
MILE: A Multi-Level Framework for Scalable Graph Embedding

Jiongqian Liang ∗†, Saket Gurukar *, Srinivasan Parthasarathy
Department of Computer Science and Engineering, The Ohio State University

liang.420@osu.edu, gurukar.1@osu.edu, srini@cse.ohio-state.edu

Abstract

Recently there has been a surge of interest in designing graph
embedding methods. Few, if any, can scale to a large-sized
graph with millions of nodes due to both computational com-
plexity and memory requirements. In this paper, we relax
this limitation by introducing the MultI-Level Embedding
(MILE) framework – a generic methodology allowing con-
temporary graph embedding methods to scale to large graphs.
MILE repeatedly coarsens the graph into smaller ones using
a hybrid matching technique to maintain the backbone struc-
ture of the graph. It then applies existing embedding meth-
ods on the coarsest graph and refines the embeddings to the
original graph through a graph convolution neural network
that it learns. The proposed MILE framework is agnostic to
the underlying graph embedding techniques and can be ap-
plied to many existing graph embedding methods without
modifying them. We employ our framework on several popu-
lar graph embedding techniques and conduct embedding for
real-world graphs. Experimental results on five large-scale
datasets demonstrate that MILE significantly boosts the speed
(order of magnitude) of graph embedding while generating
embeddings of better quality, for the task of node classifi-
cation. MILE can comfortably scale to a graph with 9 mil-
lion nodes and 40 million edges, on which existing methods
run out of memory or take too long to compute on a modern
workstation. Our code and data are publicly available with de-
tailed instructions for adding new base embedding methods:
https://github.com/jiongqian/MILE.

Introduction
In recent years, network embedding has attracted much in-
terest due to its broad applicability for a range of tasks such
as social influence prediction (Qiu et al. 2018b), network
role discovery(Rossi and Ahmed 2014), and social recom-
mender systems (Wu et al. 2018). While these new embed-
ding methods often offer a competitive qualitative advan-
tage over traditional approaches, many of them do not scale
to large datasets (e.g., graphs with over 1 million nodes)
since they are computationally expensive and often mem-
ory intensive. For example, random-walk-based embedding
techniques such as DeepWalk (Perozzi, Al-Rfou, and Skiena
∗Equal contribution
†Now at Google

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2014) and Node2Vec (Grover and Leskovec 2016), require
a large amount of CPU time to generate a sufficient number
of walks and train the embedding model. It takes over 10
hours for a single machine to achieve quality embeddings on
a graph with a million nodes using such methods. To the best
of our knowledge, none of the existing efforts examines how
to scale up graph embedding in a generic way. We make the
first attempt to close this gap. We are also interested in the
related question of whether the quality of such embeddings
can be improved along the way. Specifically, we ask:

1. Can we scale up the existing embedding techniques in an
agnostic manner so that they can be directly applied to
larger datasets?

2. Can the quality of such embedding methods be strength-
ened by incorporating the holistic view of the graph?

To tackle these problems, we propose a MultI-Level
Embedding (MILE) framework for graph embedding. Our
approach relies on a three-step process: first, we repeatedly
coarsen the original graph into smaller ones by employing
a hybrid matching strategy; second, we compute the em-
beddings on the coarsest graph using an existing embed-
ding technique - note that graph embedding on the coarsest
graph is inexpensive to compute and utilizes far less mem-
ory, and moreover intuitively can capture the global structure
of the original graph (Karypis and Kumar 1998b; Satuluri
and Parthasarathy 2009); and third, we propose a novel re-
finement model based on learning a graph convolution net-
work to refine the embeddings from the coarsest graph to
the original graph – learning a graph convolution network
allows us to attain a refinement procedure that levers the de-
pendencies inherent to the graph structure and the embed-
ding method of choice. To summarize, we find:

• MILE is generalizable: Our MILE framework is agnostic
to the underlying graph embedding techniques and treats
them as black boxes.

• MILE is scalable: MILE can significantly improve the
scalability of the embedding methods (up to 30-fold), by
reducing the running time and memory consumption.

• MILE generates high-quality embeddings: In many cases,
we find that the quality of embeddings improves by lever-
ing MILE (in some cases is in excess of 10%).

Proceedings of the Fifteenth International AAAI Conference on Web and Social Media (ICWSM 2021)

361

Related Work
Network Embedding: Many techniques for graph or net-
work embedding have been proposed in recent years. Deep-
Walk and Node2Vec generate truncated random walks on
graphs and apply the Skip Gram by treating the walks as
sentences (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016). LINE learns the node embeddings by pre-
serving the first-order and second-order proximities (Tang
et al. 2015). Following LINE, SDNE leverages deep neural
networks to capture the highly non-linear structure (Wang,
Cui, and Zhu 2016). Other methods construct a partic-
ular objective matrix and use matrix factorization tech-
niques to generate embeddings, e.g., GraRep (Cao, Lu,
and Xu 2015) and NetMF (Qiu et al. 2018a). This also
led to the proliferation of network embedding methods for
information-rich graphs, including heterogeneous informa-
tion networks (Chang et al. 2015; Dong et al. 2017) and at-
tributed graphs (Liang et al. 2018; Kipf and Welling 2017).

There are very few efforts, focusing on the scalability of
network embedding (Yang et al. 2017; Huang, Li, and Hu
2017). First, such efforts are specific to a particular embed-
ding strategy and do not generalize. Second, the scalabil-
ity of such efforts is limited to moderately sized datasets.
Finally, and notably, these efforts at scalability are actually
orthogonal to our strategy and can potentially be employed
along with our efforts to afford even greater speedup.

The closest work to this paper is HARP (Chen et al. 2018),
which proposes a hierarchical paradigm for graph embed-
ding based on iterative learning methods (e.g., DeepWalk
and Node2Vec). However, HARP focuses on improving the
quality of embeddings by using the learned embeddings
from the previous level as the initialized embeddings for the
next level, which introduces a huge computational overhead.
Moreover, it is not immediately obvious how a HARP like a
methodology would be extended to other graph embedding
techniques (e.g., GraRep and NetMF) in an agnostic man-
ner since such an approach would necessarily require one
to modify the embedding methods to preset their initialized
embeddings. In this paper, we focus on designing a general-
purpose framework to scale up embedding methods treating
them as black boxes.
Multi-level Community Detection: The multi-level ap-
proach has been widely studied for efficient commu-
nity detection (Karypis and Kumar 1998b; Satuluri and
Parthasarathy 2009; Dhillon, Guan, and Kulis 2007; Ruan
et al. 2015). The key idea of these multi-level algorithms is
to coarsen the original graph into a much smaller one, which
is then partitioned into clusters. The partitions are then re-
covered from the coarse-grained graph to the original graph
in a recursive manner. While our framework shares some
ideas at a conceptual level with such efforts, the objectives
are distinct in that we focus on graph embeddings while
these methods work on graph partitioning and community
discovery.

