies between words might better represent the 
position expressed by the author of a posted message to the 
extent that these syntactic dependencies enable the 
representation of argument structure to a limited extent. 
 In the work reported here, we have used cosine 
similarity to compute the similarity between messages.  
However, alternative similarity metrics such as Euclidean 
distance would have slightly different preferences in terms 
of relative similarity and might provide an interesting 
contrast in terms of performance.  With a weighting 
scheme like TF.IDF, Euclidean distance might be more 
influenced by the relative salience of terms within texts. 
 In our current work, we are also investigating the thread 
recovery problem other kinds of social media, such as web 
blogs.  We expect that differences in the nature of the 
interactions in these alternative settings will lead to 
interesting contrasts with respect to which representations 
of messages lead to the best results, as well as which 
thresholds and window sizes are appropriate. 
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