
Recovering Implicit Thread Structure
in Newsgroup Style Conversations

Yi-Chia Wang, Mahesh Joshi
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{yichiaw,maheshj}@cs.cmu.edu

William W. Cohen
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Carolyn Rosé
Language Technologies Institute/

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
cprose@cs.cmu.edu

Abstract
On-line discussions are composed of multiple inter-woven
threads, regardless of whether that threaded structure is
made explicit in the representation and presentation of the
conversational data. Recovering the thread structure is
valuable since it makes it possible to isolate discussion
related to specific subtopics or related to particular
conversational goals. In prior work, thread structure has
been reconstructed using explicit meta-data features such as
“posted by” and “reply to” relationships. The contribution
of this paper is a novel approach to recovering thread
structure in discussion forums where this explicit meta-data
is missing. This approach uses a graph-based representation
of a collection of messages where connections between
messages are postulated based on inter-message similarity.
We evaluate three variations of this simple baseline
approach that exploit in different ways the temporal
relationships between messages. The results show that the
three proposed approaches outperform the simple threshold-
cut baseline.

Introduction
As the language technologies community focuses more and
more on the analysis of social media rather than primarily
focusing on expository text, the characteristics that set
conversational data apart must be considered explicitly.
Whereas expository text is organized around the
information that is presented, typically in a single coherent
argument, conversation is organized around a shared task
where multiple participants act and react to one another as
the scenario unfolds. Because the interaction is not, and
indeed cannot, be fully planned out ahead of time, the
structure emerges from the complex and intertwined
separate intentions of each of the actors as they participate
in their joint task. It has been widely noted that the
temporal ordering of contributions to an ongoing
conversation can be exploited in the analysis of social
media (Kleinberg, 2002; Kumar et al., 2003; Dubinko et al.,
2006). Nevertheless, with multiple actors, each with their
own goals and discourse intentions, it cannot be assumed
that the conversation proceeds with a single focus at a

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time, which would result in a simple, treelike structure
(Grosz and Sidner, 1986). Rather, conversational data may
have a complex, multi-threaded structure (Rose et al., 1995;
Wolf and Gibson, 2005). Thus, limiting the structural
representation of conversational data to a singular
sequential ordering is overly simplistic and limiting.
 Isolating the individual threads that make up a complex,
multi-party interaction plays a pivotal role in making sense
out of the individual contributions on multiple levels. For
example, from a group knowledge building perspective,
teasing out the individual threads is valuable for
characterizing the consensus building style of the actors
(Wang et al., 2007). On the level of conversation acts,
identifying which contributions fit together on a single
thread is useful for identifying adjacency pairs and thus
leveraging the notion of sequential relevance for
disambiguating the actions performed (Stolcke et al.,
2000). Thread structure can also be used to identify
particularly influential contributions by analyzing
backward links between messages to identify which
contributions were responsible for stimulating the longest
discussion threads. Polarity prediction within the area of
sentiment analysis may benefit from the identification of
thread structure. For example, if Participant C disagrees
with B’s disagreement with A’s opinion, then C agrees
with A. This cannot be correctly resolved from the
characteristics of individual contributions in the absence of
the discourse structure.
 Consistent with this view, thread structure has been
advantageously applied to many different research
problems in the area of social media analysis, such as
email summarization (Carenini et al., 2007), text
classification task in discussion forums (Wang et al.,
2007), and newsgroup search (Xi et al., 2004). In this prior
work, meta-data that makes the thread structure explicit
played an important role in identifying the parent child
relationships between conversational contributions.
Unfortunately, there are many popular conversation
streams that are not organized explicitly into threads. The
lack of explicit thread representation may limit the
exploitation of thread structure in the analysis of social
media. In contrast to this prior work, we develop an
algorithm for recovering thread structure where it is not
made explicit in associated meta-data that accompanies
conversational contributions.