Problem Formulation
Let G = (V,E) be the input graph where V and E are re-
spectively the node set and edge set. Let A be the adjacency

Coarsening Refining

Base Embedding ℰ"

Input graph 𝒢$

𝒢%

𝒢"

Final Embedding ℰ$

ℰ%

Figure 1: An overview of the multi-level embedding frame-
work

Symbol Definition
Gi the graph after i iterations of coarsening
Vi, Ei vertex set, edge set of Gi
Ai, Di the adjacency and degree matrix of Gi
d dimensionality of the embeddings
m the total number of coarsening levels
f(·) the base embedding method applicable on Gi
Ei the embeddings of nodes in Gi
Mi,i+1 the matching matrix from Gi to Gi+1

R(·) the embeddings refinement model
l # layers in the graph convolution network

Table 1: The table of notations.

matrix of the graph and we assume G is undirected, though
our problem can be easily extended (Chung 2005; Gleich
2006; Satuluri and Parthasarathy 2009) to a directed graph.
Table 1 shows the table of notations. We first define graph
embedding:

Definition 1 Graph Embedding Given a graph G = (V,E)
and a dimensionality d (d� |V |), the problem of graph em-
bedding is to learn a d-dimension vector representation for
each node in G so that graph properties are best preserved.

Following this, a graph embedding method is essentially a
mapping function f : R|V |×|V | 7→ R|V |×d, whose input is
the adjacency matrix A (or G) and output is a lower dimen-
sion matrix. Motivated by the fact that the majority of graph
embedding methods cannot scale to large datasets, we seek
to speed up existing graph embedding methods without sac-
rificing quality. We formulate the problem as:

Given a graph G = (V,E) and a graph embedding
method f(·), we aim to realize a strengthened graph em-
bedding method f̂(·) so that it is more scalable than f(·)
while generating embeddings of comparable or even better
quality.

Methodology
The MILE framework comprises three phases: graph coars-
ening, base embedding, and refinement (see Figure 1), de-
scribed next.

362

A

B C

D E

1 1

1 1

1

A

B C

DE

2

1 1

1

1
4 ∗ 2

1
4 ∗ 2

A

B C

DE
2

4 ∗ 2

1
2 ∗ 2

SEM Normalization
A

DE

BC

2

2

2

NHEM

(a) Using SEM and NHEM for graph coarsening
A BC DE

A
B
C
D
E

𝐴" = 𝑀%,"
' 𝐴%𝑀%," =

0 2 2
2 2 0
2 0 0

A B C D E

(b) Adjacency matrix and matching matrix

Figure 2: Toy example for illustrating graph coarsening.
(a) shows the process of applying Structural Equivalence
Matching (SEM) and Normalized Heavy Edge Matching
(NHEM) for graph coarsening. (b) presents the adjacency
matrix A0 of the input graph, the matching matrix M0,1

corresponding to the SEM and NHEM matchings, and the
derivation of the adjacency matrixA1 of the coarsened graph
using Eq. 2.

Graph Coarsening
In this phase, the input graph G (or G0) is repeatedly coars-
ened into a series of smaller graphs G1, G2, ..., Gm such that
|V0| > |V1| > ... > |Vm|. In order to coarsen a graph from
Gi to Gi+1, multiple nodes in Gi are collapsed to form super-
nodes in Gi+1, and the edges incident on a super-node are the
union of the edges on the original nodes in Gi. Here the set
of nodes forming a super-node is called a matching. We pro-
pose a hybrid matching technique containing two matching
strategies that can efficiently coarsen the graph while retain-
ing the global structure. A toy example is shared in Figure 2.
Structural Equivalence Matching (SEM) : Given two ver-
tices u and v in an unweighted graph G, we call they are
structurally equivalent if they are incident on the same set of
neighborhoods. In figure 2a, node D and E are structurally
equivalent. The intuition of matching structually equiva-
lent nodes is that if two vertices are structurally equivalent,
then their node embeddings will be similar. The novel SEM
method – though dependent on graph structure – is highly
effective on the real world datasets. Empirically, we found
5-20% of nodes to be structurally equivalent in many real
world datasets. For example, during the first level of coars-
ening, YouTube has 172,906 nodes (or 86,453 pairs) out of
1,134,890 nodes that are found to be SEM (around 15%);
Yelp has 875,236 nodes (or 437,618 pairs) out of 8,938,630
nodes are SEM (around 10%). Note that even more nodes
are involved in SEM across iterations, as SEM is run itera-
tively at each coarsening level.
Normalized Heavy Edge Matching (NHEM) : Heavy edge
matching is a popular matching method for graph coarsen-
ing (Karypis and Kumar 1998b). We select an unmatched

node, say u, in the graph and find a large weighted edge
(u, v) incident on node u such that node v is also unmatched.
We then collapse nodes u and v into one super-node and
mark them as matched. We repeat the matching process un-
til there are no unmatched nodes or an unmatched node does
not have an unmatched neighbor node. In this paper, we pro-
pose to normalize the edge weights when applying heavy
edge matching using the formula as follows

Wi(u, v) =
Ai(u, v)√

Di(u, u) ·Di(v, v)
. (1)

Here, the weight of an edge is normalized by the degree of
the two vertices on which the edge is incident. Intuitively, it
penalizes the weights of edges connected with high-degree
nodes. We will show later that this normalization is tightly
connected with the graph convolution kernel.
Hybrid Matching Method : We use a hybrid of two match-
ing methods above for graph coarsening. To construct Gi+1

from Gi, we first find out all the structural equivalence
matching (SEM)M1, where Gi is treated as an unweighted
graph. This is followed by the searching of the normalized
heavy edge matching (NHEM) M2 on Gi. Nodes in each
matching are then collapsed into a super-node in Gi+1. Note
that some nodes might not be matched at all and they will be
directly copied to Gi+1.

Formally, we build the adjacency matrix Ai+1 of Gi+1

through matrix operations. To this end, we define the match-
ing matrix storing the matching information from graph Gi
to Gi+1 as a binary matrix Mi,i+1 ∈ {0, 1}|Vi|×|Vi+1|. The
r-th row and c-th column of Mi,i+1 is set to 1 if node r in
Gi will be collapsed to super-node c in Gi+1, and is set to 0
if otherwise. Each column of Mi,i+1 represents a matching
with the 1s representing the nodes in it. Each unmatched ver-
tex appears as an individual column in Mi,i+1 with merely
one entry set to 1. Following this formulation, we construct
the adjacency matrix of Gi+1 by using

Ai+1 = MT
i,i+1AiMi,i+1. (2)

Algorithm 1 summarizes the steps of graph coarsening.
For each iteration of coarsening, SEM is generated followed
by NHEM (line 2-9). A key part of NHEM is to visit the ver-
tices in ascending order of the number of neighbors (line 5).
This is important to ensure that a large fraction of vertices
can be matched in each step, and the graph can be coars-
ened significantly. Intuitively, vertices with a small number
of neighbors have a limited choice of finding a match and
should be given a higher priority for matching (otherwise,
once their neighbors are matched by others, these vertices
cannot be matched).
Key Intuitions: The graph coarsening phase significantly
reduces the size of graph while maintaining the clustering
structure and backbone of the original graph. The coarsen-
ing phase also potentially exposes the global structure of
the graph to the base embedding method that it otherwise
might not take into account thereby offering a potential ef-
ficacy gain (up to a point). This efficacy gain has also been
observed elsewhere, in the context of stochastic flow algo-
rithms (Satuluri and Parthasarathy 2009). Note that stochas-

363

Algorithm 1 Graph Coarsening Algorithm

Input: An input graph G0 = (V0, E0), and coarsening levels m.
Output: Coarsened graphs Gi+1 and Mi,i+1 for 0 ≤ i ≤ m− 1.

