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Abstract

Time-critical analysis of social media streams is important
for humanitarian organizations for planing rapid response
during disasters. The crisis informatics research community
has developed several techniques and systems for process-
ing and classifying big crisis-related data posted on social
media. However, due to the dispersed nature of the datasets
used in the literature (e.g., for training models), it is not pos-
sible to compare the results and measure the progress made
towards building better models for crisis informatics tasks.
In this work, we attempt to bridge this gap by combining
various existing crisis-related datasets. We consolidate eight
human-annotated datasets and provide 166.1k and 141.5k
tweets for informativeness and humanitarian classification
tasks, respectively. We believe that the consolidated dataset
will help train more sophisticated models. Moreover, we pro-
vide benchmarks for both binary and multiclass classifica-
tion tasks using several deep learning architecrures including,
CNN, fastText, and transformers. We make the dataset and
scripts available at https://crisisnlp.qcri.org/
crisis_datasets_benchmarks.html.

1 Introduction
At the onset of a disaster event, information pertinent to sit-
uational awareness such as reports of injured, trapped, or
deceased people, urgent needs of victims, and infrastructure
damage reports are most needed by formal humanitarian or-
ganizations to plan and launch relief operations. Acquiring
such information in real-time is ideal to understand the situ-
ation as it unfolds. However, it is challenging as traditional
methods such as field assessments and surveys are time-
consuming. Microblogging platforms such as Twitter have
been widely used to disseminate situational and actionable
information by the affected population. Although social me-
dia sources are useful in this time-critical setting, it is, how-
ever, challenging to parse and extract actionable informa-
tion from big crisis data available on social media (Castillo
2016).

The past couple of years have witnessed a surge in the re-
search works that focus on analyzing the usefulness of social
media data and developing computational models to extract
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actionable information. Among others, proposed computa-
tional techniques include, information classification, infor-
mation extraction, and summarization (Imran et al. 2015).
Most of these studies use one of the publicly available
datasets (Olteanu et al. 2014; Imran, Mitra, and Castillo
2016; Alam et al. 2018, 2020) and either propose a new
model or report higher performance of an existing model.
Typical classification tasks in the community include (i)
informativeness (i.e., informative vs. not-informative mes-
sages), (ii) humanitarian information types (e.g., affected
individual reports, infrastructure damage reports), and (iii)
event types (e.g., flood, earthquake, fire).

Despite the recent focus of the crisis informatics1 research
community to develop novel and more robust computational
algorithms and techniques to process social media data, we
observe several limitations in the current literature. First,
few efforts have been invested to develop standard datasets
(specifically, train/dev/test splits) and benchmarks for the
community to compare their results, models, and techniques.
Secondly, most of the published datasets are noisy, e.g., Cri-
sisLex (Olteanu et al. 2014) contains duplicate and near-
duplicate content, which produces misleading classification
performance. Moreover, some datasets (e.g., CrisisLex) con-
sist of tweets from several languages without any explicit
language tag, to separate the data of a particular language of
interest.

To address such limitations, in this paper, we aim to de-
velop a standard social media dataset for disaster response
that facilitates comparison between different modeling ap-
proaches and encourages the community to streamline their
efforts towards a common goal. We consolidate eight pub-
licly available datasets (see Section 3). The resulting dataset
is larger in size, has better class distribution compared to the
individual datasets, and enables building of robust models
that performs better for various tasks (i.e., informativeness
and humanitarian) and datasets.

The consolidation of datasets from different sources in-
volves various standardization challenges. One of the chal-
lenges is the inconsistent class labels across various data
sources. We map the class labels using their semantic
meaning—a step performed by domain experts manually.

1https://en.wikipedia.org/wiki/Disaster_
informatics
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Another challenge is to tackle the duplicate content that is
present within or across datasets. There are three types of
duplicates: (i) tweet-id based duplicates (i.e., same tweet
appears in different datasets), (ii) content-based duplicates
(i.e., tweets with different ids have same content), which
usually happens when users copy-paste tweets, and (iii)
near-duplicate content (i.e., tweets with similar content),
which happens due to retweets or partial copy of tweets from
other users. We use cosine similarity between tweets to filter
out various types of duplicates. In summary, the contribu-
tions of this study are as follows:
• We consolidate eight publicly available disaster-related

datasets by manually mapping semantically similar class
labels, which leads to a larger dataset.

• We carefully cleaned various forms of duplicates, and as-
signed a language tag to each tweet.

• We provide benchmark results on English tweets set us-
ing state-of-the-art machine learning algorithms such as
Convolutional Neural Networks (CNN), fastText (Joulin
et al. 2017) and pre-trained transformer models (Devlin
et al. 2019) for two classifications tasks, i.e., Informative-
ness (binary) and Humanitarian type (multi-class) classi-
fication.2 The benchmarking encourages the community
towards a comparable and reproducible research.

• For the research community, we aim to release the dataset
in multiple forms as, (i) a consolidated class label mapped
version, (ii) exact- and near-duplicate filtered version ob-
tained from previous versions, (iii) a subset of the filtered
data used for the classification experiments in this study.
The rest of the paper is organized as follows. Section 2

provides an overview of the existing work. Section 3 de-
scribes our data curation and consolidation procedures, and
Section 4 describes the experiments. Section 5 presents and
discusses the results. Finally, Section 6 concludes the paper.

