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Abstract

Though link prediction is a well-studied problem with a
large body of solutions, existing methods do not handle
the case where the predicted link is between an indi-
vidual and a group. This limitation prevents link pre-
diction models from being directly applicable to many
real-life prediction problems where more than two in-
dividuals are involved. Examples of such problems in-
clude: finding missing members of a group, solicit-
ing new members to join a group, or recommending
a group for a person to join. The central aspect of all
of the above problems is predicting linkage between
a group and an individual, a task we refer to as group
link prediction. In this work we propose an innovative
method consisting of two complementary models for
solving group link prediction: group-to-individual-link
(member-recommendation) and individual-to-group-
link (group-recommendation). Both of the proposed
models use a conditional variational auto-encoder
(CVAE) for solving the respective task. For a given indi-
vidual (or group), the model learns a conditional proba-
bility distribution of a link for each candidate group (or
individual) link. We compare our proposed model and
a collection of competing models on various real-world
datasets and show the superior performance of the pro-
posed model in group link prediction.

Introduction
Link prediction (Liben-Nowell and Kleinberg 2003) is a
widely studied problem with successful applications in
social networks (Liben-Nowell and Kleinberg 2003), co-
authorship networks (Hasan et al. 2006), protein-protein in-
teractions (Lei and Ruan 2012) and item recommendation
(Chen, Li, and Huang 2005). As illustrated in Fig. 1a, given
the current state of a network (say, a friendship network),
the conventional link prediction task looks at a pair of dis-
connected nodes (such as A and C in Fig. 1a) and predicts if
a link will form between them at a future time. Numerous
machine learning models have been proposed for solving
this task; for a comprehensive listing of the models, see the
following surveys (Lü and Zhou 2011; Al Hasan and Zaki
2011).

Copyright © 2021, Association for the Advancement of Artificial
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(a) Conventional Link Prediction

(b) Group Link Prediction

Figure 1: Conventional link prediction and group link pre-
diction in social networks. (a) In link prediction, links are
between a pair of individuals. (b) In group link prediction,
links are between a group and an individual. The goal is to
predict future links given the current state of the network.

In many real-world networks, patterns of link formation
are not exclusively limited to two nodes. For instance, in a
co-authorship network, more than two people may co-author
an article. Likewise, in a network of online groups, where
members sharing a group are connected by edges, the ad-
dition of a new individual to a group creates links between
the individual and all of the existing members of that group.
For accurately predicting links in such networks, one would
need to consider the collective link formation between an in-
dividual and a group of individuals, a task which we refer to
as “group link prediction”.

Fig. 1 illustrates the difference between traditional link
prediction and group link prediction. In the top graph, we
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are simply interested to know whetherA and C, two discon-
nected nodes, will be connected in the future. In the bottom
graph, we have two types of nodes: individuals and groups.
Observing that a group G1 connects with individuals A, B,
and C at time t1, t2, and t3, we would like to know the like-
lihood that G1 will link with individual D at time t4. Con-
versely, knowing that individual A joins groups G2 and G3

at time t5 and t6, we would like to predict if she will join
group G4 at time t7.

Many real-life problems related to social media can be
modeled as a task of group link prediction. For instance,
Facebook makes suggestions for potential users to join cer-
tain Facebook Groups (e.g. sports enthusiast group, animal
lover group)—a task of predicting/recommending a poten-
tial group to a user. The same is true for LinkedIn’s recom-
mendation of potential employers to a job-seeker. The above
are examples of an individual connecting to a group given a
list of possible groups—a task, what we also name as group-
recommendation. The role of group and individual can be
reversed in other applications. For instance, given a group
(a partial list of emails), Gmail uses auto-complete to rec-
ommend additional email recipients. In this case, a group is
creating a link to an individual out of many possible choices,
which we call member-recommendation. Other examples
of such tasks are below: a jobseeker is recommended to a
potential employers, based on how much she aligns with the
current employees at the company; Meetup.com (an event-
based social network platform) recommends a user for an
event, based on who else are participating in that event.

The existing link prediction solutions (Liben-Nowell and
Kleinberg 2003; Hasan et al. 2006; Chen, Li, and Huang
2005) make use of a pair-wise score r(u, v) to measure the
similarity between entities u and v. Often r(u, v) is con-
structed based on some topological properties of the net-
work, including neighbor-based scores like Common Neigh-
bor, Jaccard Index, Adamic/Adar and Preferential Attach-
ment, and path-based scores like Graph Distance, Katzβ , and
hitting time, or scores from dot product of latent representa-
tion of u and v obtained through matrix factorization (Koren,
Bell, and Volinsky 2009). Given the current state of the net-
work, one predicts the pair (u, v) with the highest r(u, v) to
form a link in the future.

Link prediction can also be posed as a binary classifica-
tion problem with the labels indicating whether two entities
are connected (Hasan et al. 2006). In this approach, the fea-
tures may be node embeddings obtained through static meth-
ods like DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
Node2Vec (Grover and Leskovec 2016), and LINE (Tang
et al. 2015); dynamic methods like TNE (Zhu, Steeg, and
Galstyan 2016), DynamicTriad (Zhou et al. 2018), CTDNE
(Nguyen et al. 2018), and HTNE (Zuo et al. 2018); at-
tribute methods like Graph2Gauss (Bojchevski and Günne-
mann 2018), Neural-Brane (Dave et al. 2018), and DANE
(Li et al. 2017); graph neural network (GNN) methods like
Graph Convolutional Networks (GCN) (Kipf and Welling
2017), GraphSAGE (Hamilton, Ying, and Leskovec 2017a),
and Deep Graph Infomax (DGI) (Veličković et al. 2019)

One possible adaptation of existing methods for solving
group link prediction is to aggregate the pair-wise similar-

ity scores r(u, v) of traditional link prediction over a group,
through functions like sum, mean, max, and min, to ob-
tain the corresponding score r(g, v) between a group g and
an individual v. For instance, we can use the maximum
r(u, v) for u ∈ g as r(g, v). Similarly, for adapting the
classification-based approach, we can aggregate (e.g. sum,
max-pool, etc) the embedding vectors of all group members
to represent the entire group.

Group link prediction can also be cast as link prediction
on heterogeneous networks (Shi et al. 2017). With individu-
als and groups as nodes, we can construct a bipartite het-
erogeneous network as illustrated in Fig. 1b. In this con-
text, without aggregation, r(g, v) can be directly obtained
from measures such as random walk with restart (Lao and
Cohen 2010) and meta-path similarity (Sun and Han 2012).
Moreover, nodal representations can be learned for link pre-
diction, via methods like meta-path guided random walks
(Dong, Chawla, and Swami 2017) and matrix factorization
(Shi et al. 2019).