1: for i = 1...m do
2: M1 ← all the structural equivalence matching in Gi−1.
3: Mark vertices inM1 as matched.
4: M2 = ∅. . storing normalized heavy edge matching
5: Sort Vi−1 by the number of neighbors in ascending order.
6: for v ∈ Vi−1 do
7: if v and u are not matched and u ∈ Neighbors(v) then
8: (v, u) ← the normalized heavy edge matching for

v.
9: M2 =M2 ∪ (v, u), and mark both as matched.

10: end if
11: end for
12: Compute matching matrix Mi−1,i based onM1 andM2.
13: Derive the adjacency matrix Ai for Gi using Eq. 2.
14: end for
15: Return Gi+1 and Mi,i+1 for 0 ≤ i ≤ m− 1.

tic flow algorithms share some common mathematical ab-
straction to several graph embedding methods (Perozzi, Al-
Rfou, and Skiena 2014; Grover and Leskovec 2016; Qiu
et al. 2018a). The embeddings learned by base embedding
method on the coarsened graph can act as an effective ini-
tialization for the graph-topology aware refinement model.
Choice for Coarsening Level: Similar to other multi-level
frameworks, such as graph partitioning (Karypis and Ku-
mar 1998a,b; Satuluri and Parthasarathy 2009) and visu-
alization (Harel and Koren 2000), the choice of coarsen-
ing level depends on the application domain and the graph
properties. However, we found a small number of coars-
ening levels (from 2 to 4) usually yields the best-quality
embeddings with decent speedup when the graph is of
medium size (#nodes < 1, 000, 000). For larger graph
(#nodes > 1, 000, 000), the embeddings tend to remain
constantly high-quality even with coarsening levels from 6
to 8 while speedup increases even more. We defer our de-
tailed discussion on this to the experiments section.

Base Embedding on Coarsened Graph
The size of the graph reduces drastically after each iteration
of coarsening, halving the size of the graph in the best case.
We coarsen the graph for m iterations and apply the graph
embedding method f (·) on the coarsest graph Gm. Denoting
the embeddings on Gm as Em, we have Em = f(Gm). Since
our framework is agnostic to the adopted graph embedding
method, we can use any graph embedding algorithm for base
embedding.

Refinement of Embeddings
The final phase of MILE is the embedding refinement. Given
a series of coarsened graph G0,G1,G2, ...,Gm, their corre-
sponding matching matrixM0,1,M1,2, ...,Mm−1,m, and the
node embeddings Em on Gm, we seek to develop an ap-
proach to derive the node embeddings of G0 from Gm. To
this end, we first study an easier subtask: given a graph Gi,

Figure 3: Architecture of the embedding refinement model

its coarsened graph Gi+1, the matching matrix Mi,i+1 and
the node embeddings Ei+1 on Gi+1, how to infer the embed-
dings Ei on graph Gi. Once we solved this subtask, we can
then iteratively apply the technique on each pair of consec-
utive graphs from Gm to G0 and eventually derive the node
embeddings on G0. In this work, we propose to use a graph-
based neural network model to perform embedding refine-
ment.
Graph Convolution Network for Refinement Learning :
Since we know the matching information between the two
consecutive graphs Gi and Gi+1, we can easily project the
node embeddings from the coarse-grained graph Gi+1 to the
fine-grained graph Gi using

Epi = Mi,i+1Ei+1 (3)

In this case, embedding of a super-node is directly copied
to its original node(s). We call Epi the projected embed-
dings from Gi+1 to Gi, or simply projected embeddings with-
out ambiguity. While this way of simple projection main-
tains some information of node embeddings, it has an obvi-
ous limitation that nodes will share the same embeddings if
they are matched and collapsed into a super-node during the
coarsening phase. This problem will be more serious when
the embedding refinement is performed iteratively from Gm,
..., G0. To address this issue, we propose to learn a graph
convolution network (GCN) for embedding refinement (Kipf
and Welling 2017). Specifically, we design a graph-based
neural network model Ei = R(Epi , Ai), which derives the
embeddings Ei on graph Gi based on the projected embed-
dings Epi (from the base method) and the graph adjacency
matrix Ai (from the input graph).

Given graph G with adjacency matrix A, we consider
the fast approximation of graph convolution from (Kipf and
Welling 2017). The k-th layer of this neural network model
is

H(k)(X,A) = σ
(
D̃−

1
2 ÃD̃−

1
2H(k−1)(X,A)Θ(k)

)
(4)

where σ(·) is an activation function, Θ(k) is a layer-specific
trainable weight matrix, and H(0)(X,A) = X . In this pa-
per, we define our embedding refinement model as a l-layer
graph convolution model

Ei = R (Epi , Ai) ≡ H(l) (Epi , Ai) . (5)

364

The architecture of the refinement model is shown in Fig-
ure 3. The intuition behind this refinement model is to inte-
grate the structural information of the current graph Gi into
the projected embedding Epi by repeatedly performing the
spectral graph convolution. Each layer of graph convolution
network in Eq. 4 can be regarded as one iteration of embed-
ding propagation in the graph following the re-normalized
adjacency matrix D̃−

1
2 ÃD̃−

1
2 . Note that this re-normalized

matrix is well aligned with the way we conduct normalized
heavy edge matching in Eq. 1.
Choice for Number of GCN Layers: The graph convolu-
tion model is often treated as a message passing operator
(Hamilton, Ying, and Leskovec 2017) with the number of
layers corresponding to the number of hops in the graph. In
other words, l GCN layers correspond to aggregating struc-
tural information from all the l-hop neighbours for each
node. On the one hand, we want l to be larger than 1 so
that node embeddings can reflect connectivity structure be-
yond immediate neighbors. On the other hand, we also do
not want too large an l as it will make the node embeddings
homogeneous and less distinguishable across the graph due
to the small-world property of real-world graphs. Similar to
existing literature (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Veličković, Cucurull et al. 2017) we
find that setting l to 2 worked best in practice.