2 Related Work
2.1 Dataset Consolidation
In crisis informatics research on social media, there has
been an effort to develop datasets for the research commu-
nity. An extensive literature review can be found in (Imran
et al. 2015). Although there are several publicly available
datasets that are used by the researchers, their results are
not exactly comparable due to the differences in class la-
bels and train/dev/test splits. In addition, the issue of exact-
and near-duplicate content in existing datasets can lead to
misleading performance as mentioned earlier. This problem
become more visible while consolidating existing datasets.
Alam, Muhammad, and Ferda (2019); Kersten et al. (2019)
and Wiegmann et al. (2020) have previously worked in the
direction to consolidate social media disaster response data.
A major limitation of the work by Alam, Muhammad, and
Ferda (2019) is that the issue of duplicate and near-duplicate
content have not been addressed when combining the differ-
ent datasets. This issue resulted in an overlap between train

2We only focused on two tasks for this study and we aim to
address event types task in a future study.

and test sets. In terms of label mapping the work of Alam,
Muhammad, and Ferda (2019) is similar to the current study.
Kersten et al. (2019) focused only on informativeness3 clas-
sification and combined five different datasets. This study
has also not focused on exact- and near-duplicate content,
which exist in different datasets. The study in Wiegmann
et al. (2020) also compiled existing resources for disaster
event types (e.g., Flood, Fire) classification, which consists
of a total of 123,166 tweets from 46 disasters with 9 disaster
types. This is different from our work as we address infor-
mativeness and humanitarian classification tasks. Address-
ing disaster event types classification is beyond the scope of
our current study.

A fair comparison of the classification experiment is also
difficult with previous studies as their train/dev/test splits are
not public, except the dataset by Wiegmann et al. (2020). We
address such limitations in this study, i.e., we consolidate the
datasets, eliminate duplicates, and release standard dataset
splits with benchmark results.

In terms of defining class labels (i.e., tagsets) for crisis in-
formatics, most of the earlier efforts are discussed in (Imran
et al. 2015; Temnikova, Castillo, and Vieweg 2015; Stowe
et al. 2018; Wiegmann et al. 2020). Various recent stud-
ies (Olteanu et al. 2014; Imran, Mitra, and Castillo 2016;
Alam et al. 2018; Stowe et al. 2018) use similar definitions
for class labels. Unlike them, (Strassel, Bies, and Tracey
2017) defines more fine-grained categories based on need
types (e.g., evacuation, food supply) and issue type (e.g.,
civil unrest). In this study, we use the class labels that are
important for humanitarian aid for disaster response tasks,
which are common across the publicly available resources.
Some of the real-time applications that are currently using
such labels include AIDR (Imran et al. 2014), CREES (Bu-
rel and Alani 2018), and TweetTracker (Kumar et al. 2011).

2.2 Classification Algorithms
Despite the fact that a majority of studies in crisis infor-
matics literature employ traditional machine learning al-
gorithms, several recent works explore deep learning al-
gorithms in disaster-related tweet classification tasks. The
study of (Nguyen et al. 2017) and (Neppalli, Caragea, and
Caragea 2018) performed comparative experiments between
different classical and deep learning algorithms includ-
ing Support Vector Machines, Logistic Regression, Ran-
dom Forests, Recurrent Neural Networks, and Convolu-
tional Neural Networks (CNN). Their experimental results
suggest that CNN outperforms other algorithms. Though in
another study, (Burel and Alani 2018) reports that SVM
and CNN can provide very competitive results in some
cases. CNNs have also been explored in event type-specific
filtering model (Kersten et al. 2019) and few-shot learn-
ing (Kruspe, Kersten, and Klan 2019). Very recently differ-
ent types of embedding representations have been proposed
in literature such as Embeddings from Language Models
(ELMo) (Peters et al. 2018), Bidirectional Encoder Repre-
sentations from Transformers (BERT) (Devlin et al. 2019),
and XLNet (Yang et al. 2019) for different NLP tasks. The

3Authors used related vs. not-related in their study.
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study by (Jain, Ross, and Schoen-Phelan 2019) and (Wieg-
mann et al. 2020) investigates these embedding representa-
tions for disaster tweet classification tasks.

3 Data Curation
3.1 Data Consolidation
We consolidate eight datasets that were labeled for different
disaster response classification tasks and whose labels can
be mapped consistently for two tasks: informativeness and
humanitarian information type classification. In doing so,
we deal with two major challenges: (i) discrepancies in the
class labels used across different datasets, and (ii) exact- and
near-duplicate content that exists within as well as across
different datasets. Below we provide a brief overview of the
datasets we used for consolidation.

1. CrisisLex is one of the largest publicly-available datasets,
which consists of two subsets, i.e., CrisisLexT26 and
CrisisLexT6 (Olteanu et al. 2014). CrisisLexT26 com-
prises data from 26 different crisis events that took place
in 2012 and 2013 with annotations for informative vs.
not-informative as well as humanitarian categories (six
classes) classification tasks among others. CrisisLexT6,
on the other hand, contains data from six crisis events that
occurred between October 2012 and July 2013 with an-
notations for related vs. not-related binary classification
task.

2. CrisisNLP is another large-scale dataset collected during
19 different disaster events that happened between 2013
and 2015, and annotated according to different schemes
including classes from humanitarian disaster response and
some classes related to health emergencies (Imran, Mitra,
and Castillo 2016).

3. SWDM2013 dataset consists of data from two events:
(i) the Joplin collection contains tweets from the tornado
that struck Joplin, Missouri on May 22, 2011; (ii) The
Sandy collection contains tweets collected from Hurri-
cane Sandy that hit Northeastern US on Oct 29, 2012 (Im-
ran et al. 2013a).