While potentially easy to implement, these adaptations
are not specifically designed for group link prediction and,
as we will show in experiments to follow, are not consis-
tently effective for group link prediction. In this work, we
propose a Conditional Variational Auto-encoder (CVAE)
(Sohn, Lee, and Yan 2015) based model specially designed
for solving both the member-recommendation task and
the group-recommendation task. In addition, we provide a
variant of the CVAE model - Conditional Variational Auto-
encoder with History (CVAEH) to incorporate the tempo-
ral characteristics, where the historical links are considered.
The contributions of this work are three-fold:

1. We reframe a special case of link prediction on heteroge-
neous networks that considers the links between an indi-
vidual and a group, which we call “group link prediction”.

2. We propose a CVAE-based model to solve group link pre-
diction. We also introduce a second CVAE model (named
CVAEH) that considers the temporal effect by incorporat-
ing the historical links.

3. We examine the group link prediction problem in five
real-world datasets and show the superiority of our
CVAE/CVAEH models in comparison with various com-
peting methods.
The rest of the paper is organized as follows. In Method,

we give a detailed description of our model. In Related
Works, we review other works related to group link pre-
diction. In Experimental Results, we provide details on the
datasets and the various baseline models used for compar-
ison. We then present several group link prediction exper-
iments and the results. Finally, we summarize our work in
Conclusions.

Method
Problem Description
First we describe the terminology. Given a set of n in-
dividuals G = {v1, v2, · · · , vn}, a subset of them form
a group gi ⊆ G to participate in an event ei at time
ti, i.e. ei = (ti, gi). We denote a sequence of historical
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events up to time ti as H(ti) = {e1, e2, · · · , ei−1} =
{(t1, g1), (t2, g2), · · · , (ti−1, gi−1)}. Note, throughout the
paper, v denotes an individual and g denotes a group. We
use the subscription “ob” to indicate that the subject is ob-
served, and “unob” to indicate the opposite.

Group link prediction is to predict the temporal associ-
ation between an individual v and a group g in an event
e at time t. It can be decomposed into two sub-problems
- member-recommendation and group-recommendation. In
essence, they differ in what is observed and what is to pre-
dict. If we observe a group of individuals in an event, and
want to predict an individual to join them, then we have a
member-recommendation problem; if we observe an indi-
vidual, and want to predict a group for the individual to join
an event with, then we have a group-recommendation prob-
lem. To facilitate ground truth based evaluation, we formal-
ize them as the following:
Definition 0.1. Member-recommendation Given an event
ei = (ti, gi) and the history H(ti), we randomly hold out
a member vunob,i ∈ gi from gi as unobserved, and denote
the rest of the group gob,i = gi \ {vunob,i} as observed. The
member-recommendation task is to recommend an individ-
ual v ∈ G for gob,i such that v = vunob,i, provided that gob,i
andH(ti) are known.
Definition 0.2. Group-recommendation Given an event
ei = (ti, gi) and the history H(ti), we randomly select an
individual vob,i ∈ gi as observed, and denote the rest of
the group gunob,i = gi \ {vob,i} as unobserved. The group-
recommendation task is to recommend a group g for vob,i
such that g = gunob,i, provided that vob,i and H(ti) are
known.
Remark. For group-recommendation, in general, we need
to rank every group g for a given individual vob,i, which
is intractable as the number of possible g is 2n. Therefore,
we simplify group-recommendation to picking the positive
group gpos = gunob,i which vob,i actually joins at time ti,
out of a set of m negative groups {gneg,i|i = 1, 2, · · · ,m},
which vob,i does not join.
Remark. Although our proposed models can be easily
adapted to the more general task of recommending one
group for another (or given a partial group, predicting the
rest of the group), we leave this exciting direction to future
work.

Preliminaries
Variational Autoencoder A variational autoencoder (VAE)
(Kingma and Welling 2014) is an unsupervised neural net-
work model for embedding high-dimensional data into a la-
tent space. Unlike a traditional autoencoder, this is accom-
plished by approximating the true distribution Preal(x) for
the data x through a variational Bayes approach. VAEs have
the added advantage of being capable of generating artifi-
cial data that resembles the real data. The generative process
starts by sampling a latent variable z from a prior Gaussian
distribution P (z). The VAE then generates a data point x
conditioning on z, using a generative distribution Pθ(x|z),
where θ are the parameters of the generative model. Usu-
ally P (z) is assumed to be standard Gaussian and a neu-

ral network is used to model Pθ(x|z). To obtain the param-
eters θ, one can maximize the log-likelihood logPθ(x) =
Ez∼P (z)[logPθ(x|z)P (z)]. In practice, directly maximizing
this log-likelihood is inefficient, as for most z, Pθ(x|z) will
be nearly zero, and contribute almost nothing to the esti-
mate of Pθ(x). Instead, it would be more efficient to sample
from the posterior distribution P (z|x). However, in general,
the posterior distribution inference is intractable. To allevi-
ate the difficulty, one can approximate P (z|x) by a proposal
distribution Qφ(z|x), where φ denotes the model parame-
ters. Furthermore, (Kingma and Welling 2014) proposed to
maximize a variational lower bound of the log-likelihood as
the following:

logPθ(x) = E
Qφ(z|x)

[log
Pθ(x, z)

Qφ(z|x)
] +KL(Qφ(z|x)||P (z|x))

≥ E
Qφ(z|x)

[logPθ(x|z)]−KL(Qφ(z|x)||P (z))

= LV AE(x;φ, θ),
(1)

where KL denotes the Kullback–Leibler divergence. In Eq.
1, Qφ(z|x) is essentially an encoder, mapping a data point
x to z in the latent space. The generative model Pθ(x|z),
on the other hand, acts as a decoder, converting the sampled
latent vector z back to the data space. In practise,Qφ(z|x) is
a neural network that maps a data point to two vectors - mean
µ and the diagonal elements of the standard deviation σ. The
reparameterization trick is used to sample z from µ+σ�z0,
where z0 ∼ N (0, I). The lower bound LV AE(x;φ, θ) can
thus be optimized using stochastic gradient ascent w.r.t φ
and θ. The optimal θ should render Pθ(x) resembling the
true data distribution Preal(x).

Conditional Variational Autoencoder A conditional
variational auto-encoder (CVAE) (Sohn, Lee, and Yan
2015) approximates the conditional probability distribution
Preal(x|y), where x is the data and y is the observed fea-
tures. For instance, if x is an MNIST handwritten digit im-
age and y encodes a number, then CVAE would generate an
image of that number. In contrast, VAE would generate im-
ages of any number between 0 and 9. Like the VAE model,
a variational lower bound defined as the following can be
maximized for training:

logPθ(x|y) ≥ E
Qφ(z|x,y)

[logPθ(x|y, z)]

−KL(Qφ(z|x,y)||P (z|y))
= LCV AE(x,y;φ, θ),

(2)

whereQφ(z|x,y), Pθ(x|y, z), and P (z|y) represent the en-
coder, decoder, and conditional prior networks, respectively.
Note, in our implementation, we do not explicitly construct
a conditional prior network. Instead, we adopt the reparam-
eterization trick to model the conditional prior P (z|y). Also
note, unlike the existing applications of CVAE focusing on
image generation/reconstruction (Sohn, Lee, and Yan 2015;
Ivanov, Figurnov, and Vetrov 2019), we use CVAE to learn a
conditional probability for the unobserved group member(s)
given the observed one(s).
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Figure 2: Network architecture. xfull,i and xob,i are encoding vectors representing the entire group and observed member(s),
which are concatenated as the input to the encoder (green). hi contains the historical event counts, which is also concatenated
with the input for the CVAEH model. Mean µ and the diagonal elements of standard deviation σ are encoder outputs, with
which we sample the latent vector z. z is concatenated with xob,i and hi (CVAEH only) and fed to the decoder (blue). The
output P (x|z,xob,i,hi) is the conditional probability indicating the likelihood for x to join xob,i.