Intricacies of Refinement Learning : The learning of the
refinement model is essentially learning Θ(k) for each k ∈
[1, l] according to Eq. 4. Here we study how to design the
learning task and construct the loss function. Since the graph
convolution model H(l)(·) aims to predict the embeddings
Ei on graph Gi, we can directly run a base embedding on
Gi to generate the “ground-truth” embeddings and use the
difference between these embeddings and the predicted ones
as the loss function for training. We propose to learn Θ(k)

on the coarsest graph and reuse them across all the levels
for refinement. Specifically, we can define the loss function
as the mean square error as follows

L =
1

|Vm|

∥∥∥Em −H(l)(Mm,m+1Em+1, Am)
∥∥∥2 . (6)

We refer to the learning task associated with the above
loss function as double-base embedding learning. We point
out, however, there are two key drawbacks to this method.
First of all, the above loss function requires one more level of
coarsening to construct Gm+1 and an extra base embedding
on Gm+1. These two steps, especially the latter, introduce
non-negligible overheads to the MILE framework. More im-
portantly, Em might not be a desirable “ground truth” for
the refined embeddings. This is because most of the embed-
ding methods are invariant to an orthogonal transformation
of the embeddings, i.e., the embeddings can be rotated by an
arbitrary orthogonal matrix (Hamilton, Ying, and Leskovec
2017). In other words, the embedding spaces of graph Gm
and Gm+1 can be totally different since the two base em-
beddings are learned independently. Even if we follow the
paradigm in (Chen et al. 2018) and conduct base embedding
on Gm using the simple projected embeddings from Gm+1

Algorithm 2 Multi-Level Algorithm for Graph Embedding

Input: An input graph G0 = (V0, E0), # coarsening levels m, and
a base embedding method f(·).
Output: Graph embeddings E0 on G0.

1: Coarsen G0 into G1,G2, ...,Gm using proposed hybrid match-
ing method.

2: Perform base embedding on the coarsest graph Gm (See Sec-
tion.).

3: Learn the weights Θ(k) using the loss function in Eq. 7.
4: for i = (m− 1)...0 do
5: Compute the projected embeddings Epi on Gi.
6: Use Eq. 4 and Eq. 5 to compute refined embeddings Ei.
7: end for
8: Return graph embeddings E0 on G0.

(Epm) as initialization, the embedding space does not natu-
rally generalize and can drift during re-training. One possi-
ble solution is to use an alignment procedure to force the
embeddings to be aligned between the two graphs (Hamil-
ton, Leskovec, and Jurafsky 2016). But it could be very ex-
pensive.

In this paper, we propose a very simple method to address
the above issues. Instead of conducting an additional level of
coarsening, we construct a dummy coarsened graph by sim-
ply copying Gm, i.e., Mm,m+1 = I and Gm+1 = Gm. By
doing this, we not only reduce one iteration of graph coars-
ening, but also avoid performing base embedding on Gm+1

simply because Em+1 = Em. Moreover, the embeddings of
Gm and Gm+1 are guaranteed to be in the same space in this
case without any drift. With this strategy, we change the loss
function for model learning as follows

L =
1

|Vm|

∥∥∥Em −H(l)(Em, Am)
∥∥∥2 . (7)

We minimize the difference between the generated em-
beddings and the embeddings generated from the refine-
ment model (GCN based) so that the learnt refinement model
could then be levered to generate embeddings in other coars-
ening levels. With the above loss function, we adopt gradient
descent with back-propagation to learn the parameters Θ(k),
k ∈ [1, l]. In the subsequent refinement steps, we apply the
same set of parameters Θ(k) to infer the refined embeddings.
We point out that the training of the refinement model is
rather efficient as it is done on the coarsest graph. The em-
bedding refinement process involves merely sparse matrix
multiplications using Eq. 5 and is relatively affordable com-
pared to conducting embedding on the original graph. With
these different components, we summarize the whole algo-
rithm of our MILE framework in Algorithm 2.
Discussion on Reusing Θ(k) Across All Levels: Similar to
GCN, Θ(k) is a matrix of filter parameters and is of size
d ∗ d (where d is the embedding dimensionality). Eq. 4 de-
fines how the embeddings are propagated during embed-
ding refinements, parameterized by Θ(k) . Intuitively, Θ(k)

defines how different embedding dimensions interact with
each other during the embedding propagation. This interac-
tion is dependent on graph structure and base embedding

365

Dataset # Nodes # Edges # Classes
PPI 3,852 38,705 50

Blog 10,312 333,983 39
Flickr 80,513 5,899,882 195

YouTube 1,134,890 2,987,624 47
Yelp 8,938,630 39,821,123 22

Table 2: Dataset Information

method, which can be learned from the coarsest level. Ide-
ally, we would like to learn this parameter Θ(k) on consecu-
tive levels. But this is not practical since this could be expen-
sive as the graph gets more fine-grained (and defeat our pur-
pose of scaling up graph embedding). This trick of “sharing”
parameters across different levels is the trade-off between
efficiency and effectiveness. To some extent, it is similar to
GCN (Kipf and Welling 2017), where the authors share the
same filter parameters Θ(k) over the whole graph (as op-
posed to using different Θ(k) for different nodes; see Eq (6)
and (7) in(Kipf and Welling 2017)). Moreover, we empiri-
cally found this works well and is much more efficient. As
we will reveal in the Experiments section, the shared Θ(k)

values do much better than alternative Θ(k) choices during
refinement (see Table 4).

Intuition and Rationale of Embedding Refinements: Re-
fining the embeddings from a coarsened graph to its fine-
grained graph boils down to two steps: a) projecting the node
embeddings back to fine-grained graph based on correspon-
dence matching; and b) propagating the projected embed-
dings locally, adjusting them based on the fine-grained graph
structure. The first step is relatively straightforward through
matrix multiplication (Eq. 3). For the second step, we re-
purpose the GCN model to propagate the node embeddings.
There are mainly two reasons that GCN performs well in
this part. First, the propagation rule in GCN is shown to be
a first-order approximation of the localized spectral filters
on graphs (Kipf and Welling 2017; Defferrard, Bresson, and
Vandergheynst 2016) and as a result, the propagated embed-
dings can capture the local graph structure. Second, GCN
contains learnable Θ(k) and is capable of modeling the inter-
action between different embedding dimensions in the prop-
agation process, as discussed above.

Experiments and Analysis
Datasets: The datasets used in our study (See Table 2)
have seen prior use for evaluating representation learning
methods (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016; Qiu et al. 2018a) and are primarily drawn
from popular social media platforms while one is drawn
from a well curated bioinformatics dataset. We preprocess
the Yelp dataset following a procedure described in (Huang,
Li, and Hu 2017)1.

1Raw data: https://www.yelp.com/dataset challenge/dataset

Base Embedding Methods: To demonstrate that MILE can
work with different graph embedding methods, we explore
several popular methods for graph embedding.

• Random-walk based methods: We select Deep-
Walk (Perozzi, Al-Rfou, and Skiena 2014) and
Node2Vec (Grover and Leskovec 2016) as baseline
methods for this group. We set the length of random
walks as 80, number of walks per node as 10, and context
windows size as 10. In Node2Vec, we set p = 4.0 and
q = 1.0 which we found empirically to generate better
results across all the datasets.

• Edge reconstruction based method: We select
Line (Tang et al. 2015) as it is a representative work in
this group. The number of edge samples is set to 100
million.