152

 As an example of such a data set, for our analysis, we
use a data set collected within a multi-party educational
game environment called LegSim (Wilkerson and Fruland,
2006). The LegSim environment is a simulated legislature
where students play the roles of state representatives, who
are responsible for proposing and examining bills. In this
environment, students engage in debates possessing a
complex, threaded structure. However, that thread
structure is neither explicit in the stored representation of
the data nor from the interface that the students use to
engage in the multi-party conversation.
 The contribution of this paper is a novel approach to
recovering thread structure in discussion forums where
explicit meta-data for reconstructing the thread structure is
missing. We refer to this task as the thread structure
recovery task. In particular, thread structure recovery is
the process whereby a parent message is explicitly linked
to one or more responding child messages. Our approach
consists of two steps. First, we use a connectivity matrix
constructed using a shallow message similarity measure to
represent the implicit relationships between messages
within the same conversation stream. Each element in the
matrix is a weighted link between a message pair, which
measures the content similarity between the messages.
The second step is to determine parent-child relationships
using the connectivity matrix. A simple baseline approach
merely uses a threshold to identify which similarity
measures are strong enough to constitute an explicit link.
We propose three variations of this baseline approach that
leverage in different ways the temporal relationships
between messages.
 In the remainder of the paper, we will first review some
important related work in section. Next, we will describe
the formal definition of the task and dataset as well as the
details of our algorithms. Then, we will present our
evaluation by comparing the effectiveness of the
alternative versions of our basic approach. We conclude
with some directions for our continued investigation.

Related Work
As discussed in the previous section, some recent work has
demonstrated that explicit thread structure can be
advantageously utilized in the analysis of social media.
First, it can be used for boosting the performance of
automatic analysis. For example, Carvalho and Cohen
(2005) exploited the sequential ordering among emails
within the same conversation thread to improve the
performance of email-act classification. Also, Xi et al.
(2004) introduced an effective ranking function for
newsgroup search. In that work, Xi and colleagues
extracted a set of meta features related to the structure of
newsgroup discussion threads, such as the number of
children of the current message, the position of the current
message in the thread tree, and so on. Similarly, Wang and
colleagues (2007) developed a novel approach to
leveraging context for classifying newsgroup style
discussion segments. Their solution was to use the explicit

thread structure to identify pairs of potentially related
segments of text. They then used shallow semantic
similarity metrics to compute a feature that indicated the
maximum similarity value between a segment contributed
by one participant and other potentially related segments
contributed by other participants in the discussion thread.
This added feature significantly improved performance at
identifying the consensus building style exhibited by the
individual discussion contributions over a baseline using
only word level features.
 Recently, some research related to thread structure has
been done in the context of email summarization work,
where recovering thread structure is necessary for
constructing coherent summaries of email conversations.
To that end, Yeh et al. (2006) studied how to use quoted
messages, string matching metrics, and email headers to
reassemble the treelike thread structure of email
conversations. Inspired by Yeh et al.’s work, Carenini et al.
(2007) proposed a new email summarization framework,
ClueWordSummarizer. They used what they refer to as a
fragment quotation graph to organize conversations and
subsequently construct lexical chains. They utilized
quotation markers (e.g., “>”) as well as quotation depth
(the number of quotation marks in the beginning of every
line) to build the quotation graph.
 In addition to facilitating the automatic analysis of social
media, identification of thread structure can be used to aid
in the work that conversation analysts do with the data by
hand. For example Trausan-Matu et al. (2007) presented a
conversation analysis support tool that provided a
visualization of a threaded conversation. Topics were
identified by means of expressions such as “Let’s talk
about” or “What about”, and then the WordNet ontology
was used for recovering threads by means of automatically
constructed lexical chains. The visualization assisted
analysts in identifying meaningful subsets of messages to
examine together as a coherent conversational unit.
 Our work is most related to Shen et al.’s work (2006), in
which they introduced a partial solution to the thread
reconstruction task for synchronous chat data. In their
work, a single-pass clustering algorithm was modified to
exploit the temporal information in the streams by
computing centroids that updated dynamically as the
analysis proceeded sequentially through the data stream.
The purpose of this analysis was to identify subtopic
clusters of contributions. Our work is similar in that we
also exploit temporal relationships between contributions.
However, their approach fell short of a complete solution
in that it did not identify the explicit parent-child
relationships between contributions, as we do in our work.
Also, Shen et al. employed a different data structure and
search technique. Specifically, they employed an
incremental clustering algorithm in which they
dynamically computed centroids for their clusters based on
a combination of semantic similarity and temporal
proximity. In our work, we introduce an approach to
recover thread structure using a graph-based connectivity
matrix, which similarly uses both similarity and temporal

153

information. Our evaluation demonstrates the importance
of both types of information, and contrasts alternative
approaches to combining temporal cues with similarity
based predictions.