4. ISCRAM2013 dataset consists of tweets from two dif-
ferent events occurred in 2011 (Joplin 2011) and 2012
(Sandy 2012). Note that this set of tweets are different
than SWDM2013 set even though they are collected from
same events (Imran et al. 2013b).

5. Disaster Response Data (DRD) consists of tweets col-
lected during various crisis events that took place in 2010
and 2012. This dataset is annotated using 36 classes that
include informativeness as well as humanitarian cate-
gories.4

6. Disasters on Social Media (DSM) dataset comprises
10K tweets collected and annotated with labels related vs.
not-related to the disasters.5

4https://appen.com/datasets/combined-
disaster-response-data/

5https://data.world/crowdflower/disasters-
on-social-media

Source Total Mapping Filtering
Info Hum Info Hum

CrisisLex 88,015 84,407 84,407 69,699 69,699
CrisisNLP 52,656 51,271 50,824 40,401 40,074
SWDM13 1,543 1,344 802 857 699
ISCRAM13 3,617 3,196 1,702 2,521 1,506
DRD 26,235 21,519 7,505 20,896 7,419
DSM 10,876 10,800 0 8,835 0
CrisisMMD 16,058 16,058 16,058 16,020 16,020
AIDR 7,411 7,396 6,580 6,869 6,116

Table 1: Different datasets and their sizes (number of tweets)
before and after label mapping and filtering steps. Info: In-
formativeness, Hum: Humanitarian

7. CrisisMMD is a multimodal dataset consisting of tweets
and associated images collected during seven disaster
events that happened in 2017 (Alam et al. 2018). The an-
notations for this dataset is targeted for three classification
tasks: (i) informative vs. not-informative, (ii) humanitar-
ian categories (eight classes) and (iii) damage severity as-
sessment.

8. AIDR dataset is obtained from the AIDR system (Imran
et al. 2014) that has been annotated by domain experts
for different events and made available upon requests. We
only retained labeled data that are relevant to this study.

First part of Table 1 summarizes original sizes of the
datasets. The CrisisLex and CrisisNLP datasets are the
largest and second-largest datasets, respectively, which are
currently widely used in the literature. The SWDM2013 is
the smallest set. However, it is one of the earliest datasets
used by the crisis informatics community.

3.2 Class Label Mapping
The datasets come with different class labels. We create a
set of common class labels by manually mapping semanti-
cally similar labels into one cluster. For example, the label
“building damaged,” originally used in the AIDR system, is
mapped to “infrastructure and utilities damage” in our final
dataset. Some of the class labels in these datasets are not an-
notated for humanitarian aid6 purposes, therefore, we have
not included them in the consolidated dataset. For example,
we do not select tweets labeled as “animal management”
or “not labeled” that appear in CrisisNLP and CrisisLex26.
This causes a drop in the number of tweets for both infor-
mativeness and humanitarian tasks as can be seen in Table 1
(Mapping column). The large drop in the CrisisLex dataset
for the informativeness task is due to the 3,103 unlabeled
tweets (i.e., labeled as “not labeled”). The other significant
drop for the informativeness task is in the DRD dataset. This
is because many tweets were annotated with multiple labels,
which we have not included in our consolidated dataset. The
reason is to reduce additional manual effort as it requires re-
labeling them for multiclass setting. Moreover, many tweets
in these datasets were labeled for informativeness only. For

6https://en.wikipedia.org/wiki/
Humanitarian_aid
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example, the DSM dataset is only labeled for informative-
ness, and a large portion of the DRD dataset is labeled for
informativeness only. We could not map them for the hu-
manitarian task.

3.3 Exact- and Near-Duplicate Filtering
To develop a machine learning model, it is important to de-
sign non-overlapping train/dev/test splits. A common prac-
tice is to randomly split the dataset into train/dev/test sets.
This approach does not work with social media data as it
generally contains duplicates and near duplicates. Such du-
plicate content, if present in both train and test sets, often
leads to overestimated test results during classification. Fil-
tering the near-and-exact duplicate content is one of the ma-
jor steps we have taken into consideration while consolidat-
ing the datasets.

We first tokenize the text before applying any filtering. For
tokenization, we used a modified version of the Tweet NLP
tokenizer (O’Connor, Krieger, and Ahn 2010).7 Our mod-
ification includes lowercasing the text and removing URL,
punctuation, and user id mentioned in the text. We then filter
tweets having only one token. Next, we apply exact string
matching to remove exact duplicates. An example of an ex-
act duplicate tweet is: “RT Reuters: BREAKING NEWS: 6.3
magnitude earthquake strikes northwest of Bologna, Italy:
USGS”, which appear three times with exact match in Cri-
sisLex26 (Olteanu et al. 2014) dataset that has been col-
lected during Northern Italy Earthquakes, 2012.8

Then, we use a similarity-based approach to remove the
near-duplicates. To do this, we first convert the tweets into
vectors using bag-of-ngram approach as a vector represen-
tation. We use uni- and bi-grams with their frequency-based
representations. We then use cosine similarity to compute a
similarity score between two tweets and flag them as dupli-
cate (e.g., first tweet in Table 2) if their similarity score is
greater than the threshold value of 0.75. In the similarity-
based approach, threshold selection is an important aspect.
Choosing a lower value would remove many distant tweets
while choosing a higher value would leave several near-
duplicate tweets in the dataset. To determine a plausible
threshold value, we manually checked the tweets in different
threshold bins (i.e., 0.70 to 1.0 with 0.05 interval) as shown
in Figure 1, which we selected from consolidated informa-
tiveness dataset. By investigating the distribution and man-
ual checking, we concluded that a threshold value of 0.75 is
a reasonable choice. From the figure we can clearly see that
choosing a lower threshold (e.g., < 0.75) removes larger
number of tweets. Note that rest of the tweets have similarity
lower than what we have reported in the figure. In Table 2,
we provide a few examples for the sake of clarity.