Member-recommendation
In this section, we provide detailed description of our CVAE
model and its variant—the CVAEH model, in the context
of member-recommendation. We will explain how to adapt
them for group-recommendation in the next section. The
network architectures of these two models are illustrated in
Fig. 2.

CVAE In Fig. 2, xfull,i is an n-dimensional many-hot
vector that encodes the entire group gi, whereas xob,i is an-
other n-dimensional many-hot vector that only encodes the
observed members gob,i. Here we should ignore hi, as it is
only intended for the CVAEH model. The input of the en-
coder is the concatenation of xfull,i and xob,i, whilst the
outputs are the Gaussian mean µ and standard deviation
σ (the diagonal elements). We then sample a latent vector
z using the reparameterization trick (Kingma and Welling
2014), i.e. z = µ + σ � z0, where z0 ∼ N (0, I). The pro-
cess up to now is equivalent to Qφ(z|x,y) and P (z|y) in
Eq. 2. Next, z and xob,i are concatenated and fed to the de-
coder. The output of the decoder is a conditional probability
P (v|gob,i) = P (x|z,xob,i), where x is the one-hot encoding
of v ∈ G. Now we can recommend the individual v with
the highest P (v|gob,i) for the observed group gob,i.

CVAEH is similar to CVAE, except that it introduces an
additional vector hi whose v’s entry represents the number
of events that an individual v has attended during [ti−m, ti),
with ti−m being the time m events prior to the current time
ti. hi is thus a representation of the event history H(ti). As
shown in Fig. 2, xfull,i, xob,i and hi are concatenated at the
encoder; while z, xob,i and hi are concatenated at the de-
coder. Accordingly, the output of the decoder is a conditional
probability P (v|gob,i,H(ti)) = P (x|z,xob,i,hi), where x
is again the one-hot encoding of an individual v ∈ G. By
introducing hi, the CVAEH model is able to take advantage
of the temporal correlation in the data. As will be shown in
our experiments, for the datasets where samples are time-
correlated, the CVAEH model is generally better than the
CVAE model in group link prediction.

Loss function To train CVAE and CVAEH, we maxi-
mize the variational lower bound defined in Eq. 2. More
concretely, we minimize the following loss function using
mini-batch gradient descent:

L(φ, θ) =
n∑
v=1

[−xfull,vlog(Pθ(xv|z,xob,h))

− (1− xfull,v)log(1− Pθ(xv|z,xob,h))]

+
1

2

n∑
v=1

(exp(σv) + µ2
v − 1− log(σv))

(3)

where xv , xfull,v , σv and µv are the v’th element of x, xfull,
σ and µ, respectively. Note, h here is only for the CVAEH
model. Although not shown explicitly, µ, σ, and z are depen-
dent on φ. The second summation on the right is the closed
form of the KL-divergence in Eq. 2, as the result of the repa-
rameterization trick (Kingma and Welling 2014).

Learning process is outlined in Alg. 1. Note hi is only
intended for the CVAEH model. The algorithm starts by ini-
tializing the encoder and decoder parameters φ and θ. We
then sample a batch of data (line 3), and for each data we
go through the encode-decode process (line 5− 9), estimate
the loss L(φ, θ) in Eq. 3 (line 10), and obtain the gradients
w.r.t φ and θ (line 11). At the end of each batch, we calculate
the mean gradients and update φ and θ (line 13 − 14). This
process (line 3− 14) repeats until the model converges.

Group-recommendation
The architecture shown in Fig. 2 remains the same for group-
recommendation. However, xob,i is now a one-hot encoded
vector of the observed individual vob,i, and x is a many-
hot encoded vector of a group. Consequently, the output
of the decoder gives a conditional probability P (g|vob,i) =
P (x|z,xob,i), for g ⊆ G\{vob,i}. We thus recommend the
group g with the highest P (g|vob,i) for the observed in-
dividual vob,i. The learning process is also the same except
that the contents of xob,i, and x have changed.
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Algorithm 1: CVAE/CVAEH learning process
Require: learning rate lr, batch size m

1 randomly initialize φ, θ;
2 while not converge do
3 sample batch of xfull,i, xob,i, hi;
4 for i← 1 to m do
5 ci ← concat(xfull,i,xob,i,hi);
6 µ, σ ← encoder(ci);
7 z← µ+ σ � z0 where z0 ∼ N (0, I);
8 c′i ← concat(z,xob,i,hi);
9 Pθ(x|z,xob,hi)← decoder(c′i);

10 calculate L(φ, θ) using Eq. 3;
11 ∂Lφ,i ← ∂L(φ,θ)

∂φ and ∂Lθ,i ← ∂L(φ,θ)
∂θ ;

12 end
13 φ← φ− lr × 1

m

∑m
i=1 ∂Lφ,i;

14 θ ← θ − lr × 1
m

∑m
i=1 ∂Lθ,i;

15 end

Related Works
Recommender systems Traditionally, recommender sys-
tems are mostly based on collaborative filtering (Su and
Khoshgoftaar 2009), especially matrix factorization (MF)
(Koren, Bell, and Volinsky 2009). To reduce cold start, many
works (Feng and Wang 2012; Zhang, Wang, and Feng 2013)
leverage additional information to improve performance.
For example, (Zhang, Wang, and Feng 2013) adopts an ex-
tended MF approach that incorporates location features and
social features. Since we do not use additional features, our
approach is different, nevertheless we compare our method-
ology with a matrix factorization baseline in the experi-
ments. There exists a few works on “group recommenda-
tion” (Liu et al. 2012; Recio-Garcia et al. 2009), which refers
to recommending items for a group of users, which is not
the same as our group link prediction task, where we recom-
mend a user for a group or vice-versa.

Heterogeneous networks The proposed group link pre-
diction problem can be posed as link prediction on (bipar-
tite) heterogeneous networks (Shi et al. 2017) with nodes
of individuals and groups. Node proximity on heteroge-
neous networks can be evaluated via path-based similar-
ity measures, such as random walk with restart (Lao and
Cohen 2010; Pham et al. 2015) and meta-path similarity
(Sun and Han 2012). Furthermore, nodal representations can
be learned from meta-path guided random walks (Dong,
Chawla, and Swami 2017). In addition, matrix factorization
can be adopted for heterogenous networks (Shi et al. 2019).
We compare our models with two state-of-the-art models -
metapath2vec (Dong, Chawla, and Swami 2017) and HERec
(Shi et al. 2019).