Problem Definition
In this section, we introduce our dataset and offer an
example to illustrate the thread reconstruction problem.

LegSim Corpus
The LegSim 1 corpus was provided to us by John D.
Wilkerson at University of Washington in Seattle. That
dataset contains a collection of messages contributed
within an educational multi-player web-based teaching tool
called LegSim. LegSim has been in instructional use since
2000, and was used by approximately 1400 high school,
community college and university students during the
2005-06 school year. It includes features that allow
students to participate in the form of online discussions. It
simulates a legislative environment where students in a
government or public policy course assume
representational roles and advance legislative proposals
that reflect their own political priorities.

We chose the data from one college level Civics course
from Fall 2006. 93 students participated in the course, 71
of which actively participated in the on-line discussion.
They were able to post comments and opinions regarding
the proposed legislation (a.k.a. a bill). Over the course of
the semester, 478 messages were posted. In this data, the
messages were organized into 48 separate streams, as
determined by which bill they referred to. The histogram
in Figure 1 shows the detailed distribution of number of
messages per stream. The longest stream is composed of
70 messages, while the shortest one contains only 1

1 http://www.legsim.org/

message. The average number of messages per stream is
9.98.

A Simple Thread Example
Figure 2 displays a simplified conversation example from
the LegSim dataset. The nodes above the dashed arrow
denote a discussion stream, arranged from left to right in
the same order in which they were posted. Every
discussion stream consists of discussion related to a
specific topic, in this case a proposed bill that is under
debate. For example, the topic of this example is whether
the government should raise the minimum wage.
Participant A posted the root message R to initiate the
discussion. Following that is a sequence of reply messages
(M1 to M6), which respond to previous messages. The
graph illustrates the thread relationships among the
messages in the discussion stream. A directed link in the
graph represents a parent-child relationship, with arrows
that point from child to parent (e.g., M3M1). In
conversational data, it is possible for a message to have
multiple parents (i.e., one message can reply to several
previous messages at the same time.) Take the message
M6 as an example. It expresses a disagreement with both
M2 and M4. Similarly, a parent may have more than one
child. For example, both M3 and M4 respond to M1.
 Because of the lack of explicit thread structure
information in the dataset, before we began any of our
experimentation, we manually reconstructed the thread
structure by assigning links between messages based on

Figure 1. Distribution of Conversation Stream Size.

0

2

4

6

8

10

12

14

16

18

1~3 4~6 7~9 10~12 13~15 16~18 19~21 25 32 33 61 70

Stream length

N
u

m
b

e
r

o
f

s
tr

e
a

m
s

M1 M2 M3 M4 M5 M6 R

R

A: We should raise the federal
minimum wage to $7.25 by 2008.

M1

B: I agree. Raising the
minimum wage can help low-
income family.

M2

C: No. It will simply add more
money to the economy, and
devalue the dollar.

 M3

D: Yes. A higher
minimum wage
is necessary in
showing worker
empathy by the
government.

M4

E: Poor people
cannot benefit by
it. Increasing the
minimum wage
will increase the
cost of living.

M5

F: I disagree with D. We
should allow states to
decide the minimum wage
for themselves

M6

A: I don’t think raising the
minimum wage will
increase the living cost nor
devalue the dollar.
Businesses would only be
able to raise prices so
much as the market will
bear it

Figure 2. A thread example in LegSim and the goal
of thread recovery.