We analyzed the data to understand which events and
datasets have more exact- and near-duplicates. Figure 2 pro-
vides counts for both exact- and near-duplicates for infor-
mativeness tweets. In the figure, we report total number (in
parenthesis the number represents percentage of reduction)

7https://github.com/brendano/ark-tweet-nlp
8http://en.wikipedia.org/wiki/2012_

Northern_Italy_earthquakes

Figure 1: Number of near-duplicates in different bins ob-
tained from consolidated informativeness tweets after label
mapping. Tweets will lower similarity (< 0.7) bins are not
reported here.

Figure 2: Exact- and near-duplicates in informativeness
tweets. Number on top of each bar represents total number,
and the number in the parenthesis represents percentage.

of duplicates (i.e., exact and near) for each dataset. The
CrisisLex and CrisisNLP have higher number of duplicates
comparatively, however, it is because those two are relatively
larger in size. For each of these datasets, we analyzed dif-
ferent events where duplicates appear most. In CrisisLex,
the majority of the exact duplicates appear in “Queensland
floods (2013)”9 consisting of 2270 exact duplicates. The
second majority is “West Texas explosion (2013)” event,
which consists of 1301 duplicates. Compared to CrisisLex,
the exact duplicates are low in CrisisNLP, and the major-
ity of such duplicates appear in the “Philippines Typhoon
Hagupit (2014)” event with 1084 tweets. For the humanitar-
ian tweets, we observed a similar trend.

As indicated in Table 1, there is a drop after filtering,
e.g.,∼25% for informativeness and∼20% for humanitarian
tasks. It is important to note that failing to eradicate dupli-
cates from the consolidated dataset would potentially lead to
misleading performance results in the classification experi-
ments.

9Event name refers to the event during which data has been
collected by the respective data authors (see Section 3.1).
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# Tweet Tokenized Sim. Dup.

1
Live coverage: Queensland flood
crisis via @Y7News http://t.co/Knb407Fw live coverage queensland flood crisis via url 0.788 3
Live coverage: Queensland flood crisis -
Yahoo!7 http://t.co/U2hw0LWW via @Y7News live coverage queensland flood crisis yahoo url via

2

“@guardian: Queensland counts flood cost as New
South Wales braces for river peaks http://t.co/MpQskYt1”.
Brisbane friends moved to refuge.

queensland counts flood cost as new south wales
braces for river peaks url brisbane friends
moved to refuge 0.778 3

Queensland counts flood cost as New South Wales
braces for river peaks http://t.co/qb5UuYf9

queensland counts flood cost as new south
wales braces for river peaks url

3

RT @FoxNews: #BREAKING: Numerous injuries
reported in large explosion at #Texas fertilizer plant
http://t.co/oH93niFiAS”. Brisbane friends moved to refuge.

rt breaking numerous injuries reported in
large explosion at texas fertilizer plant url 0.744 7

Numerous injuries reported in large explosion at Texas
fertilizer plant: DEVELOPING: Emergency crews in
Texas ... http://t.co/Th5Yzvdg5m

numerous injuries reported in large explosion
at texas fertilizer plant developing emergency
crews in texas url

Table 2: Examples of near-duplicates with similarity scores selected from informativeness tweets. Near-duplicates are in italic
form. Sim. refers to similarity value. Dup. refers to whether we consider them as duplicate. The symbol (3) indicates a duplicate,
which we dropped, and the symbol (7) indicates a non-duplicate, which we kept in our dataset.

3.4 Adding Language Tags
Some of the existing datasets contain tweets in various lan-
guages (i.e., Spanish and Italian) without explicit assign-
ment of a language tag. In addition, many tweets have code-
switched (i.e., multilingual) content. For example, the fol-
lowing tweet has both English and Spanish text: “It’s #Sat-
urday, #treat yourself to our #Pastel tres leches y compota
de mora azul. https://t.co/WMpmu27P9X”. Note that Twitter
tagged this tweet as English whereas the Google language
detector service tagged it as Spanish with a confidence score
of 0.379.

We decided to provide a language tag for each tweet if
it is not available with the respective dataset. We used the
language detection API of Google Cloud Services10 for this
purpose. In Figure 3, we report language distribution for
the top nineteen languages consists of more than 20 tweets.
Among different languages of informativeness tweets, En-
glish tweets appear to be highest in the distribution com-
pared to any other language, which is 94.46% of 156,899.
Note that most of the non-English tweets appear in the Cri-
sisLex dataset. We believe our language tags will enable fu-
ture studies to perform multilingual analysis.

3.5 Data Statistics
Distribution of class labels is an important factor for devel-
oping the classification model. In Table 3 and 4, we report
individual datasets along with the class label distribution for
informativeness and humanitarian tasks, respectively. It is
clear that there is an imbalance in class distributions in dif-
ferent datasets and some class labels are not present. For
example, the distribution of “not informative” class is very
low in SWDM2013 and ISCRAM2013 datasets. For the hu-
manitarian task, some class labels are not present in differ-

10https://cloud.google.com/translate/docs/
advanced/detecting-language-v3. Note, it is a paid
service, therefore, we have not used this service for the tweets for
which language tags are available.