Dynamic graph embedding As many real-world net-
works evolve over time, many dynamic graph embedding
models (Zhou et al. 2018; Zhu, Steeg, and Galstyan 2016;
Nguyen et al. 2018; Zuo et al. 2018) are proposed to learn
time-respecting representations. For example, (Nguyen et al.
2018) leverages temporal random walks to learn node em-
beddings in continuous-time dynamic networks. (Zuo et al.

Data set N |V | |E|
Enron 31145 1946 47164
HT09 3703 113 9317
SFHH 3331 403 120507
Meetup NYC 11136 25458 340751
Meetup CA 15717 36799 407584

Table 1: Data set properties.N denotes the number of events
(groups). |V | and |E| are the number of nodes and number
of edges for each network, respectively.

2018) combines the Hawkes process (Hawkes 1971) and the
attention mechanism (Bahdanau, Cho, and Bengio 2015) to
learn temporal embeddings via neighborhood formation. We
compare our models (also dynamic) with these two models
as well as a Long Short-Term Memory (LSTM) based model
(Hochreiter and Schmidhuber 1997).

Graph neural networks Recent years have witnessed the
surge of graph neural networks (GNN) (Hamilton, Ying, and
Leskovec 2017b). Many GNN models, such as graph con-
volutional networks (GCN) (Kipf and Welling 2017) and
GraphSAGE (Hamilton, Ying, and Leskovec 2017a), gener-
ate nodal representations by aggregating local neighborhood
features or attributes. Alternatively, (Veličković et al. 2019)
proposes a unsupervised node embedding method by maxi-
mizing mutual information. Furthermore, (Ying et al. 2018)
extends GNN-based representation learning to web-scale bi-
partite networks of billions of nodes, by combining random
walks and GCN. We compare our models with a state-of-
the-art GNN model.

Experimental Results
In this section, we present experimental results to validate
the effectiveness of our proposed group link prediction mod-
els for solving member and group recommendation tasks on
five real-world datasets. We also compare the performance
of our models with several baseline models.

Data Description
We use five real-life datasets. Their statistics is provided in
Table 1. For data pre-processing, we organized the datasets
into sequences of time-group pairs {(ti, gi)}, sorted in time
ascending order. We then split each dataset into training
(80%), validation (10%), and test (10%) sets. Any group
member that appears in the validation or test split, but not
in the training split, are removed from the corresponding
data-split. Also, a group consists of less than three group
members are also removed from the group-list. Let Mtrain,
Mvalid, and Mtest denote the set of individuals in the train-
ing, validation, and test splits, respectively. The processed
datasets then satisfy (1) Mvalid ⊆ Mtrain, (2) Mtest ⊆
Mtrain, and (3) G = Mtrain. More discussion of each
datasets are below:

Enron Email This dataset (Klimt and Yang 2004) con-
tains emails collected by the Federal Energy Regulatory
Commission (FERC) during the investigation of the Enron
Corporation. It contains ∼ 600, 000 emails from the year
of 1999 to 2002, involving more than three thousands email
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addresses, most of which belong to the employees of the
company. We organize the emails in time ascending order
and extract the sending and receiving addresses owned by
the employees (i.e. addresses ending with ”@enron.com”).
For member-recommendation, we only keep the emails with
3 ∼ 10 people, as the emails that include too many people
are mostly messages broadcasted to everyone without dis-
tinguishing the groups. After the processing described ear-
lier, we obtain a sequence of 31145 samples involving 1949
email addresses (Table 1). For group-recommendation, we
keep the people who have involved in at least 1000 emails
so that we can obtain enough negative samples. This also
helps identify the major players behind the Enron scandal as
discussed later in the case study. This treatment renders us a
sequence of 15801 emails involving 114 email addresses.

Dynamic Contact Networks These two datasets contain
spatial temporal contact information of attendees during the
ACM Hypertext 2009 conference (HT09) (Isella et al. 2011)
and the 2009 SFHH conference (SFHH) (G’enois and Bar-
rat 2018). The attendees of the conferences voluntarily wore
radio badges that monitored their face-to-face proximity. If
a group of individuals engaged in a conversation, the time-
stamp and their IDs would be recorded. During the course
of the conferences, such events were collected, rendering a
sequence of (time, attendee-list) samples. HT09 dataset has
3703 conversational groups and 113 attendees, and SFHH
has 3331 conversations groups involving 403 attendees (Ta-
ble 1).

Event-based Social Networks These datasets (Pham
et al. 2015) were crawled from an event-based social net-
work platform - Meetup.com. This platform allows its users
to create/join groups and announce events for the group
members. For instance, a user in the sports-enthusiastic
group may invite other group members to a football watch-
party. In this work, we adopt the Meetup-NYC dataset and
the Meetup-CA dataset containing events taking place in
New York City and California, respectively. Note although a
user can be part of multiple groups and join various events,
she cannot join the events created by a group of which she is
not a member. For member-recommendation, we only keep
the events with 3 ∼ 20 participants due to performance con-
sideration. This renders a sequence of 11136 events involv-
ing 25458 users (Meetup-NYC) and a sequence of 15717
events involving 36799 users (Meetup-CA) (Table 1). Also
notice that for a user who is only in one group, it would
be trivial to recommend an event for her, as she would join
the events exclusively of this group. Therefore, to effec-
tively evaluate our model, for group-recommendation, we
only keep users who are member of at least 10 groups,
which leads to a sequence of 4500 events including 2286
users (Meetup-NYC) and a sequence of 2392 events includ-
ing 1649 users (Meetup-CA).

Baseline Methods
Graph topology-based Link Prediction We convert our
data into an undirected graph where nodes are event par-
ticipants (e.g. email addresses, conference attendees, and
so on) and edges are formed between them if they are in
an event together. We define some graph-based score func-