154

their observed semantic relationship and explicit discourse
markers. For example, the following is part of a discussion
example from the dataset in which two “representatives”
are discussing whether they should pass a bill that proposes
“Local Law Enforcement Celebration Day”.

Representative X said “Every day our Police Officers
put their life in danger to protect and serve the people.
I feel that this bill is the very least that we could do to
express our gratitude. It is non-controversial so this
should pass quickly.”

Representative Y said “I agree... it is the least we can
do to show our appreciation... I think it should easily
pass also... Thanks Rep Tung for proposing it.”

It is clear semantically that the message by Representative
Y comments on the message by Representative X. First,
explicit discourse markers, namely “I agree” as well as
“also”, mark that this message is a response to an earlier
message. The statement “It should pass” echoes part of the
earlier message. Also, its sequential position, adjacent to
the earlier message, offers a clue. So, during our manual
annotation process, we assigned a parent-child link
between these two message based on these types of clues.
 We verified that our annotation of parent-child
relationships was reliable. Since we expected that the
thread structure would tend to be more complicated for
longer threads, we evaluated our agreement over three
randomly selected threads from those with longer lengths
(within the upper most quartile). Altogether these three
threads (of lengths 10, 19, and 32 respectively) constituted
15% of the corpus. Two humans annotated these three
threads using the definition outlined above. The Cohen’s
kappa is 0.87 for the three threads. This shows that the
annotators achieved a high level of consensus for the link
annotation task.
 The two human annotators were trained to use the
following discourse clues to identify parent-child links
when doing annotation. Response markers, namely “I
agree with X” as well as “In response to X”, mark that a
message is a response to an earlier message. Addition
markers, such as “We also have to remember…” and
“That’s still wrong”, mark that the message has some
additional comments for the earlier discussion or
arguments against a previous post. Echo markers echo part
of the earlier messages. Question and answer in a
candidate parent and the current message respectively can
link two messages together, too. Finally, subtopic phrases
have the potential to chain messages together. For
example, there are two subtopics (helping low-income
families versus devaluing the dollar) in the discussion of
the bill “whether the government should raise the
minimum wage.” The phrases “low-income family” and
“poor people” mark that a message should belong to the
former subtopic discussion. A phrase such as “devalue the
dollar” or “economy”, on the other hand, suggests that the
message is talking about the later subtopic.

 Among the 48 streams mentioned above, 39 streams
have two or more messages. After manual reconstruction
of the thread structure, 28 of these 39 streams contained at
least one parent-child link. We use these 28 streams in the
experiments reported below.

Definition of Thread Recovery Task
Given a discussion stream in which messages are sorted by
the posting time, the thread recovery task is to construct
the thread graph (as in the example in Figure 2). The links
in the graph identify which of the previously contributed
message the current message replies to. In our problem,
three assumptions are made:
Assumption 1: The default parent of each reply message is
the initial message of the stream. Thus, that is the
assignment made by the algorithm if no parent is identified
further down the thread. As we have mentioned above, all
messages in the same stream are all about one single topic,
and the root message is the one that starts the discussion.
Assumption 2: We assume each message can only link
back to those messages that were posted before it in time.
Assumption 3: Except for the posting time of messages,
no meta information is available, such as author names,
quotation marks, and message titles. We make this
assumption since this information is not always available,
and the purpose of our experimentation is to determine
what can be used to recover thread structure in the absence
of this meta-information.
 These assumptions take the form of constraints that are
enforced in all versions of our algorithm described below.

Alternative Approaches to Thread Recovery
In this section, we first explain how to build a connectivity
matrix to reflect semantic similarity between messages. A
threshold is then applied to the weighted links in the matrix
in order to identify the thread links. To leverage the
sequential nature of conversation streams, we describe
three variations to the baseline algorithm, which are able to
take temporal information into account.