• Matrix-factorization based methods : GraRep (Cao, Lu,
and Xu 2015) and NETMF (Qiu et al. 2018a) are two
popular methods in this group. For GraRep, we set k=4.
We varied this parameter but found this value to work well
(also suggested by the original authors (Cao, Lu, and Xu
2015)). For NetMF, we set the window size to 10 and the
rank h to 1024.

• Deep neural network based methods: We lever SDNE
(Wang, Cui, and Zhu 2016) as an exemplar for this group.
We set alpha to 0.2 and beta to 10.0. We varied these pa-
rameters and found these values to work well – these pa-
rameter values also work well in original paper.

• Distributed embedding methods: We compare MILE
against Pytorch-biggraph (Lerer et al. 2019). We set the
parameter negative batch sizes to 500 and set learning rate
to 0.01. We varied these parameters and found these val-
ues to work well – these parameters fall in the suggested
values by the authors (Lerer et al. 2019).

By showing the performance gain of using MILE on top
of these methods, we want to ensure the contribution of this
work is of broad interest to the community. We also want to
reiterate that these methods are quite different in nature.
MILE-specific Settings: For all the above base embedding
methods, we set the embedding dimensionality d as 128.
When applying our MILE framework, we vary the coars-
ening levels m from 1 to 8 whenever possible. For the graph
convolution network model, the self-loop weight λ is set to
0.05, the number of hidden layers l is 2, and tanh(·) is used
as the activation function, the learning rate is set to 0.001 and
the number of training epochs is 200. The Adam Optimizer
is used for model training.
Evaluation Metrics: We evaluate the quality of the embed-
dings through multi-label node classification (Perozzi, Al-
Rfou, and Skiena 2014; Grover and Leskovec 2016) and link
prediction (Gurukar, Vijayan et al. 2019). Specifically, for
node classification, we run a 10-fold cross validation using
the embeddings as features and report the average Micro-F1
and average Macro-F1. For link prediction, we follow the
setup described in (Gurukar, Vijayan et al. 2019). Specifi-
cally, we evaluate the link prediction performance in terms

366

of AUROC on 5-fold cross validation and report the average
AUROC scores.
Running time: We present end-to-end wallclock time for
scalability analysis. For MILE, the reported running time
include the execution time of all the phases, including the
training time of refinement model.
System Specifications: The experiments were conducted on
a machine running Linux with an Intel Xeon E5-2680 CPU
(28 cores, 2.40GHz) and 128 GB of RAM. We implement
our MILE framework in Python. For all the five base em-
bedding methods, we adapt the original code from the au-
thors 2. For SDNE, we lever the publicly available source
code from here (Goyal and Ferrara 2018). We additionally
use the TensorFlow package for the embedding refinement
learning component. We lever the available parallelism (on
28 cores) for each method (e.g., the generation of random
walks in DeepWalk and Node2Vec, the training of the re-
finement model in MILE, etc.).

MILE Framework Performance
We first evaluate the performance of our MILE framework
when applied to different graph embedding methods. The
performance of MILE with various base embedding meth-
ods – on different datasets and different coarsening levels –
for node classification and link prediction is shown in Fig-
ure 4 and Figure 5, respectively.3 We also investigate various
design choices related to MILE in a subsequent section. The
evaluation of various design choices are conducted through
the lens of node classification, but similar results hold for
link prediction. Note that a coarsening level of m=0, cor-
responds to the original embedding method. We make the
following observations:
MILE is scalable. MILE greatly boosts the speed of the ex-
plored embedding methods. In the case of node classifica-
tion, as shown in Figure 4, with a single level of coarsening
(m=1), we are able to achieve speedup ranging from 1.5×
to 3.4× (on PPI, Blog, and Flickr) while improving quali-
tative performance. Larger speedups are typically observed
on GraRep, NetMF, and SDNE. Increasing the coarsening
level m to 2, the speedup increases further (up to 14.4×),
while the quality of the embeddings is comparable with the
original methods reflected by Micro-F1. On YouTube, for
the coarsening levels 6 and 8, we observe more than 10×
speedup for DeepWalk, Node2Vec, Line, and SDNE. The
execution of SDNE method on flickr dataset does not fin-
ish in 2 days, however, the execution of MILE(SDNE) with
coarsen level 8 finishes in less than 1 hour. For NetMF on
YouTube, the speedup is even larger – original NetMF runs
out of memory within 9.5 hours while MILE (NetMF) only
takes around 20 minutes (m = 8). In the case of link pre-
diction, as shown in Figure 5, we observe that an increase
in coarsening level results in a consistent decrease in the

2DeepWalk: https://github.com/phanein/deepwalk;
Node2Vec: http://snap.stanford.edu/node2vec/;
Line: https://github.com/thunlp/OpenNE
GraRep: https://github.com/thunlp/OpenNE;
NetMF: https://github.com/xptree/NetMF

3We discuss the results of Yelp later.

running time of embedding methods. The higher coarsen-
ing levels (m = 7,8) leads to 1.2× to 113× speedup for
all the methods on BlogCatalog and PPI datasets. On Flickr
and YouTube, the running time reduction for all the meth-
ods ranges from 10× to 29× while the quality of the em-
beddings is comparable (or even better) with respect to the
original methods in terms of AUROC score.

Impact of MILE on embedding quality. In the case of
node classification, as shown in Figure 4, for coarsening lev-
elsm = 1 or 2, we observe that MILE learnt embeddings are
almost always better in quality across all the datasets and
methods. Examples include MILE (DeepWalk, m = 1) on
Blog/PPI, MILE (Line, m = 1) on PPI and MILE (NetMF,
m = 1) on PPI/Blog/Flickr. Even with higher number of
coarsening level (m = 2 for PPI/Blog/Flickr; m = 6, 8 for
YouTube), MILE in addition to being much faster can still
improve, qualitatively, over the original methods on most of
the datasets, e.g., MILE (NetMF, m = 2)� NetMF on PPI,
Blog, and Flickr. In the case of link prediction, as shown in
Figure 5, we observe that the increase in coarsening level re-
sults in a corresponding increase in AUROC scores in most
of the cases. For Node2vec, LINE and NetMF, with a single
level of coarsening (m=1), we see improvement in AUROC
from 3% to 10% on PPI and BlogCatalog datasets. With
higher coarsening levels (m=7, 8), we see a consistent im-
provement in AUROC from 1.4% to 10.7% for Node2vec,
LINE, NetMF and GraRep methods on Flickr and YouTube
datasets. For SDNE, on Blog and YouTube dataset, the link
prediction performance across coarsening levels 2-5 remains
competitive with original SDNE method. We observe a 2x-
15x speed in this range, consistent with other methods that
use MILE. As discussed when describing the key intuitions
underpinning the coarsening-refinement strategy that MILE
employs (in Section), the observed improvement on quality
– for both node classification and link prediction – is likely
due to the fact that the base embedding methods are exposed
to a holistic view of the entire graph. This observation is
consistent with those observed for stochastic flow clustering
(Satuluri and Parthasarathy 2009).