tions r(u, v) to measure the similarity between nodes u and
v. A larger r(u, v) indicates a higher likelihood for link-
ing the nodes. Here we examine an array of such score
functions (Liben-Nowell and Kleinberg 2003): Common
Neighbors (CN), Jaccard Index (JI), Adamic/Adar (AA),
Preferential Attachment (PA), and Katzβ . Since these
scores are evaluated in a pair-wise manner, we resort to
some aggregation methods to obtain the scores between a
group g and an individual v. Formally, we have rF (g, v) =
F (r(u, v)), ∀u ∈ g, for F ∈ {sum,max,min,mean}.
Homogeneous Network Embedding-based Link Predic-
tion We adopt a random walk based model - Node2Vec
(Grover and Leskovec 2016) and a recent GNN based model
- Deep Graph Infomax (DGI) (Veličković et al. 2019), to
learn node representations on homogeneous networks con-
sisting of individuals. We aggregate individual-individual
cosine-similarities to obtain group-individual similarities.
Heterogeneous Network Embedding-based Link Predic-
tion The proposed group link prediction can be cast as link
prediction on heterogeneous networks with mixed nodes of
individuals and groups. We adopt metapath2vec (Dong,
Chawla, and Swami 2017) and HERec (Shi et al. 2019)
for the task. metapath2vec utilizes meta-path based ran-
dom walks and skip-gram (Mikolov et al. 2013), to gen-
erate nodal representations. We apply this method with
“individual-group-individual” meta-path and use dot prod-
uct as similarity measure. HERec leverages fusion functions
and matrix factorization to integrate multiple embeddings
w.r.t different meta-paths. We use the recommendation rat-
ings given by the method for link prediction.
Dynamic Network Embedding-based Link Prediction
We can construct dynamic networks of individuals utiliz-
ing event timestamps. In specific, we use CTDNE (Nguyen
et al. 2018) and HTNE (Zuo et al. 2018) to learn time-
respecting nodal representations. CTDNE uses random
walks in time-ascending order to learn temporal embed-
dings; while HTNE combines the Hawkes process (Hawkes
1971) and the attention mechanism (Bahdanau, Cho, and
Bengio 2015) to learn embeddings via neighborhood forma-
tion. With the embeddings at each time step, we use an ag-
gregation approach as in the static case, to predict the links
between individuals and groups.
Matrix Factorization Methods Our datasets can also be
converted to matrices X ∈ R|G| ×RN , with the rows repre-
senting individuals and the columns representing groups (or
equivalently events). If an individual v was part of a group g,
then the entryXv,g would be one, otherwise zero. This setup
resembles the user-item rating matrix widely adopted in the
context of recommender system (Koren, Bell, and Volinsky
2009). By matrix factorization (MF), an individual v is as-
sociated with a vector pv ∈ Rd and a group g is associated
with a vector qg ∈ Rd in some d-dimensional latent space,
such thatXv,g = pTv qg . To factorize X, we adopt two meth-
ods - non-negative matrix factorization (NMF) (Cichocki
and Phan 2009; Févotte and Idier 2011) and singular value
decomposition (SVD) (Halko, Martinsson, and Tropp 2011).
We can thus define the score function as r(g, v) = pTv qg .
Neural Network Methods Aforementioned link prediction
techniques (graph topology-based, embedding-based or MF-
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based) rank the candidates according to certain score func-
tions r(g, v). In contrast, our proposed model and the fol-
lowing Neural Network based models (except set2vec BPR)
can provide a probability distribution for the links. In spe-
cific, we propose the following baseline Neural Network
models for comparison:

One-hot MLP The first model combines Multi-layer Per-
ceptron (MLP) with one-hot encoding (one-hot MLP). The
input of the model is the one-hot encoded vector of the
observed participant(s), gob,i in member-recommendation
or vob,i in group-recommendation, and the output is a
probability distribution for the unobserved participant(s),
vunob,i in member-recommendation or gunob,i in group-
recommendation. This is essentially a multivariate logistic
regression, where whether an individual would join an event
is determined by a Binomial distribution given by the output
probabilities. To learn the model, the cross entropy loss is
minimized using mini-batch gradient descent.

Set2vec MLP Set2vec is proposed by (Vinyals, Bengio,
and Kudlur 2015) for encoding a set of elements. The set
encoding is essentially a weighted sum of the individual
encodings of the set members. We use set2vec to encode
a group as a single vector xs =

∑k
i=1 αixi, where the

weights α1, α2, ..., αk and the individual encoding vectors
{xi, i = 1, 2, ..., k} are learned by coupling set2vec with a
downstream MLP classifier. The output of the classifier is a
probability distribution, like in the one-hot MLP model.

Set2vec BPR We can also replace the cross entropy loss
with the Bayesian Personalized Ranking (BPR) loss (Ren-
dle et al. 2009), leading to the set2vec-BPR model. BPR
is proposed by (Rendle et al. 2009) as a ranking frame-
work for item recommendation. We use BPR to learn the
embedding xv for any individual v and the embedding xg
for any group g. We can then define the score function as
r(g, v) = xg

Txv, which measures the similarity between
the two embeddings.

LSTM Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) is efficient for modeling sequence
related problems. We compare our model with an LSTM-
based model which takes in a sequence of embedding vec-
tors {xti ,xti+1

, · · · ,xti+j} of the observed member-lists
at time-steps {ti, ti+1, · · · , ti+j}, and outputs a conditional
probability P (v|xti ,xti+1

, ...,xti+j ), v ∈ G conditioning
on all the observations in the window [ti, ti+j). However,
this model only predicts an individual rather than a group,
therefore we only apply it to member-recommendation.
Specifically, we use the output probability to rank the candi-
dates at time ti+j given the current observed members and
the members of the previous events.

Experimental Setup
Model details For the proposed CVAE/CVAEH, the en-
coder and the decoder consist of two fully-connected
(FC) layers, with the hidden dimension (hd) tuned from
{128, 256, 512, 1024}. We also tune the dimension of z, zd
in {32, 64, 128, 256}. In addition, for CVAEH, we use dif-
ferent window sizes, ts in {2, 4, 8} for calculating hi. To
learn the model, we minimize the loss in Eq. 3 using mini-

(a) Recommend an individual for a group.

(b) Recommend a group for an individual.

Figure 3: Prediction Illustration. The one-hot encoding of
the observed group member(s) is fed to the decoder. z0 is
sampled multiple times, generating a multiplicity of outputs,
which are averaged to obtain the final conditional proba-
bility. (a) For member-recommendation, we predict the one
most probable member. (b) For group-recommendation, we
find a group that best aligns with the probability distribution.

batch gradient descent, with the batch size = 64 and the
learning rate, lr in {0.0001, 0.001, 0.01}.

Prediction process In Fig. 3a, we illustrate the predic-
tion process for member-recommendation. For each gob,
we sample z0 ∼ N (0, I) m times, generating a series of
conditional probabilities Pi(v|gob), i = 1, 2, ...,m. The fi-
nal conditional probability used for prediction is the sam-
ple mean of these m conditional probabilities, P (v|gob) =
1
m

∑m
i=1 Pi(v|gob), v ∈ G. We then rank the individuals v

by P (v|gob).
In Fig. 3b, we illustrate the prediction process for group-

recommendation. We take out an individual vob from an
event and regard the rest of the member-list as unobserved
gunob. Similarly, for each vob, we sample z0 ∼ N (0, I)
m times, and calculate the sample mean of these m con-
ditional probabilities, P (g|vob) = 1

m

∑m
i=1 Pi(g|vob), g ⊆

G \ {vob}. However, we do not scan over all the possible g
as there are exponential number of possible groups. Instead,
we denote the true gunob as a positive sample, gpos = gunob,
and randomly sample a set of 200 negative samples Sneg =
{gneg,i|vob /∈ gneg,i, i = 1, 2, ..., 200} from the training set.
We then rank g ∈ {gpos} ∪ Sneg by the average probability∑

v∈g P (v|vob)
|g| . Note, here the numerator prefers a group that

contains individuals with high P (v|vob); while the denom-
inator penalizes a group that includes too many irrelevant
individuals. Overall, this score measures to what extent a
group g aligns with the conditional probability P (g|vob).