Data Representation
We utilize a vector space model to represent messages. A
message is a vector of terms2, which are weighed by the
term frequency (TF) and inverse document frequency
(IDF). Here, TF stands for the number of times a term
occurs in a message. IDF is the log of the number of
messages in the stream divided by the number of messages
in the stream that contain the term. TF is normalized, as
displayed in the formula below. There are many variations
available for computing TF.IDF. Following is the one we
used, which is the UMass version of the leading Okapi
algorithm (Robertson et al., 1994):

2 In our experiment, we used non-stemmed unigrams as
features.

155

where N is the number of messages in the conversation
stream.
 Intuitively, we selected TF.IDF for our term weights in
order to emphasize the most salient terms in the messages
in our message similarity measure. This is based on the
intuition that what makes a message distinctive within its
stream is what is most likely to elicit a response. However,
there are instances where this may not be the case. Thus,
while using TF.IDF term weights may have some desirable
consequences, we cannot rule out at this point the
possibility that a different term weight scheme may have
been more appropriate. We leave experimentation along
these lines for future research

Message-to-Message Graph Building
Given a time-ordered sequence of messages M={ mi |
1≦i≦n } 3 in a conversation stream, we view each
message as a node in a graph. We then build a directed
graph by creating edges from mj to all messages before it in
time (i.e. mi where i<j). The associated weight of the edge
is computed with the cosine similarity measure. We use a
connectivity matrix W to represent the graph, where each
element wij in W denotes the weighed edge from mi to mj in
the graph. The formal definition of similarity matrix

nnijwW !=][is given below:

where
i
m
r

is the term vector of message
i
m . Note that

according to the definition, W is a lower triangular matrix
where the main diagonal is zero.

Thread Structure Recovery
Once we have the message-to-message matrix W, which
represents semantic similarity between messages, we are
ready to reconstruct the thread structure for M. First, we
describe our baseline algorithm (GRB). In order to decide
whether two messages should be linked by a parent-child
relationship, a threshold is employed as the baseline. Only
when the cosine similarity between messages, i.e., wij in W,
is larger than threshold we will assign a link for them.

3 Note that m1 is the first message immediately following
the start message. The reason that we didn’t take the root
message into account is because all messages in the same
stream are supposed to discuss the same topic initiated by
the root. Thus, it is likely that the similarity score between
root and any of its child messages will normally be high
relative to that of other pairs of child messages, which
could interfere with thread recovery.

Considering each entry in W, we get the baseline thread
graph nnijgG !=][.

where gij indicates a link from message mi to mj and is set
to 1 only if wij is larger than threshold. By adjusting the
threshold, we can explore different degrees of similarity
between messages.
 After informally observing some thread instances in our
dataset, we observed that a child message is usually not far
away from its parent. As a consequence, we introduced
three penalizing functions for W, which can differently
leverage the temporal ordering and distance between
messages. We consider the relative position of messages
instead of using real time-stamps.
Penalizing W Using Fixed Window Size (GRF). The
central idea behind the first variation on the baseline
algorithm is that only messages within a certain window
size are considered to be the potential parents of some
message. More specifically, a fixed time window is
employed to transform the similarity matrix W. This yields
a new similarity matrix nnijaA !=][:

where s is the window size we consider; and ji ! is the
distance between message mi and mj. The algorithm for
detecting links here (and also in the other two variations) is
the same as the baseline except that we substitute the
baseline similarity matrix W with A. Note that there are
two parameters – s and threshold – that need to be
specified in this penalizing strategy.
Penalizing W Using Dynamic Window Size (GRD).
Considering that the length of different conversation
streams may vary, it might be beneficial if the window size
can dynamically reflect the length of the stream. Thus, we
use a dynamic window size and use it to compute the new
weighted matrix nnijbB !=][as shown below:

where n is the number of messages belonging to the
conversation stream M; p denotes the percentage of
previous messages we want to consider when determining
the parents of the current message. This approach also
involves two parameters – p and threshold.
Penalizing W Using Time Distance (GRT). Finally,
instead of using an indicator function to indicate a subset
of elements in W, we penalize the similarity by the time
distance between the two messages. The result similarity
matrix nnijcC !=][is defined as following:

!!
"

#
$$
%

&
'

'++

=
df

N

msglengthavg

msglength
tf

tf
IDFTF log

_
5.15.0

.

otherwise , 0

 if , ji
mm

mm
w

ji

ji

ij
>

!