Figure 3: Distribution of top nineteen languages (>= 20
tweets) in the consolidated informativeness tweets.

ent datasets. Only 17 tweets with the label “terrrorism re-
lated” are present in CrisisNLP. Similarly, the class “dis-
ease related” only appears in CrisisNLP. The scarcity of the
class labels poses a great challenge to design the classifi-
cation model using individual datasets. Even after combin-
ing the datasets, the imbalance in class distribution seems
to persist (last column in Table 4). For example, the distri-
bution of “not humanitarian” is relatively higher (37.40%)
than other class labels. In Table 4, we report some class la-
bels (highlighted in italic), which we dropped in the rest of
the classification experiments conducted in this study. How-
ever, tweets with those class labels will be available in the
released datasets. The reason for not including them in the
experiments is that we aim to develop classifiers for the dis-
aster response tasks only.
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Class CrisisLex CrisisNLP SWDM13 ISCRAM13 DRD DSM CrisisMMD AIDR Total
Informative 42,140 23,694 716 2,443 14,849 3,461 11,488 2,968 101,759
Not informative 27,559 16,707 141 78 6,047 5,374 4,532 3,901 64,339

Total 69,699 40,401 857 2,521 20,896 8,835 16,020 6,869 166,098

Table 3: Data (tweets containing multiple languages) distribution of informativeness across different sources.

Class CrisisLex CrisisNLP SWDM13 ISCRAM13 DRD CrisisMMD AIDR Total
Affected individual 3,740 - - - - 471 - 4,211
Caution and advice 1,774 1,137 117 412 - - 161 3,601
Disease related - 1,478 - - - - - 1,478
Displaced and evacuations - 495 - - - - 50 545
Donation and volunteering 1,932 2,882 27 189 10 3,286 24 8,350
Infrastructure and utilities damage 1,353 1,721 - - 877 1,262 283 5,496
Injured or dead people - 2,151 139 125 - 486 267 3,168
Missing and found people - 443 - 43 - 40 46 572
Not humanitarian 27,559 16,708 142 81 - 4,538 3,911 52,939
Other relevant information 29,562 8,188 - - - 5,937 939 44,626
Personal update - 116 274 656 - - - 1,046
Physical landslide - 538 - - - - - 538
Requests or needs - 215 - - 6,532 - 257 7,004
Response efforts - 1,114 - - - - - 1,114
Sympathy and support 3,779 2,872 - - - - 178 6,829
Terrorism related - 16 - - - - - 16

Total 69,699 40,074 699 1,506 7,419 16,020 6,116 141,533

Table 4: Data (tweets containing multiple languages) distribution of humanitarian categories across different datasets.

4 Experiments
Although our consolidated dataset contains multilingual
tweets, we only use tweets in English language in our ex-
periments. We split data into train, dev, and test sets with
a proportion of 70%, 10%, and 20%, respectively, also re-
ported in Table 5. As mentioned earlier we have not selected
the tweets with highlighted (in italic form) class labels in
Table 4 for the classification experiments. Therefore, in this
and next Section 5 we report the class label distribution and
results on the selected class labels with English tweets only.

4.1 Models and Architectures
In this section, we describe the details of our classification
models. For the experiments, we use CNN, fastText, and pre-
trained transformer models.

CNN: The current state-of-the-art disaster classification
model is based on the CNN architecture. We used similar
architecture as proposed by (Nguyen et al. 2017).

fastText: For the fastText (Joulin et al. 2017), we used pre-
trained embeddings trained on Common Crawl, which is re-
leased by fastText for English.

Transformer models: Pre-trained models have achieved
state-of-the-art performance on natural language processing
tasks and have been adopted as feature extractors for solv-
ing down-stream tasks such as question answering, and sen-
timent analysis. Though the pre-trained models are mainly
trained on non-Twitter text, we hypothesize that their rich

contextualized embeddings would be beneficial for the dis-
aster domain. In this work, we choose the pre-trained models
BERT (Devlin et al. 2019), DistilBERT (Sanh et al. 2019),
and RoBERTa (Liu et al. 2019) for the classification tasks.

Model Settings: We train the CNN models using the
Adam optimizer (Kingma and Ba 2014). The batch size is
128 and maximum number of epochs is set to 1000. We use
a filter size of 300 with both window size and pooling length
of 2, 3, and 4, and a dropout rate 0.02. We set early stopping
criterion based on the accuracy of the development set with a
patience of 200. For the experiments with fastText, we used
default parameters except: (i) the dimension is set to 300,
(ii) minimal number of word occurrences is set to 3, and (iii)
number of epochs is 50. We train transformers models using
the Transformer Toolkit (Wolf et al. 2019). For each model,
we use an additional task-specific layer. We fine-tune the
model using fine-tuning procedure as prescribed by (Devlin
et al. 2019). Due to the instability of the pre-trained models
as reported in (Devlin et al. 2019), we perform ten re-runs
for each experiment using different seeds, and we select the
model that performs best on the dev set. For transformer-
based models, we used a learning rate of 2e− 5, and a batch
size of 8. More details of the parameters setting can be found
in the released scripts.

4.2 Preprocessing and Evaluation
Preprocessing: Prior to the classification experiment, we
preprocess tweets to remove symbols, emoticons, invisi-
ble and non-ASCII characters, punctuations (replaced with
whitespace), numbers, URLs, and hashtag signs.
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Informativeness Train Dev Test Total
Informative 65826 9594 18626 94046
Not informative 43970 6414 12469 62853

Total 109796 16008 31095 156899
Humanitarian
Affected individual 2454 367 693 3514
Caution and advice 2101 309 583 2993
Displaced and evacuations 359 53 99 511
Donation and volunteering 5184 763 1453 7400
Infrastructure and utilities damage 3541 511 1004 5056
Injured or dead people 1945 271 561 2777
Missing and found people 373 55 103 531
Not humanitarian 36109 5270 10256 51635
Requests or needs 4840 705 1372 6917
Response efforts 780 113 221 1114
Sympathy and support 3549 540 1020 5109

Total 61235 8957 17365 87557

Table 5: Data split and their distributions with the consoli-
dated English tweets dataset.