Performance metric As performance metrics, we use hit
rate@m (Hit@m) and mean reciprocal rank@m (MRR@m).
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For each query, if the target is among the top-m recommen-
dations, we have a hit and record the reciprocal of the rank at
which the target is retrieved. When averaged across queries,
we obtain Hit@m and MRR@m, with the former indicat-
ing how good the model is at finding the target and the later
indicating how high the model ranks the target.

For member-recommendation, during validation and
testing, for each sample, we hold out the last member vi,k
from a group gi of size k, rendering vunob = vi,k and
gob = {vi,1, · · · , vi,k−1}. If the true vunob is among the
top m predictions, we then register a hit for the Hit@m
score. We perform parameter tuning over the validation
set and select the optimal parameters based on the mean
Hit@10 rate. The results discussed in the next section are
obtained using the optimal hyper-parameters as, Enron-
CVAE: zd = 256, hd = 512, lr = 0.0001; HT09-CVAEH:
zd = 128, hd = 1024, ts = 2, lr = 0.0001; SFHH-
CVAEH: zd = 128, hd = 1024, ts = 2, lr = 0.0001;
Meetup-NYC-CVAE: zd = 32, hd = 1024, lr = 0.001;
Meetup-CA-CVAE: zd = 256, hd = 128, lr = 0.001.

For group-recommendation, we similarly hold out the
last member of each sample gi in the validation set
and the test set, which leads to vob = vi,k, gpos =
gunob = {vi,1, vi,2, · · · , vi,k−1}, and Sneg = {gneg,i|vi,k /∈
gneg,i, i = 1, 2, ..., 200}. If gpos is among the top m
highest ranking groups in {gpos} ∪ Sneg , we register a
hit for the Hit@m rate. We perform hyper-parameter tun-
ing over the validation set using the mean Hit@10 rate,
and obtain the optimal hyper-parameters as, Enron-CVAE:
zd = 256, hd = 1024, lr = 0.01; HT09-CVAEH: zd =
32, hd = 128, ts = 2, lr = 0.0001; SFHH-CVAEH:
zd = 64, hd = 1024, ts = 2, lr = 0.0001; Meetup-NYC-
CVAE: zd = 64, hd = 1024, lr = 0.01; Meetup-CA-
CVAE: zd = 32, hd = 256, lr = 0.01.

Setup for baseline methods For fair comparison, we
also perform hyper-parameter tuning for the baseline meth-
ods on the same validation set. For the embedding-
based methods, we test different embedding dimensions
in {64, 128, 256, 512}. For the neural network models, we
also tune the hidden dimension in {128, 256, 512, 1024},
learning rate in {0.0001, 0.001, 0.01} and the batch size
in {32, 64}. For set2vec MLP and LSTM, we test
time-step in {5, 10, 15} and {2, 4, 8, 16, 32}, respectively.
To convert r(u, v) to r(g, v), we try aggregation in
{sum,mean,max,min}. For the hyper-parameters not
mentioned here, we adopt the same values as suggested in
the original papers publishing the methods. We use Hit@10
rate for determining the optimal hyper-parameters. The opti-
mal models are compared with CVAE/CVAEH on the same
test set.

Results
Member recommendation In Table 2 and 3, we show the
hit rates and MRR scores respectively, for the member rec-
ommendation task, using the various models over the five
datasets. The methods are arranged in row clusters based
on their approaches. Our proposed methods, CVAE and
CVAEH are in the last row cluster. For every method, the
results are obtained using the optimal hyper-parameters. For

the graph topology-based and the embedding-based meth-
ods, the results are shown for the best aggregation function
among sum, min, max, and mean. For easy comparison, we
highlight the highest and the second highest scores.

Hit rates can indicate the models’ ability to include the
target in the top candidate list. From Table 2, we can see
that our models perform significantly better than the com-
peting methods in hit rates. Specifically, for the HT09 and
SFHH datasets, our CVAEH model’s performance is around
20% better than the best competing method in both Hit@10
and Hit@20 metrics. For other datasets, our models’ perfor-
mance is generally 4% to 8% better over the best of the com-
peting methods. Only for the Hit@20 rate for the Meetup-
NYC and the Meetup-CA datasets, our method came in a
close second and fourth position, out of the 17 competing
methods.

MRR scores can indicate how high the models rank the
target in the candidate list. From Table 3, we can see that
for all datasets, the highest MRR scores are achieved by
either CVAE or CVAEH. In particular, for the HT09 and
SFHH datasets, our CVAEH model outperforms the com-
peting models by ∼ 14% and ∼ 32%, respectively. For the
other datasets, our method is better than the best competing
method by at least ∼ 10%, except for Meetup-CA (∼ 1% to
2%).

Combining the two metrics, we can see that our method
not only predicts the target members more accurately, but
also ranks them higher than the competing methods. More-
over, our methods show consistently great performance over
the different datasets, as opposed to that, for example, the
Katz β method varies from comparable to ours in Meetup-
NYC and Meetup-CA to significantly poorer in HT09 and
SFHH. This is likely because our model does not explic-
itly rely on the network topology. Our method is also bet-
ter than the dynamic network embedding methods (CTDNE
and HTNE) and heterogeneous network embedding methods
(metapath2vec and HERec), as our method combines the ad-
vantages of both approaches, incorporating the dynamic and
heterogeneous characteristics of the data.

Group recommendation In Table 4 and 5, we show the
hit rates and MRR scores for the group recommendation
task, using different methods over the five datasets. Iden-
tical to the member recommendation, we show the results
of the best hyper-parameters and the best aggregation func-
tion (for the graph topology-based and the embedding-based
methods).

The results suggest that our CVAEH model outperforms
the other models for the HT09 dataset, in both hit rates and
MRR scores, leading the runner up by ∼ 50% and ∼ 30%,
respectively. For the SFHH dataset, CVAEH achieves the
highest hit rates and the second highest MRR scores. For the
Enron dataset, our CVAE model outperforms the compet-
ing baselines except for Hit@20 in a close second position.
For the Meetup-NYC and Meetup-CA datasets, our methods
score the second or third highest hit rates and MRR. No-
tice that the static methods like metapath2vec and Jaccard
Index perform very well in the Meetup-NYC and Meetup-
CA datasets. This is not surprising, as in these datasets,
who joins an event with whom is very static, given that the
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Model Enron HT09 SFHH Meetup-NYC Meetup-CA
H@10 H@20 H@10 H@20 H@10 H@20 H@10 H@20 H@10 H@20