MILE supports multiple embedding methods. We empir-
ically show that MILE can work with different category of
embedding methods on multiple real world datasets. We ob-
serve that MILE often improves both the quality and the effi-
ciency of NetMF on all four datasets (for YouTube, NetMF
runs out of memory). For the largest dataset, the speedups
afforded exceed 30-fold. We observe that for GraRep, while
speedups with MILE are consistently observed, the quali-
tative improvements if any, are smaller (for both YouTube
and Flickr, the base method runs out of memory). For Line,
even though its time complexity is linear to the number
of edges (Tang et al. 2015), applying MILE framework on
top of it still generates significant speed-up (likely due to
the fact that the complexity of Line contains a larger con-
stant factor k than MILE). On the other hand, MILE on
top of Line generates better quality of embeddings on PPI
and YouTube while falling a bit short on Blog and Flickr.
For DeepWalk and Node2Vec, we again observe consis-
tent improvements in scalability (up to 11-fold on the larger

367

(a) PPI (Micro-F1) (b) Blog (Micro-F1) (c) Flickr (Micro-F1) (d) YouTube (Micro-F1)

(e) PPI (Time) (f) Blog (Time) (g) Flickr (Time) (h) YouTube (Time)

Figure 4: Changes in the node classification performance as the number of coarsening levels in MILE increases (best viewed
in color). Micro-F1 and running-time are reported in the first and second row respectively. Running time in minutes is shown
in the logarithm scale. Note that # level = 0 represents the original embedding method without using MILE. Lines/points are
missing for algorithms that use over 128 GB of RAM.

(a) PPI (AUROC) (b) Blog (AUROC) (c) Flickr (AUROC) (d) YouTube (AUROC)

(e) PPI (Time) (f) Blog (Time) (g) Flickr (Time) (h) YouTube (Time)

Figure 5: Changes in the link prediction performance as the number of coarsening levels in MILE increases. AUROC and
running-time are reported in the first and second row respectively. Running time in minutes is shown in the logarithm scale.
Note that # level = 0 represents the original embedding method without using MILE.

368

datasets) on the node classification task using MILE with
a few levels of coarsening. However, when the coarsening
level is increased, the additional speedup afforded (up to
17-fold) comes at a mixed cost to quality (micro-F1 drops
slightly). We observe similar trends – improvements in em-
bedding quality and reduction in the running time – in the
case of link prediction experiments.
Impact of varying coarsening levels on MILE. In the case
of node classification, as shown in Figure 4, when coars-
ening level m is small (m = 1 or 2), MILE tends to sig-
nificantly improve the quality of embeddings while taking
much less time. From m = 0 to m = 1, we see a clear
jump of the Micro-F1 score on all the datasets across the
base embedding methods. This observation is more evi-
dent on larger datasets (Flickr and YouTube). On YouTube,
MILE (DeepWalk) with m=1 increases the Micro-F1 score
by 5.3% while only consuming half of the time compared
to the original DeepWalk. MILE (DeepWalk) continues to
generate embeddings of better quality than DeepWalk until
m = 7, where the speedup is 13×. As the coarsening level
m in MILE increases, the running time drops dramatically
while the quality of embeddings only decreases slightly. In
the case of link prediction, as shown in Figure 5, the methods
with higher coarsening levels (m=7,8) on all the evaluated
datasets, except GraRep on PPI, show an improvement of
AUROC with respect to the embedding performance on the
original graph. For SDNE, we observe that as we vary the
coarsening levels till coarsen level 5, the link prediction per-
formance on Blog, Flickr, YouTube remains close to original
method while we see improvement in the speedup. However
on YouTube we see a drop in AUROC score with coarsening
levels 6 and 8 for SDNE. For both node classification and
link prediction, the execution time decreases at an almost
exponential rate (logarithm scale on the y-axis in the sec-
ond row of Figure 4 and Figure 5). On the other hand, the
Micro-F1 score descends much more slowly (the first row
of Figure 4), most of which are still better than the original
methods.

Overall, the above experiments shows that MILE can not
only accommodate existing embedding methods - treating
them as a blackbox - but also provides nice trade-off be-
tween effectiveness and efficency, a useful lever for down-
stream tasks and use-cases.

MILE: Large Graph Embedding
We now explore the scalability of MILE on the large Yelp
dataset. None of the five graph embedding methods studied
in this paper can successfully conduct graph embedding on
Yelp within 60 hours on a modern machine with 28 cores and
128 GB RAM. Even extending the run-time deadline to 100
hours, we see DeepWalk and Line barely finish. Leveraging
the proposed MILE framework now makes it much easier to
perform graph embedding on this scale of datasets (see Fig-
ure 6 for the results). We observe that MILE significantly
reduces the running time and improves the Micro-F1 score.
For example, The Micro-f1 scores of original DeepWalk and
Line are 0.640 and 0.625 respectively, which all take more
than 80 hours. But using MILE with m = 4, the micro-
F1 score improves to 0.643 (DeepWalk) and 0.642 (Line)

(a) Micro-F1 (b) Running Time

Figure 6: Running MILE on Yelp dataset. Lines/points are
missing for algorithms that do not finish within 60 hours or
use over 128 GB of RAM.

(a) MILE (GraRep) (b) MILE (NetMF)

Figure 7: Memory consumption of MILE (GraRep) and
MILE (NetMF) on Blog with varied coarsening levels.

while achieving speedups of around 1.6×. Moreover, MILE
reduces the running time of DeepWalk from 53 hours (coars-
ening level 4) to 2 hours (coarsening level 22) while reduc-
ing the Micro-F1 score just by 1% (from 0.643 to 0.634).
Meanwhile, there is no change in the Micro-F1 score from
the coarsening level 4 to 10, where the running time is im-
proved by a factor of two. These results affirm the power of
the proposed MILE framework on scaling up graph embed-
ding algorithms while generating quality embeddings. We
also observe similar performance gain and reduction in the
running time for the link prediction task, however, due to
paucity of space the link prediction results on Yelp dataset
are not shared in this paper.