Evaluation: To measure the performance of each clas-
sifier, we use weighted average precision (P), recall (R),
and F1-measure (F1). The rationale behind choosing the
weighted metric is that it takes into account the class im-
balance problem.

4.3 Experimental Settings
Individual vs. Consolidated Datasets: The motivation of
these experiments is to investigate whether model trained
with consolidated dataset generalizes well across different
sets. For the individual dataset classification experiments,
we selected CrisisLex and CrisisNLP as they are relatively
larger in size and have a reasonable number of class labels,
i.e., six and eleven class labels, respectively. Note that these
are subsets of the consolidated dataset reported in Table 5.
We selected them from train, dev and test splits of the con-
solidated dataset to be consistent across different classifi-
cation experiments. To understand the effectiveness of the
smaller datasets, we run experiments by training the model
using smaller datasets and evaluating using the consolidated
test set.

Event-aware Training The availability of annotated data
for a disaster event is usually scarce. One of the advantages
of our compiled data is to have identical classes across sev-
eral disaster events. This enables us to combine the anno-
tated data from all previous disasters for the classification.
Though this increases the size of the training data substan-
tially, the classifier may result in sub-optimal performance
due to the inclusion of heterogeneous data (i.e., a variety of
disaster types and occurs in a different part of the world).
Sennrich, Haddow, and Birch (2016) proposed a tag-based
strategy where they add a tag to machine translation training
data to force a specific type of translation. The method has
later been adopted to do domain adaptation and multilingual
machine translation (Chu, Dabre, and Kurohashi 2017; Saj-
jad et al. 2017). Motivated by it, we propose an event-aware
training mechanism. Given a set of m disaster event types

D = {d1, d2, ..., dm} where disaster event type di includes
earthquake, flood, fire, and hurricane. For a disaster event
type di, Ti = {t1, t2, ..., tn} are the annotated tweets. We
append a disaster event type as a token to each annotated
tweet ti. More concretely, say tweet ti consists of k words
{w1, w2, ..., wk}. We append a disaster event type tag di to
each tweet so that ti would become {di, w1, w2, ..., wk}. We
repeat this step for all disaster event types present in our
dataset. We concatenate the modified data of all disasters
and use it for the classification.

The event-aware training requires the knowledge of the
disaster event type at the time of the test. If we do not pro-
vide a disaster event type, the classification performance will
be suboptimal due to a mismatch between train and test. To
apply the model to an unknown disaster event type, we mod-
ify the training procedure. Instead of appending the disaster
event type to all tweets of a disaster, we randomly append
disaster event type UNK to 5% of the tweets of every disas-
ter. Note that UNK is now distributed across all disaster event
types and is a good representation of an unknown event.

5 Results and Discussions
5.1 Individual vs. Consolidated Datasets
In Table 6, we report the classification results for individual
vs. consolidated datasets for both informativeness and hu-
manitarian tasks using the CNN model. As mentioned ear-
lier, we selected CrisisLex and CrisisNLP to conduct exper-
iments for the individual datasets. The model trained with
individual dataset shows that performance is higher on the
corresponding set but low on other sets. For example, for
informativeness task, the model trained with CrisisLex per-
forms better on CrisisLex but not on CrisisNLP and Consol-
idated sets. We see similar pattern for CrisisNLP. However,
the model trained with Consolidated data shows similar per-
formance as individual sets (i.e., CrisisLex and CrisisNLP)
but higher on consolidated set. A comparison is shown in the
Table 6. The model trained using the consolidated dataset
achieves 0.866 (F1) for informativeness and 0.829 for hu-
manitarian, which is better than the models trained using in-
dividual datasets. This proves that model with consolidated
dataset generalizes well, obtaining similar performance on
individual sets and higher on the consolidated set.

Between CrisisLex and CrisisNLP, the performance is
higher on CrisisLex dataset for both informativeness and
humanitarian tasks (1st vs. 4th row in Table 6 for the in-
formativeness, and 10th vs. 13th row for the humanitarian
task in the same table.). This might be due to the CrisisLex
dataset being larger than the CrisisNLP dataset. The cross
dataset (i.e., train on CrisisLex and evaluate on CrisisNLP)
results shows that there is a drop in performance. For ex-
ample, there is 14.3% difference in F1 on CrisisNLP data
using the CrisisLex model for the informativeness task. Sim-
ilar behavior observed when evaluated the CrisisNLP model
on the CrisisLex dataset. In the humanitarian task, for dif-
ferent datasets in Table 6, we have different number of class
labels. We report the results of those classes only for which
the model is able to classify. For example, the model trained
using the CrisisLex data can classify tweets using one of the
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Train Test Acc P R F1
Informativeness

CLex (2C) 1. CLex 0.945 0.945 0.950 0.945
2. CNLP 0.689 0.688 0.690 0.689
3. Conso 0.801 0.807 0.800 0.803

CNLP (2C) 4. CNLP 0.832 0.832 0.830 0.832
5. CLex 0.712 0.803 0.710 0.705
6. Conso 0.725 0.768 0.730 0.727

Conso (2C) 7. CLex 0.943 0.943 0.940 0.943
8. CNLP 0.829 0.828 0.830 0.828
9. Conso 0.867 0.866 0.870 0.866