•
= rr

rr

otherwise ,0

 if 1, thresholdwg ijij >=

otherwise , 0

 if , sjiwa
ijij

<!=

otherwise , 0

 if , npjiwb ijij !<"=

otherwise , 0

 if ,
j-i

1
 jiwc

ijij
!"#

#

$

%

&
&

'

(
=

156

where the reciprocal of ji ! is used to decrease the
cosine similarity value in term of the distance between the
two messages. For this variation, we only need to consider
the similarity threshold.

Experiments
We have described the baseline algorithm for recovering
thread structure as well as the three variations of it that
make use of temporal information. In this section, we
compare these algorithms in order to evaluate the
contribution of temporal information to the thread structure
recovery task. We first introduce the evaluation metrics
and then the experimental results. The final part of this
section shows the results of parameter tuning.

Evaluation Methods
We use precision, recall, and F-measure to evaluate our
results. We explain the definition for each of the three
metrics in terms of the thread recovery task as follows:

where we employ the balanced F-measure in which
precision and recall are evenly weighted.

Results
In our evaluation, we compare the three variant algorithms
with the baseline algorithm that only takes similarity into
account. The performance curves are shown in Figure 3.
 Before we present a statistical comparison of tuned
performance across conditions, we will first illustrate how
our four approaches vary as we manipulate the parameters
that are associated with them. Both Time/Distance and
Similarity are used to narrow the range of previous
messages that are considered as potential parent messages.
Thus, as the threshold on Time or Distance is made more

() ()

links predicted

 links predictedlinksreal
Precision

!
=

() ()

linksreal

links predictedlinksreal
Recall

!
=

RecallPrecision

RecallPrecision2
F

+

!!
="measure

Figure 3. Performance of GRB, GRF, GRD, and GRT while parameters vary.

157

restrictive, precision tends to increase, whereas recall tends
to decrease. Similarly, as the threshold on Similarity is
made more restrictive, we see the same pattern.
 Figure 3 (a) displays how the results of baseline GRB
vary as the threshold is manipulated. The highest F-
measure score is 0.29, which is achieved when the
threshold is 0.165. Figure 3 (b) and (c) describe the results
of GRF and GRD respectively. To observe the sole effect of
varying the window size, we fix the threshold at 0.125. In
(b), we find that the F-measure score decreases while
increasing the fixed window size s from 2 to 20. The best
F-measure is 0.39, which is achieved when s is set to 3. In
Figure 3 (c), the percentage p is adjusted between 0 and 1.
When p is fixed at 0.1 (i.e., so that about 10% of previous
messages are considered to be parents of a current message
based on the number of messages in each stream) the F-
measure reaches its highest value, specifically 0.37. Figure
3 (d) presents the results using time distance to discount
the similarity between messages. The highest F-measure
score (0.41) is found when threshold is equal to 0.065.
 Both GRF and GRT improve the performance over GRB by
about 30% in terms of F-measure, which argues in favor of
taking both similarity and Time/Distance into account
when identifying parent-child relationships. For GRD we
have an improvement of 28%. This validates our initial
assumption that child messages usually appear close to
their parents.

Parameter Tuning
In this subsection, we evaluate the tuned performance of
our algorithms. We employ a leave-one-thread-out cross-
validation methodology to tune the parameters and

evaluate the performance on the held-out test thread on
each fold. Note that the only parameter that is tuned for
GRB and GRT is the similarity threshold (threshold). In
contrast, there are two parameters that need to be tuned for
both GRF (threshold, s) and GRD (threshold, p).
 During the training phase, we evaluate all combinations
of parameter values in order to identify the parameter
settings that optimize the F-measure for each algorithm
over the training data, and then apply the tuned model to
the test thread. We then compute the weighted average of
performance across threads (weighted by thread length so
that decisions within long threads are valued equally to
those within short threads). From Table 1, we can see the
average F-measure for the baseline algorithm as well as for
the three variants. We also include one additional baseline
approach, which always selects the immediately previous
message as the parent message. We refer to this as GRP.