Memory Consumption
We also study the impact of MILE on reducing memory con-
sumption. For this purpose, we focus on MILE (GraRep)
and MILE (NetMF), with GraRep and NetMF as base em-
bedding methods respectively. Both of these are embedding
methods based on matrix factorization, which possibly in-
volves a dense objective matrix and could be rather memory
expensive. We do not explore DeepWalk and Node2Vec here
since their embedding learning methods generate truncated
random walks (training data) on the fly with almost negli-
gible memory consumption (compared to the space storing
the graph and the embeddings). Figure 7 shows the memory
consumption of MILE (GraRep) and MILE(NetMF) as the
coarsening level increases on Blog (results on other datasets
are similar). We observe that MILE significantly reduces

369

PPI Blog
Mi-F1 Time Mi-F1 Time

DeepWalk (DW) 23.0 2.4 37.0 8.0
MILE (DW) 25.6 1.2 42.9 4.6
HARP (DW) 24.1 3.0 41.3 9.8

Node2Vec (NV) 24.3 4.0 39.1 13.0
MILE (NV) 25.9 1.7 42.8 6.9
HARP (NV) 22.3 3.9 36.2 13.16

Flickr YouTube
Mi-F1 Time Mi-F1 Time

DeepWalk 40.0 50.0 45.2 604.8
MILE (DW) 40.4 34.4 46.1 55.2
HARP (DW) 40.6 78.2 46.6 1727.7

Node2Vec 40.5 78.2 45.5 951.2
MILE (NV) 40.7 50.5 46.3 83.5
HARP (NV) 40.5 101.1 47.2 1981.3

Table 3: Comparisons of MILE with HARP.

the memory consumption as the coarsening level increases.
Even with one level of coarsening, the memory consumption
of GraRep and NetMF reduces by 64% and 42% respec-
tively. The dramatic reduction continues as the coarsening
level increases until it reaches 4, where the memory con-
sumption is mainly contributed by the storage of the graph
and the embeddings. This memory reduction is consistent
with our intuition, since both # rows and # columns in the
objective matrix reduce almost by half with one level of
coarsening.

Comparing MILE with HARP
HARP is a multi-level method primarily for improving the
quality of graph embeddings. We compare HARP with our
MILE framework using DeepWalk and Node2vec as the
base embedding methods4. Table 3 shows the performance
of these two methods on the four datasets (coarsening level
is 1 on PPI/Blog/Flickr and 6 on YouTube). We also ob-
serve similar node classification performance with Macro-
f1 metric (not shown). From the table, we can observe that
MILE generates embeddings of comparable quality with
HARP. MILE performs much better than HARP on PPI and
Blog, marginally better on Flickr and marginally worse on
YouTube. However, MILE is significantly faster than HARP
on all the four datasets (e.g. on YouTube, MILE affords a
31× speedup). This is because HARP requires running the
whole embedding algorithm on each coarsened graph, which
introduces a huge computational overhead.

Comparing MILE with Pytorch-biggraph
In this section, we compare the performance of MILE with
Pytorch-biggraph. In Pytorch-biggraph, we set the number
of workers to 28 (equal to the number of available cores).
Figure 8 and Figure 9 respectively show the node classi-
fication and link prediction performance of both Pytorch-
biggraph and MILE (Deepwalk) methods. Note that, in
MILE, the speedup is driven by the coarsening level and

4https://github.com/GTmac/HARP

(a) Node Classification (b) Running time

Figure 8: Node classification task: Comparisons of MILE
with Pytorch-biggraph.

(a) Link Prediction (b) Running time

Figure 9: Link Prediction task: Comparisons of MILE with
Pytorch-biggraph.

higher speedup is achieved with higher coarsening level –
as evident from the experiments shown in Figure 4 and Fig-
ure 5. For PPI and Blog dataset, we set coarsen level to 2
and for Flickr and YouTube dataset, we set coarsen level to
6. From Figure 8, we see that for the node classification task
on PPI and YouTube dataset, MILE outperforms Pytorch-
biggraph on classification quality metrics (higher-quality
embeddings) while the running time of MILE is lower than
Pytorch-biggraph. The lower running time of MILE is due
to the proposed multi-level framework. From Figure 9, we
observe that MILE outperforms Pytorch-biggraph for the
link prediction task on three datasets namely PPI, Blog and
Flickr with less running time compared to Pytorch-biggraph.
This experiment shows that on a single system with 28-
cores, MILE outperforms Pytorch-biggraph in terms of run-
ning time and also outperforms Pytorch-biggraph on down-
stream tasks such as node classification and link prediction.

MILE Drilldown
Design Choices
We now study the role of the design choices we make within
the MILE framework related to the coarsening and refine-
ment procedures described. To this end, we examine alter-
native design choices and systematically examine their per-
formance. The alternatives we consider are:

370

Random Matching (MILE-rm): For each iteration of
coarsening, we repeatedly pick a random pair of connected
nodes as a match and merge them into a super-node until no
more matching can be found. The rest of the algorithm is the
same as our MILE.
Simple Projection (MILE-proj): We replace our embed-
ding refinement model with a simple projection method. In
other words, we directly copy the embedding of a super-
node to its original node(s) without any refinement (Epi =
Mi,i+1Ei+1).
Averaging Neighborhoods (MILE-avg): For this baseline
method, the refined embedding of each node is a weighted
average node embedding of its neighborhoods (weighted by
the edge weights). This can be regarded as an embeddings
propagation method. We add self-loop to each node5 and
conduct the embeddings propagation for two rounds.
Untrained Refinement Model (MILE-untr): Instead of
training the refinement model to minimize the loss defined
as L = 1

|Vm|
∥∥Em −H(l)(Em, Am)

∥∥2, this baseline merely

uses a fixed set of values for parameters Θ(k) without train-
ing (values are randomly generated; other parts of the refine-
ment model are the same, including Ã and D̃).
Double-base Embedding for Refinement Training
(MILE-2base): This method replaces the loss function as
Eq. 7 with L = 1

|Vm|
∥∥Em −H(l)(Mm,m+1Em+1, Am)

∥∥2
for model training. It conducts one more layer of coars-
ening and base embedding (level m + 1), from which the
embeddings are projected to level m and used as the input
for model training.
GraphSAGE as Refinement Model (MILE-gs): It re-
places the graph convolution network in our refinement step
with GraphSAGE (Hamilton, Ying, and Leskovec 2017)6.
We choose max-pooling for aggregation and set the num-
ber of sampled neighbors as 100, as suggested by the au-
thors. Also, concatenation is conducted instead of replace-
ment during the process of propagation.

Results of MILE-variants
Table 4 shows the comparison of performance on these
methods across the four datasets. Here, we focus on us-
ing DeepWalk for base embedding with coarsening level as
m = 1 for PPI, Blog, and Flickr, while m = 6 for YouTube.
Results are similar for the other embedding options we con-
sider. We hereby summarize the key information derived
from Table 4 as follows:
The matching methods used within MILE offer a quali-
tative benefit at a minimal cost to execution time. MILE
generates better embeddings than MILE-rm using Deep-
Walk as the base embedding method. Though MILE-rm is
slightly faster than MILE due to its random matching, its
Micro-F1 score are consistently lower than of MILE.
The graph convolution based refinement learning
methodology in MILE is particularly effective. Simple

5Self-loop weights are tuned to the best performance.
6Adapt code from https://github.com/williamleif/GraphSAGE

PPI Blog
Mi-F1 Time Mi-F1 Time

DeepWalk 23 2.4 37 8.1
MILE (DW) 25.6 1.2 42.9 4.7
MILE-rm (DW) 25.3 1.01 40.4 3.6
MILE-proj (DW) 20.9 1.1 34.5 3.9
MILE-avg (DW) 23.5 1.1 37.7 3.8
MILE-untr (DW) 23.5 1.1 35.5 3.9
MILE-2base (DW) 25.4 2.2 35.6 6.7
MILE-gs (DW) 22.4 2.1 35.3 6.4