Humanitarian
CLex (6C) 10. CLex 0.921 0.920 0.920 0.920

11. CNLP 0.554 0.546 0.550 0.544
12. Conso 0.694 0.601 0.690 0.633

CNLP (10C) 13. CNLP 0.780 0.757 0.780 0.762
14. CLex 0.769 0.726 0.770 0.714
15. Conso 0.666 0.582 0.670 0.613

Conso (11C) 16. CLex 0.908 0.916 0.910 0.912
17. CNLP 0.768 0.753 0.770 0.753
18. Conso 0.835 0.827 0.840 0.829

Table 6: Classification results using CNN for the individ-
ual and consolidated datasets. CLex: CrisisLex, CNLP: Cri-
sisNLP, Conso: Consolidated; 6C, 10C, and 11C refer to six,
ten and eleven class labels respectively.

six class labels (see Table 4 for excluded labels with high-
lights). The experiments with smaller datasets for both in-
formativeness and humanitarian tasks show the importance
of designing a classifier using a larger dataset. Note that
humanitarian task is a multi-class classification problem,
which makes it a much more difficult task than the binary
informativeness classification.

Comparing Models: In Table 7, we report the results us-
ing CNN, fastText and transformer based models. We re-
port weighted F1 for all models and tasks. The transformer
based models achieve higher performance compared to the
CNN and fastText. We used three transformer based mod-
els, which varies in the parameter sizes. However, in terms
of performance, they are quite similar.

Class-wise Results Analysis: In Table 8, we report class-
wise performance of both CNN and BERT models for the
humanitarian task. BERT performs better than or on par
with CNN across all classes. More importantly, BERT per-
forms substantially better than CNN in the case of mi-
nority classes as highlighted, in italic form, in the table.
We further investigate the classification results of the CNN
models for the minority class labels. We observe that the
class “response efforts” is mostly confused with “dona-
tion and volunteering” and “not humanitarian”. For exam-
ple, the following tweet with “response efforts” label, “I
am supporting Rebuild Sankhu @crowdfunderuk #crowd-
funder http://t.co/WBsKGZHHSj”, is classified as “donation
and volunteering”. We also observe similar phenomena in
minority class labels. The class “displaced and evacuations”
is confused with “donation and volunteering” and “caution
and advice”. It is interesting that the class “missing and
found people” is confused with “donation and volunteering”

Train Test CNN FT BERT D-B RT
Informativeness

1. CLex 0.945 0.940 0.949 0.949 0.938
2. CrisisNLP 0.689 0.687 0.698 0.681 0.694CLex (2C)
3. Conso 0.803 0.791 0.806 0.808 0.810

4. CNLP 0.832 0.816 0.833 0.834 0.823
5. CLex 0.705 0.728 0.749 0.739 0.726CNLP (2C)
6. Conso 0.727 0.733 0.753 0.755 0.744

7. CLex 0.943 0.917 0.940 0.938 0.946
8. CNLP 0.828 0.811 0.825 0.828 0.829Conso (2C)
9. Conso 0.866 0.844 0.872 0.870 0.883

Humanitarian
10. CLex 0.920 0.911 0.934 0.935 0.937
11. CNLP 0.544 0.549 0.615 0.628 0.632CLex (6C)
12. Conso 0.633 0.605 0.766 0.770 0.784

13. CNLP 0.762 0.759 0.791 0.788 0.789
14. CLex 0.714 0.719 0.842 0.845 0.850CNLP (10C)
15. Conso 0.613 0.627 0.709 0.707 0.727

16. CLex 0.912 0.903 0.923 0.921 0.931
17. CNLP 0.753 0.760 0.786 0.787 0.784Conso (11C)
18. Conso 0.829 0.824 0.860 0.856 0.872

Table 7: Classification results (weighted-F1) using CNN,
fastText (FT) and transformer based models. D-B: Distil-
BERT, RT: RoBERTa.

and “not humanitarian”. The following “missing and found
people” tweet, “RT @Fahdhusain: 11 kids recovered alive
from under earthquake rubble in Awaran. Shukar Allah!!”,
is classified as “donation and volunteering”.

5.2 Event-aware
In Table 9, we report the results of the event-aware train-
ing using both CNN and BERT. The event-aware training
improves the classification performance by 1.3 points (F1)
using CNN for the humanitarian task compared to the re-
sults without using event information (see Table 6). How-
ever, no improvement has been observed for the informa-
tiveness task. The training using event information enables
the system to use data of all disasters while preserving the
disaster-specific distribution. Event-aware training is also ef-
fective in the advent of a new disaster event. Based on the
type of a new disaster, one may use appropriate tags to opti-
mize the classification performance. The event-aware train-
ing can be extended to use more than one tags. For example,
in addition to preserving the event information, one can also
append a tag for the disaster region. In this way, one can op-
timize the model for more fine-grained domain information.
The event-aware training with BERT does not provide better
results in any of the tasks, which requires further investiga-
tion and we leave it as a future study.

5.3 Discussions
Social media data is noisy and it often poses a challenge
for labeling and training classifiers. Our analysis on pub-
licly available datasets reveals that one should follow a num-
ber of steps before preparing and labeling any social media
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CNN BERT
Class P R F1 P R F1

Affected individual 0.760 0.720 0.740 0.752 0.808 0.779
Caution and advice 0.630 0.630 0.630 0.675 0.707 0.691
Displaced and evacuations 0.490 0.180 0.260 0.491 0.535 0.512
Donation and volunteering 0.700 0.790 0.740 0.764 0.807 0.785
Infra. and util. damage 0.650 0.660 0.660 0.696 0.717 0.706
Injured or dead people 0.760 0.780 0.770 0.812 0.845 0.828
Missing and found people 0.470 0.170 0.240 0.457 0.466 0.462
Not humanitarian 0.900 0.930 0.920 0.934 0.920 0.927
Requests or needs 0.850 0.840 0.850 0.909 0.901 0.905
Response efforts 0.330 0.070 0.120 0.349 0.308 0.327
Sympathy and support 0.760 0.640 0.690 0.751 0.725 0.738

Table 8: Class-wise classification results of humanitarian
task on the consolidated dataset using CNN and BERT.