CN 0.349 0.433 0.075 0.108 0.027 0.186 0.309 0.393 0.359 0.461
JI 0.412 0.522 0.057 0.100 0.129 0.302 0.282 0.360 0.320 0.432
AA 0.366 0.453 0.067 0.111 0.033 0.189 0.317 0.384 0.367 0.474
PA 0.036 0.046 0.075 0.111 0.039 0.401 0.015 0.047 0.004 0.011
Katz β 0.446 0.561 0.124 0.148 0.165 0.314 0.318 0.409 0.387 0.483
Node2Vec 0.188 0.345 0.140 0.232 0.000 0.000 0.070 0.178 0.076 0.206
CTDNE 0.390 0.526 0.154 0.240 0.275 0.290 0.170 0.274 0.193 0.291
HTNE 0.130 0.222 0.412 0.496 0.168 0.222 0.041 0.063 0.071 0.132
metapath2vec 0.277 0.442 0.350 0.588 0.027 0.153 0.107 0.231 0.150 0.275
HERec 0.036 0.074 0.412 0.507 0.192 0.216 0.004 0.010 0.015 0.031
NMF 0.257 0.350 0.466 0.561 0.308 0.356 0.112 0.187 0.124 0.228
SVD 0.278 0.393 0.555 0.677 0.177 0.254 0.126 0.208 0.159 0.266
one-hot MLP 0.462 0.536 0.553 0.712 0.371 0.440 0.326 0.392 0.339 0.428
set2vec MLP 0.434 0.514 0.561 0.617 0.207 0.296 0.261 0.336 0.312 0.381
set2vec BPR 0.374 0.494 0.501 0.590 0.069 0.111 0.173 0.258 0.214 0.316
LSTM 0.438 0.522 0.503 0.621 0.269 0.323 0.253 0.315 0.301 0.385
DGI 0.275 0.368 0.051 0.213 0.051 0.141 0.193 0.258 0.200 0.281
CVAE 0.521 0.601 0.615 0.728 0.428 0.500 0.341 0.406 0.400 0.455
CVAEH 0.485 0.578 0.709 0.806 0.509 0.560 0.275 0.345 0.267 0.331

Table 2: Member recommendation hit rates. The highest and the second highest hit rates are bold.

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

CN 0.186 0.192 0.022 0.024 0.026 0.032 0.161 0.167 0.208 0.215
JI 0.210 0.218 0.012 0.015 0.070 0.081 0.127 0.132 0.157 0.165
AA 0.200 0.206 0.036 0.039 0.006 0.017 0.167 0.172 0.213 0.220
PA 0.022 0.023 0.042 0.044 0.005 0.028 0.002 0.005 0.001 0.001
Katz β 0.238 0.246 0.108 0.110 0.043 0.053 0.166 0.173 0.218 0.225
Node2Vec 0.033 0.044 0.025 0.032 0.000 0.000 0.009 0.017 0.010 0.019
CTDNE 0.107 0.117 0.024 0.030 0.126 0.127 0.041 0.048 0.065 0.071
HTNE 0.032 0.039 0.085 0.0916 0.034 0.037 0.007 0.008 0.015 0.019
metapath2vec 0.068 0.079 0.082 0.100 0.007 0.016 0.020 0.028 0.041 0.049
HERec 0.009 0.012 0.091 0.101 0.026 0.032 0.001 0.001 0.023 0.026
NMF 0.102 0.108 0.410 0.416 0.144 0.147 0.037 0.039 0.026 0.028
SVD 0.114 0.121 0.214 0.222 0.045 0.050 0.027 0.029 0.032 0.034
one-hot MLP 0.276 0.281 0.456 0.461 0.208 0.211 0.193 0.198 0.210 0.215
set2vec MLP 0.277 0.283 0.470 0.474 0.096 0.102 0.137 0.142 0.171 0.176
set2vec BPR 0.098 0.106 0.172 0.179 0.010 0.013 0.047 0.053 0.056 0.063
LSTM 0.262 0.267 0.393 0.401 0.080 0.084 0.135 0.140 0.177 0.182
DGI 0.111 0.119 0.018 0.022 0.012 0.019 0.039 0.039 0.087 0.092
CVAE 0.304 0.311 0.387 0.397 0.260 0.266 0.213 0.218 0.222 0.227
CVAEH 0.311 0.317 0.535 0.542 0.275 0.278 0.154 0.159 0.148 0.152

Table 3: Member recommendation mean reciprocal ranks (MRR). The highest and the second highest MRR scores are bold.

users on meetup.com do not frequently change their interest
groups, and per the platform policy, all the events are exclu-
sively joined by the members of the same interest group. In
contrast, for the other datasets where group membership is
constantly changing, our models are better.

Comparison between CVAE and CVAEH Notice that in
Table 2 - 5, CVAEH outperforms CVAE in HT09 and SFHH;
whereas we observe the opposite in the other datasets. This
is because the samples (member-list) in these two datasets

are correlated in time, while those in the others are not. As
the CVAEH model uses the history vector hi to take ac-
count of the temporal effect, it performs better when the
data are time-correlated. Conversely, if the data are time-
independent, the history vector hi may introduce noise,
making the CVAEH model less effective than the CVAE
model. In Fig. 4, we plot the correlograms for the datasets.
The horizontal axis is the time difference (window size); the
vertical bars are the autocorrelations; the correlation bands
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Model Enron HT09 SFHH Meetup-NYC Meetup-CA
H@10 H@20 H@10 H@20 H@10 H@20 H@10 H@20 H@10 H@20

CN 0.318 0.422 0.054 0.084 0.009 0.030 0.123 0.200 0.159 0.358
JI 0.531 0.603 0.264 0.380 0.204 0.231 0.215 0.300 0.332 0.487
AA 0.202 0.357 0.054 0.092 0.015 0.027 0.179 0.242 0.224 0.379
PA 0.078 0.129 0.008 0.038 0.009 0.045 0.099 0.141 0.043 0.095
Katz β 0.150 0.307 0.016 0.046 0.021 0.051 0.267 0.352 0.336 0.478
Node2Vec 0.469 0.565 0.067 0.089 0.024 0.039 0.184 0.271 0.362 0.509
CTDNE 0.641 0.719 0.194 0.358 0.195 0.195 0.294 0.379 0.293 0.440
HTNE 0.698 0.775 0.318 0.412 0.006 0.021 0.222 0.314 0.345 0.517
metapath2vec 0.562 0.734 0.515 0.574 0.497 0.572 0.410 0.500 0.418 0.608
HERec 0.141 0.231 0.089 0.092 0.063 0.120 0.209 0.272 0.142 0.228
NMF 0.579 0.820 0.429 0.482 0.222 0.311 0.233 0.332 0.293 0.461
SVD 0.700 0.782 0.434 0.520 0.269 0.362 0.258 0.357 0.315 0.470
one-hot MLP 0.751 0.826 0.488 0.536 0.042 0.120 0.278 0.372 0.284 0.517
set2vec MLP 0.737 0.837 0.474 0.531 0.030 0.072 0.274 0.352 0.306 0.448
set2vec BPR 0.727 0.818 0.488 0.585 0.153 0.344 0.274 0.368 0.323 0.500
DGI 0.643 0.739 0.173 0.280 0.290 0.437 0.200 0.242 0.203 0.336
CVAE 0.757 0.835 0.501 0.571 0.066 0.093 0.287 0.381 0.332 0.522
CVAEH 0.706 0.796 0.768 0.873 0.512 0.743 0.220 0.332 0.181 0.349