Table 1.Evaluation results of leave-one-thread-out cross-
validation for each algorithm.

Table 1 presents an overview of the results across
approaches. We see that the best approach overall is GRF,

which uses a fixed window size in addition to bound the
search for potential parent messages using similarity above
a threshold. Overall, the only statistically significant
contrast is between the two endpoint approaches, namely

ALGORITHM GRP GRB GRF GRD GRT

F-MEASURE 0.36 0.28 0.39 0.34 0.40

Figure 4. The leftmost graph shows how the three approaches compare with one another as thread length
increases. Here, bin 1 contains threads of length 2-5, bin 2 threads of length 6-13, and bin 3 threads of length 14-
70. The rightmost graph shows that the three approaches compare with one another as average message length
increases. Here, bin 1 contains messages of length 0-40, bin 2 contains messages of length 40-60, bin 3 contains
messages of length 60-85, bin 4 contains messages of length 85-120, and bin 5 contains messages of length greater
than 120

158

the baseline that considers only similarity information
(GRB), and the variant algorithm that combines a fixed
window size with similarity information (GRF). Below we
conduct a more fine grained analysis, comparing the
performance of the best performing variant approach
(GRF), which we refer to as FixedWindow in the graphs
below, with two baselines, namely SimilarityOnly (GRB)
and LinkPrevious (GRP).

Figure 4 illustrates the comparison of the three
approaches for threads of different lengths and parent-child
pairs of messages with different average message lengths.
In particular, in the leftmost graph, we see performance of
the three approaches over threads in 3 sets, with increasing
average thread length. We see that as thread length
increases, performance decreases overall. And in the most
difficult two thread length bins, we see the greatest
advantage of the FixedWindow approach over the two
baseline approaches. Within the set of threads that
combines the threads from the most difficult two bins, the
FixedWindow approach is significantly more effective than
either of the two baseline approaches. The simple
approach of linking to the most recent previous message is
surprisingly effective, especially for very short threads.
However, similarity information becomes more valuable as
thread length increases.

In the rightmost graph in Figure 4, we see another
comparison across the same three approaches, this time
comparing performance across bins of pairs of potential
parent-child messages of average message lengths within
particular ranges. Average message length was computed
by averaging the parent message length and child message
length within the pair. Overall, performance tends to
increase as average message length increases. Our
intuition is that when average message length is too short,
there is not enough information to get a meaningful
similarity measure. For the longest messages, we don’t see
an advantage for the FixedWindow approach over the two
baseline approaches. Our intuition is that similarity
information is most useful for medium sized messages. As
average message length increases above a certain level,
more text than is relevant for the parent-child link is
considered. We hypothesize that our approach could be
improved further by taking discourse focus into account to
select the most relevant portion of longer messages to use
in the similarity comparisons.

Conclusions and Future Work
This paper introduced an approach to recover thread
structure in discussion forums using a graph-based
representation of messages. In our model, a connectivity
matrix based on inter-message similarity for each
conversation stream was computed. We presented three
variations of a baseline approach, each of which exploit
temporal information to reassemble thread structure on the
basis of the similarity graph. The results show that the best
variant algorithm can significantly improve performance
over two baseline approaches, particularly for longer

threads, and for parent-child message pairs of medium
length.
 As mentioned above, one way in which we plan to
investigate ways of improving our performance is by
manipulating the vector representation of the messages. In
the work reported here, we have utilized term vectors using
a TF.IDF weighting scheme. Semantic ontologies such as
WordNet might be leveraged to enable generalizing over
alternative ways of expressing the same idea as Trausan-
Matu et al.’s work (2007). Alternatively, a dimensionality
reduction technique such as Principal Components
Analysis or Latent Semantic Analysis might have a similar
effect.
 Beyond investigating alternative weighting schemes, we
plan to investigate alternative types of features that might
improve the effectiveness of the similarity measures that
we compute in identifying candidate parent messages. For
example, features that take into account syntactic
dependencies between words might better represent the
position expressed by the author of a posted message to the
extent that these syntactic dependencies enable the
representation of argument structure to a limited extent.
 In the work reported here, we have used cosine
similarity to compute the similarity between messages.
However, alternative similarity metrics such as Euclidean
distance would have slightly different preferences in terms
of relative similarity and might provide an interesting
contrast in terms of performance. With a weighting
scheme like TF.IDF, Euclidean distance might be more
influenced by the relative salience of terms within texts.
 In our current work, we are also investigating the thread
recovery problem other kinds of social media, such as web
blogs. We expect that differences in the nature of the
interactions in these alternative settings will lead to
interesting contrasts with respect to which representations
of messages lead to the best results, as well as which
thresholds and window sizes are appropriate.