Flickr YouTube
Mi-F1 Time Mi-F1 Time

DeepWalk 40 50.1 45.2 604.8
MILE (DW) 40.4 34.5 46.1 55.2
MILE-rm (DW) 38.9 26.6 44.9 55.1
MILE-proj (DW) 35.5 25.9 40.7 53.9
MILE-avg (DW) 37.2 25.9 41.4 55.2
MILE-untr (DW) 37.6 26.1 41.8 54.5
MILE-2base (DW) 37.7 53.3 41.6 94.7
MILE-gs (DW) 36.4 44.8 43.6 394.7

Table 4: MILE vs its variants. Except for the original meth-
ods, m = 1 for PPI/Blog/Flickr and m = 6 for YouTube.
Time is in minutes.

projection-based MILE-proj, performs significantly worse
than MILE. The other two variants (MILE-avg and MILE-
untr) which do not train the refinement model at all, also
perform much worse than the proposed method. Note MILE-
untr is the same as MILE except it uses a default set of
parameters instead of learning those parameters. Clearly,
the model learning part of our refinement method is a fun-
damental contributing factor to the effectiveness of MILE.
Through training, the refinement model is tailored to the
specific graph under the base embedding method in use.
The overhead cost of this learning (comparing MILE with
MILE-untr), can vary depending on the base embedding
employed (for instance on the YouTube dataset, it is an in-
significant 1.2% on DeepWalk but is still worth it due to
qualitative benefits.

Graph convolution refinement learning outperforms
GraphSAGE. Replacing the graph convolution network
with GraphSAGE for embedding refinement, MILE-gs does
not perform as well as MILE. It is also computationally more
expensive, partially due to its reliance on embeddings con-
catenation, instead of replacement, during the process the
embeddings propagation (higher model complexity).

Double-base embedding learning is not effective. In the
section – Intricacies of Refinement Learning – we discussed
the issues with unaligned embeddings of the double-base
embedding method for the refinement model learning. The
performance gap between MILE and MILE-2base in Ta-
ble 4 provides empirical evidence supporting our argument.
This gap is likely caused by the fact that the base embed-
dings of level m and level m + 1 might not lie in the
same embedding space (rotated by some orthogonal ma-
trix) (Hamilton, Ying, and Leskovec 2017). As a result, us-

371

ing the projected embeddings Epm as input for model training
(MILE-2base) is not as good as directly using Em (MILE).
Moreover, Table 4 shows that the additional round of base
embedding in MILE-2base introduces a non-trivial over-
head. On YouTube, the running time of MILE-2base is 1.6
times as much as MILE.

Conclusion
In this work, we propose a novel multi-level embedding
(MILE) framework to scale up graph embedding techniques,
without modifying them. Our framework incorporates exist-
ing embedding techniques as black boxes, and significantly
improves the scalability of extant methods by reducing both
the running time and memory consumption. Additionally,
MILE also provides a lift in the quality of node embeddings
in most of the cases. A fundamental contribution of MILE
is its ability to learn a refinement strategy that depends on
both the underlying graph properties and the embedding
method in use.

Acknowledgments
This work is supported by the Air Force Research Labora-
tory under grant FA8650-19-2-2204 and by the National In-
stitute of Health under grant NIH-1R01 HD088545-01A1.
Ohio Supercomputer Center provided computational sup-
port under grant PAS0166.

References
Cao, S.; Lu, W.; and Xu, Q. 2015. Grarep: Learning graph
representations with global structural information. In CIKM.

Chang, S.; Han, W.; Tang, J.; Qi, G.-J.; Aggarwal, C. C.; and
Huang, T. S. 2015. Heterogeneous network embedding via
deep architectures. In KDD, 119–128. ACM.

Chen, H.; et al. 2018. HARP: Hierarchical Representation
Learning for Networks. In AAAI.

Chung, F. 2005. Laplacians and the Cheeger inequality for
directed graphs. Annals of Combinatorics 9(1): 1–19.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS.

Dhillon, I. S.; Guan, Y.; and Kulis, B. 2007. Weighted graph
cuts without eigenvectors a multilevel approach. In PAMI.

Dong, Y.; et al. 2017. metapath2vec: Scalable representation
learning for heterogeneous networks. In KDD.

Gleich, D. 2006. Hierarchical directed spectral graph parti-
tioning. Information Networks .

Goyal, P.; and Ferrara, E. 2018. Graph embedding
techniques, applications, and performance: A survey.
Knowledge-Based Systems 151: 78–94.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD.

Gurukar, S.; Vijayan, P.; et al. 2019. Network Representa-
tion Learning: Consolidation and Renewed Bearing. arXiv
preprint arXiv:1905.00987 .

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS.
Hamilton, W. L.; Leskovec, J.; and Jurafsky, D. 2016. Di-
achronic word embeddings reveal statistical laws of seman-
tic change. In ACL.
Harel, D.; and Koren, Y. 2000. A fast multi-scale method
for drawing large graphs. In GD.
Huang, X.; Li, J.; and Hu, X. 2017. Accelerated attributed
network embedding. In SDM.
Karypis, G.; and Kumar, V. 1998a. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing 20(1): 359–392.
Karypis, G.; and Kumar, V. 1998b. Multilevel k-way parti-
tioning scheme for irregular graphs. In JPDC.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Lerer, A.; Wu, L.; Shen, J.; Lacroix, T.; Wehrstedt, L.; Bose,
A.; and Peysakhovich, A. 2019. PyTorch-BigGraph: A
Large-scale Graph Embedding System. In SysML.
Liang, J.; Jacobs, P.; Sun, J.; and Parthasarathy, S. 2018.
Semi-supervised Embedding in Attributed Networks with
Outliers. In SDM.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD.
Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; and Tang, J.
2018a. Network Embedding as Matrix Factorization: Uni-
fying DeepWalk, LINE, PTE, and node2vec. In WSDM.
Qiu, J.; Tang, J.; Ma, H.; Dong, Y.; Wang, K.; and Tang,
J. 2018b. Deepinf: Social influence prediction with deep
learning. In KDD.
Rossi, R. A.; and Ahmed, N. K. 2014. Role discovery in
networks. TKDE .
Ruan, Y.; Fuhry, D.; Liang, J.; Wang, Y.; and Parthasarathy,
S. 2015. Community discovery: Simple and scalable ap-
proaches. In User Community Discovery, 23–54. Springer.
Satuluri, V.; and Parthasarathy, S. 2009. Scalable graph clus-
tering using stochastic flows: applications to community dis-
covery. In KDD.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of the 24th international conference on world
wide web, 1067–1077.
Veličković, P.; Cucurull, G.; et al. 2017. Graph attention
networks. ICLR .
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep net-
work embedding. In KDD.
Wu, L.; et al. 2018. SocialGCN: An Efficient Graph Convo-
lutional Network based Model for Social Recommendation.
ACL .
Yang, C.; Sun, M.; Liu, Z.; and Tu, C. 2017. Fast network
embedding enhancement via high order proximity approxi-
mation. In IJCAI.

372

