
Web Routineness and Limits of Predictability:
Investigating Demographic and Behavioral Differences Using Web Tracking Data

Juhi Kulshrestha,1,2 Marcos Oliveira,1 Orkut Karaçalik,1,3 Denis Bonnay,4,5 Claudia Wagner1,3
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Abstract
Understanding human activities and movements on the Web
is not only important for computational social scientists but
can also offer valuable guidance for the design of online sys-
tems for recommendations, caching, advertising, and person-
alization. In this work, we demonstrate that people tend to
follow routines on the Web, and these repetitive patterns of
web visits increase their browsing behavior’s achievable pre-
dictability. We present an information-theoretic framework
for measuring the uncertainty and theoretical limits of pre-
dictability of human mobility on the Web. We systematically
assess the impact of different design decisions on the mea-
surement. We apply the framework to a web tracking dataset
of German internet users. Our empirical results highlight that
individuals’ routines on the Web make their browsing behav-
ior predictable to 85% on average, though the value varies
across individuals. We observe that these differences in the
users’ predictabilities can be explained to some extent by
their demographic and behavioral attributes.

Introduction
The World Wide Web is an immense space containing more
than six billion websites that keep popping up and dying
every second (de Kunder 2020). We spend more than a
quarter of our day in this fluid space, performing activi-
ties such as shopping, reading the news, or interacting with
friends (Kemp 2019). Though the Web is an indispensable
part of people’s lives today, we still do not fully understand
the dynamics of people’s web browsing behavior. Such un-
derstanding is vital to improve the way we navigate the Web
and provides grounds for algorithms to assist users in their
exploration of the cyberspace.

In the case of physical space, researchers have already
started to understand the fundamental mechanisms govern-
ing the dynamics of human mobility (Gonzalez, Hidalgo,
and Barabási 2008; Song et al. 2010a). Despite the com-
plexity of our decision-making processes, the way we move
in physical space has been shown to present regularities
at varying spatiotemporal scales (Pappalardo et al. 2015;
Alessandretti et al. 2018; Barbosa et al. 2018). Such regular-
ities emerge from our daily routines and constraints, which
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in turn make our movements highly predictable (Song et al.
2010b). Understanding these characteristics of human mo-
bility is critical for managing crucial aspects of our society,
including public health, transportation, urban planning, to
name a few.

With the increasing reliance on the Web, people have
switched to performing many everyday activities online
rather than offline. With people living more and more of
their lives online, the way they traverse the Web affects
how they gather information and interact with others, influ-
encing different aspects of society such as education (Rav-
izza, Uitvlugt, and Fenn 2017), mental health (Culjak,
Kowalenko, and Tennant 2016), news consumption (Möller
et al. 2019; Scharkow et al. 2020), and political participa-
tion (Stier et al. 2020). Uncovering the fundamental prop-
erties of web browsing behavior has become imperative to
understand society better.

Recently, examining and modeling the dynamics of hu-
man movements on the Web have started to receive more
attention, with researchers leveraging models developed for
mobility in physical space to study them (Zhao et al. 2014;
Zhao, Cai, and Lu 2015; Zhao et al. 2016; Barbosa et al.
2016; Hu, Luo, and Liu 2018; Hu, Xia, and Luo 2019; Haz-
arie et al. 2019). Previous work has uncovered underlying
mechanisms in web mobility, such as preferential return and
exploration. However, much research has predominantly fo-
cused on characterizing distributions and time series. Re-
searchers have often overlooked heterogeneity in users’
characteristics and often limited their analysis to aggregated
levels and specific platforms. Therefore, the individual-level
regularities in web browsing behavior are as yet poorly un-
derstood.

In this work, we show that individuals tend to follow
routines on the Web—a property we call web routineness.
These repetitive patterns of online visitation considerably
increase the achievable predictability concerning users’
browsing behavior. We present an information-theoretic
framework for estimating the theoretical limits of pre-
dictability of people’s web mobility based on previous
work (Song et al. 2010b). By examining web tracking data
from 2, 148 users, we show that individuals’ web routine-
ness makes their browsing behavior predictable to 85% on
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average. However, we show that the routineness and pre-
dictability vary considerably across users and that users’ de-
mographic and behavioral differences can explain part of
this variation.

Our work not only has implications for computational so-
cial scientists but also computer scientists and industry prac-
titioners. While much prior work (Pirolli and Pitkow 1999;
Narvekar and Banu 2015; Deshpande and Karypis 2004;
Mabroukeh and Ezeife 2009; Manavoglu, Pavlov, and Giles
2003; Pitkow and Pirolli 1999; Su et al. 2000; Awad and
Khan 2007; Khalil, Li, and Wang 2009) has focused on de-
veloping specific algorithms for predicting the next visited
location on the Web, our work focuses on estimating the
theoretical upper limits for correctly predicting an individ-
ual’s next visited web location based on their browsing tra-
jectories. Our work can inform researchers and practition-
ers about what performance they can aspire to achieve for
which web prediction task by leveraging the routines users
follow in their browsing trajectories. Moreover, our results
also have implications for privacy researchers since the high
predictability for most users indicates that attackers can also
predict what location the user would visit next, having ob-
served the routines users follow from their past browsing
histories.