Acknowledgements
We would like to thank John Wilkerson for sharing the
LegSim dataset with us.
 This project is supported by ONR Cognitive and Neural
Sciences Division, Grant number N000140510043 and
NSF Grant number SBE0354420.

References
Carenini, G., Ng, R.T., and Zhou, X. 2007. Summarizing
Email Conversations with Clue Words. 16th International
World Wide Web Conference (ACM WWW'07) May 8-12,
2007, Banff, Alberta, Canada.

Carvalho, V. R. and Cohen, W. W. 2005. On the Collective
Classification of Email “Speech Acts”. In Proceedings of
the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Salvador, Brazil.

159

Dubinko, M., Kumar, R., Magnani, J., Novak, J.,
Raghavan, P., and Tomkins, A. 2006. Visualizing tags over
time. In Proceedings of the 15th International Conference
on World Wide Web.

Grosz, B. J. and Sidner, C. L.1986. Attention, intentions,
and the structure of discourse. Computational Linguistics
12: 175–204.

Kleinberg, J. 2002. Bursty and Hierarchical Structure in
Streams. Proc. 8th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining.

Kumar, R., Novak, J., Raghavan, P., Tomkins, A. 2003. On
the bursty evolution of Blogspace. Proc. International
WWW Conference, 2003.

Robertson, S. E., S. Walker, M. Hancock-Beaulieu & M.
Gatford.1994. Okapi in TREC-3. Text Retrieval
Conference TREC-3, U.S. National Institute of Standards
and Technology, Gaithersburg, USA. NIST Special
Publication 500-225, pp. 109-126.

Rosé, C. P., Di Eugenio, B., Levin, L. S., Van Ess-
Dykema, C. 1995. Discourse Processing of Dialogues with
Multiple Threads. Proceedings of the Association for
Computational Linguistics.

Shen, D., Yang, Q., Sun, J.-T., Chen, Z. 2006. Thread
detection in dynamic text message streams. In Proceedings
of the Twenty-Ninth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (pp. 35-42). ACM: New York.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, J., Bates, R.,
Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C.
& Meteer, M. 2000. Dialogue act modeling for automatic
tagging and recognition of conversational speech.
Computational Linguistics, 26(3), 339–373, 2000.

Trausan-Matu, S., Rebedea, T., Dragan, A., Alexandru C.
2007. Visualisation of Learners’ Contributions in Chat
Conversations. Workshop on Blended Learning 2007,
Edinburgh, United Kingdom.

Wang, Y. C., Joshi, M., Rosé, C. P. 2007. A Feature Based
Approach to Leveraging Context for Classifying
Newsgroup Style Discussion Segments. Poster in: the 43th
Conference on Association for Computational Linguistics
(ACL 2007), Prague.

Wilkerson, J., Fruland, R. 2006. Simulating A Federal
Legislature. Academic Exchange: Teaching Political
Science. 10 (4).

Wolf, F., Gibson, E. 2005. Representing Discourse
Coherence: A Corpus-Based Study. Computational
Linguistics June 2005, Vol. 31, No. 2: 249-287.

Xi, W., Lind, J., Brill, E. 2004. Learning Effective Ranking
Functions for Newsgroup Search. In Proceedings of SIGIR
2004.

Yeh, J.-Y. and Harnly, A. 2006. Email thread reassembly
using similarity matching. In Third Conference on Email
and Anti-Spam (CEAS), July 27-28 2006.

160