Table 4: Group recommendation hit rates. The highest and the second highest hit rates are bold

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

CN 0.135 0.143 0.020 0.022 0.005 0.006 0.052 0.057 0.071 0.083
JI 0.264 0.269 0.114 0.122 0.066 0.069 0.132 0.138 0.196 0.208
AA 0.062 0.073 0.013 0.015 0.007 0.009 0.077 0.081 0.084 0.094
PA 0.019 0.023 0.003 0.005 0.000 0.000 0.005 0.007 0.011 0.014
Katz β 0.050 0.061 0.005 0.007 0.010 0.012 0.109 0.115 0.162 0.171
Node2Vec 0.184 0.191 0.015 0.017 0.013 0.014 0.089 0.095 0.179 0.188
CTDNE 0.320 0.326 0.069 0.081 0.115 0.115 0.160 0.166 0.125 0.135
HTNE 0.360 0.366 0.176 0.182 0.001 0.002 0.100 0.106 0.123 0.134
metapath2vec 0.298 0.310 0.347 0.351 0.296 0.301 0.242 0.249 0.192 0.205
HERec 0.069 0.075 0.024 0.025 0.025 0.029 0.124 0.130 0.062 0.069
NMF 0.317 0.330 0.411 0.421 0.184 0.188 0.145 0.152 0.120 0.131
SVD 0.430 0.438 0.382 0.387 0.164 0.178 0.146 0.155 0.141 0.149
one-hot MLP 0.467 0.472 0.392 0.395 0.017 0.022 0.153 0.160 0.103 0.120
set2vec MLP 0.457 0.464 0.393 0.397 0.010 0.013 0.167 0.172 0.115 0.125
set2vec BPR 0.419 0.425 0.379 0.386 0.111 0.127 0.154 0.160 0.143 0.155
DGI 0.403 0.409 0.027 0.034 0.095 0.096 0.125 0.128 0.077 0.086
CVAE 0.472 0.478 0.403 0.407 0.025 0.026 0.161 0.168 0.132 0.145
CVAEH 0.389 0.395 0.537 0.545 0.258 0.275 0.124 0.132 0.073 0.085

Table 5: Group recommendation mean reciprocal ranks (MRR). The highest and the second highest MRR scores are bold.

indicate the 90% confidence interval. The plots (the middle
two) suggest that the samples in HT09 and SFHH are corre-
lated in ∼ 2 steps; while the samples in the other datasets
are time independent. In fact, the optimal performance is
achieved using a window size of 2 to calculate the history
vector hi for CVAEH.

Case study: Enron email member composition In this
experiment we investigate why particular individuals may
be included in an email thread, based upon their relation-
ship with other individuals also receiving the email. Given
that an individual vob is in a group gi, is there a way to

auto-detect the key members that lead to the inclusion of
vob in an email? Our modeling framework is well suited for
this task. Recall that in group-recommendation, our model
provides a probability P (v|vob), v ∈ G. We therefore con-
sider the group gi and identify a group of ”influencers”
{v|P (v|vob) ≥ c, v ∈ gi}, where c is a threshold. In particu-
lar, we apply this analysis to the Enron dataset and examine
the relationship between vob’s job title and the influenecers’
job title (Klimt and Yang 2004). Here we use a threshold
c = 0.1.

In Fig. 5, we plot a bar chart showing the composition of
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(a) Enron (b) HT09 (c) SFHH (d) Meetup-nyc

Figure 4: Correlograms for the samples in the datasets. The horizontal axis is the time difference; the vertical bars (light blue)
are the autocorrelations; the correlation bands (dark blue) indicate the 90% confidence interval. Note, as the correlograms for
Meetup-NYC and Meetup-CA are very similar, we only show the one for Meetup-NYC.

Figure 5: Case study: Ernon email member composition.
The color bars indicate the percent composition of critical
members (”influencers”) grouped by job titles.

the influencers for vob (vertical axis) based on her job titles.
The horizontal axis indicates the percent composition of in-
fluencers’ job titles. Moving up the hierarchy, the blue bars
shorten, indicating that regular employees are less likely to
influence the higher level management people. A similar
trend can be observed for the director/manager (purple bars).
Conversely, the yellow bars lengthen, indicating that pres-
idents become more and more important to the people on
the top. We also see that regular employees primarily join
a conversation because their coworkers or managers are in
it. The green bars are long for all roles, suggesting that vice
presidents are generally influential. If vob is a president, she
would primarily join a group involving other management
people. Lastly, we can see that a CEO is in an email mainly
because the presidents or vice presidents are in it. Overall,
our model reveals that the individual-influencer relationship
obeys the hierarchical structure of the company.

Conclusions
In this work, we proposed a new problem - group link pre-
diction. Unlike the traditional link prediction which predicts
the link between two individuals, our task was to predict
the link between an individual and a group. We decom-
pose the problem into member-recommendation and group-
recommendation tasks. To solve these two tasks, we pro-

posed a CVAE model and a CVAEH model that takes ac-
count of the historical events. The models learned a condi-
tional probability distribution over the unobserved members
given the observed ones. We compared our model with a se-
ries of competing methods over five real-world datasets. Our
CVAEH model shows superior performance for the datasets
where the group organizations are correlated in time; while
our CVAE model are better in the other cases.
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Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.; and Van
den Broeck, W. 2011. What’s in a Crowd? Analysis of Face-
to-Face Behavioral Networks. Journal of Theoretical Biology
271(1): 166–180.

Ivanov, O.; Figurnov, M.; and Vetrov, D. 2019. Variational Au-
toencoder with Arbitrary Conditioning. In ICLR ’19.

Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Varia-
tional Bayes. In ICLR ’14.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In ICLR.

Klimt, B.; and Yang, Y. 2004. The Enron Corpus: A New
Dataset for Email Classification Research. Lecture Notes in
Artificial Intelligence (Subseries of Lecture Notes in Computer
Science) 3201: 217–226.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42(8): 30–
37. ISSN 0018-9162.

Lao, N.; and Cohen, W. W. 2010. Relational retrieval using
a combination of path-constrained random walks. Machine
Learning 81: 53–67.

Lei, C.; and Ruan, J. 2012. A novel link prediction algorithm for
reconstructing protein–protein interaction networks by topolog-
ical similarity. Bioinformatics 29(3): 355–364.

Li, J.; Dani, H.; Hu, X.; Tang, J.; Chang, Y.; and Liu, H. 2017.
Attributed Network Embedding for Learning in a Dynamic En-
vironment. In CIKM ’17.

Liben-Nowell, D.; and Kleinberg, J. 2003. The Link Prediction
Problem for Social Networks. In CIKM ’03.

Liu, X.; Tian, Y.; Ye, M.; and Lee, W.-C. 2012. Exploring Per-
sonal Impact for Group Recommendation. In CIKM ’12.
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