Finally, we summarize the contributions of this paper:
• Building upon prior work on mobility in physical

space (Song et al. 2010b; Smith et al. 2014; Ikanovic
and Mollgaard 2017), we present an adapted information-
theoretic framework for estimating the theoretical limits
of predictability of humans’ mobility on the Web.

• We describe how to construct stationary and non-
stationary trajectories from users’ raw web tracking data.

• We systematically assess the impact of different design
decisions (e.g., temporal and spatial resolution, and sta-
tionarity in trajectories) on the measurement and provide
practical guidelines for applying the framework to users’
web tracking data.

• We investigate users’ routineness and predictability on the
Web by applying the framework to a web tracking dataset
of 2, 148 German internet users. We show that individu-
als exhibit routineness while browsing the Web and that
these routines or repetitive patterns make their browsing
behavior predictable to 85% on average. Our results re-
vealed considerable variability in the routineness and pre-
dictability across users. We show that users’ demographic
and behavioral differences can explain part of this varia-
tion.

• Finally, we make available our code1 along with tutorial
notebooks and data (Kulshrestha et al. 2021) to the re-
searcher community to encourage further research on mo-
bility on the Web.

Background & Related Work
Human mobility in physical space Research on human
mobility has shown that it is characterized by a heterogene-
ity of travel patterns (Gonzalez, Hidalgo, and Barabási 2008;

1https://tinyurl.com/web-tracking-library

Pappalardo et al. 2015), a high degree of predictability (Song
et al. 2010b), and a strong tendency of humans’ to spend
most of their time in a few locations (Song et al. 2010a;
Alessandretti et al. 2018). We leverage previous work on hu-
man mobility (Song et al. 2010b; Ikanovic and Mollgaard
2017; Smith et al. 2014) to present an adapted predictability
measurement framework for estimating the upper limits of
predictability of people’s mobility on the Web.

Adapting physical space mobility models for cyberspace
Prior work on investigating mobility in cyberspace, using
concepts from physical mobility literature, found several in-
teresting similarities, such as similar scaling properties of
return visitation patterns (Barbosa et al. 2016; Hu, Luo, and
Liu 2018; Hu, Xia, and Luo 2019), similar superlinear scal-
ing relation between mean frequency of visit and its fluc-
tuation (Zhao et al. 2014), similar focus on a small, stable
number of mobile apps (De Nadai et al. 2019) and num-
ber of familiar locations in physical space (Alessandretti
et al. 2018), and similar memory-based random walk dy-
namics (Zhao et al. 2016). Several prior studies have applied
the framework proposed by Song et al. (Song et al. 2010b)
in the online context to study entropy and predictability
for mobility in multiplayer online games (Sinatra and Szell
2014), mobile phone users’ traffic usage (Tao et al. 2019),
and textual conversations (Bagrow, Liu, and Mitchell 2019),
information cascades (Kolli, Balakrishnan, and Ramakrish-
nan 2017), and movement of users across communities (Hu,
Luo, and Liu 2018) on specific social media platforms. In-
stead, we focus on the routines that people follow on the web
to estimate the theoretical upper limit of predictability of
user’s next visited location while traversing the whole Web.
We find these cyberspace limits to be lower than the limits
computed for physical mobility (Song et al. 2010b; Ikanovic
and Mollgaard 2017; Zhao, Cai, and Lu 2015). Furthermore,
we observe differences in the predictability of users with
different demographic and behavioral characteristics, which
were not observed for mobility in the physical space.

Web navigation prediction algorithms Another comple-
mentary line of prior work has focused on developing spe-
cific algorithms for predicting the next web access by users,
given users’ web access sequences. For this task, prior work
has leveraged the routines in people’s browsing trajecto-
ries by developing variations of Markov models (Pirolli and
Pitkow 1999; Narvekar and Banu 2015; Deshpande and
Karypis 2004; Mabroukeh and Ezeife 2009; Manavoglu,
Pavlov, and Giles 2003), n-gram sequence models (Pitkow
and Pirolli 1999; Su et al. 2000), or hybrid models combin-
ing Markov models with ANNs (Awad and Khan 2007) or
clustering and association rule mining (Khalil, Li, and Wang
2009). Our goal is not to develop a prediction algorithm, but
to estimate the theoretical upper limit of predictability given
users’ sequence of web accesses. On comparing with prior
work, we observe that the previously reported performance
matches well with our estimated theoretical limits.