Informativeness Humanitarian
Model P R F1 P R F1

CNN 0.868 0.870 0.867 0.841 0.850 0.842
fastText 0.824 0.824 0.824 0.794 0.795 0.794
BERT 0.872 0.872 0.872 0.866 0.865 0.865
DistilBERT 0.874 0.875 0.874 0.863 0.864 0.863
RoBERTa 0.879 0.879 0.878 0.871 0.870 0.870

Table 9: Results of event-aware experiments using the con-
solidated dataset.

dataset, not just the dataset for crisis computing. Such steps
include (i) tokenization to help in the subsequent phase,
(ii) remove exact- and near-duplicates, (iii) check for exist-
ing data where the same tweet might be annotated for the
same task, and then (iv) labeling. For designing the classi-
fier, we postulate checking the overlap between training and
test splits to avoid any misleading performance.

The classification performance that we report is consid-
ered as benchmark results, which can be used to compare in
any future study. The current state-of-art for informativeness
and humanitarian tasks can be found in (Burel et al. 2017;
Alam, Muhammad, and Ferda 2019; Alam et al. 2021).
The F-measure for informativeness and humanitarian tasks
are reported as 0.838 and 0.613, respectively, on the Cri-
sisLex26 dataset in (Burel et al. 2017). Whereas in (Alam,
Muhammad, and Ferda 2019), the reported F-measure for
informativeness and humanitarian tasks are 0.93 and 0.78,
respectively. It is important to emphasize the fact that the
results reported in this study are reliable as they are ob-
tained on a dataset that has been cleaned from duplicate
content, which might have led to misleading performance
results otherwise. The recent results reported in (Alam et al.
2021) shows a best F-measure of 0.781 for humanitarian
task, which can be comparable with this study.

Our initial consolidated datasets (i.e., Table 3 and 4) con-
tains multilingual content with more class labels and dif-
ferent types of content (e.g., disease-related), therefore, an
interesting future research could be to try different pre-
trained multilingual models to classify tweets in different
languages. We have run a set of preliminary experiments
using our initial consolidated datasets, and using mono-
lingual model such as CNN, fastText, BERT, DistilBERT,

Informativeness Humanitarian
Model P R F1 P R F1

Monolingual
CNN 0.827 0.828 0.828 0.650 0.647 0.648
FastText 0.820 0.821 0.820 0.662 0.663 0.662
BERT 0.872 0.873 0.872 0.771 0.772 0.771
DistilBERT 0.871 0.872 0.871 0.770 0.771 0.770
RoBERTa 0.879 0.880 0.879 0.785 0.784 0.784

Multilingual
BERT-m 0.879 0.879 0.879 0.783 0.781 0.781
DistilBERT-m 0.872 0.873 0.872 0.771 0.772 0.771
XLM-RoBERTa 0.879 0.879 0.879 0.789 0.788 0.788

Table 10: Results of consolidated (multilingual) datasets
(class label distributions are reported in Table 3 and 4)
for both tasks and different mono and multilingual mod-
els. BERT-m: bert-base-multilingual-uncased, DistilBERT-
m: distilbert-base-multilingual-cased

RoBERTa, and multilingual versions of the mentioned trans-
former models. The results are reported in Table 10. We
observe that performance dropped significantly for the hu-
manitarian task compared to English-only dataset. For ex-
ample, ∼8% drop using BERT model. Note that test set for
English tweets (Table 5) is a subset of this set of tweets.
From the results of multilingual versions of BERT (BERT-
m), we see that there is an increase in performance compared
to other mono-lingual models, however, the results are still
far below. Such a finding shows an interesting avenue for
further research. Another future research direction would be
to use multilingual models for the zero-shot classification of
tweets.

The competitive performance of transformer based mod-
els encourages us to try deeper models such as Google
T5 (Raffel et al. 2020). For the transformer based model,
it is important to invest the effort to try different regulariza-
tion methods to obtain better results, which we foresee as a
future study.

Our released dataset and benchmark results will help the
research community to develop better models and compare
results. The inclusion of language tags can help to con-
duct multilingual experiments. The resulting dataset covers
a time-span starting from 2010 to 2017, which can be used
to study temporal aspects in crisis scenarios.

6 Conclusions
The information available on social media has been widely
used by humanitarian organizations at times of a disaster.
Many techniques and systems have been developed to pro-
cess social media data. However, the research community
lacks a standard dataset and benchmarks to compare the
performance of their systems. We tried to bridge this gap
by consolidating existing datasets, filtering exact- and near-
duplicates, and providing benchmarks based on state-of-the-
art CNN, FastText, and transformer-based models. Our ex-
perimental results and data splits can be useful for future re-
search to conduct multilingual studies, developing new mod-
els and cross-domain experiments.
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Broader Impact
The developed consolidated labeled dataset is curated from
different publicly available sources. The consolidated la-
beled dataset can be used to develop models for humani-
tarian response tasks and can be useful to fast responders.
We release the dataset by maintaining the license of existing
resources.
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