Predictability Measurement Framework
In this section, we describe the framework for estimating the
predictability of people’s mobility in cyberspace from their
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web browsing traces. First, we outline how to construct tra-
jectories from raw browsing data for each user. Then, we de-
tail how we measure uncertainty in users’ trajectories using
concepts of entropy from the field of Information Theory.
These concepts help us to uncover the extent to which indi-
viduals follow routines on the Web. Finally, we describe the
procedure to estimate the theoretical predictability limits of
a user’s browsing behavior.

Sharing code In this paper, we attempt to make the frame-
work accessible to diverse research communities, and as
such, our code is available as a Python library with corre-
sponding online tutorial notebooks (Karaçalik, Oliveira, and
Kulshrestha 2021).

Constructing User Trajectories
To study the mobility of users on the Web, we first need
to construct their cyberspace trajectories from the raw web
tracking data. Figure 1 illustrates a toy example of raw data:
a user visits nine different website URLs, spending differ-
ent amounts of time on each of them. In this example, each
URL belongs to a domain (i.e., A, B, C), and they can be
associated with a category, such as ‘news’, ‘social media’,
or ‘search engine’. In our paper, we define a trajectory as
a discrete sequence of locations visited by a user, where a
location can be a website URL, a domain, or a category.

We propose two types of web trajectories: stationary and
non-stationary. The former accounts for the amount of time
spent on locations, while the latter ignores it. These trajec-
tories enable us to study the role of time in measuring users’
predictability. In what follows, we describe each trajectory
type using the toy data (Figure 1) as the raw browsing trace
data. Note that though most of the following examples are
trajectories of domains, the definitions are generalizable to
other types of locations (i.e., categories or website URLs).

Series of time bins The stationary trajectories T stat in-
corporate the amount of time a user spends on each location.
When we analyze users’ predictability using this trajectory,
we are interested in the task of predicting the location vis-
ited in the next time step. Practical applications of such a
task include real-time recommendations, dynamic caching,
and dynamic advertising. With this type of trajectory, we can
investigate the impact of visit duration on the emergence of
users’ routines on the Web.

To generate this trajectory, we use a non-overlapping time
window of size ∆t to create bins across time. Within each

A1 A2 A3 B1 B2 C1A5B3 A4

Time

Figure 1: An illustration of raw web tracking data: A user
visits nine different website URLs (A1, A2, A3, A4, A5, B1,
B2, B3, and C1, ) along the timeline. Each URL is from a
domain (i.e., A, B, and C) and belongs to a category (e.g.,
search engine, social media site). Each visit has a time dura-
tion, and visits are non-overlapping.

time bin, we choose the most visited location (i.e., the loca-
tion visited for the longest duration). We break ties randomly
and ignore the time bins without any browsing activity. For
example, using our toy data, the stationary trajectory of do-
mains would be as follows:

T stat = {A,A,A,A,A,A,A,B,B,B,B,B

B,B,B,A,C}.

We can observe that stationarity is captured in the trajectory.
This method of generating trajectories is consistent with
prior studies of human mobility (Song et al. 2010b; Ikanovic
and Mollgaard 2017).

Series of visited locations The non-stationary trajectories
ignore the amount of time a user spends on each location,
ignoring users’ tendency to stay longer at specific locations.
When we analyze the predictability of non-stationary tra-
jectories, we are interested in the task of predicting the next
visited location, irrespective of how much later. Examples of
applications include learning visitation patterns to automate
users’ web activities (e.g., booking a holiday, or researching
and buying products or services). These trajectories enable
us to investigate users’ routines that emerge regardless of the
duration of visits.

We build non-stationary trajectories using two different
temporal schemes: binned and sequential. The former con-
siders locations for each time bin, whereas the latter consid-
ers locations as they appear in the raw browsing trace data.
These trajectories are defined as follows:

• Non-stationary binned trajectory T binNonStat: First, we
create a stationary time series from the raw data using a
time window of width ∆t. Then, we compress this tra-
jectory by removing repetitive adjacent locations from it.
For instance, using our toy example, the non-stationary
binned trajectory of domains looks as follows:

T binNonStat = {A,B,A,C}.

By comparing this sequence with T stat, we see that we
have removed the stationarity from the trajectory. This
method of trajectory construction is consistent with prior
work (Ikanovic and Mollgaard 2017).

• Non-stationary sequential trajectory T seqNonStat: In-
stead of compressing the stationary trajectory, we com-
press the sequence of distinct locations from the raw data.
For example, applying this method to our toy data would
generate the following trajectory of domains:

T seqNonStat = {A,B,A,C,A}.

This approach creates trajectories that include all distinct
locations that were visited independently of the amount of
time spent on them. For instance, in our example, domain
A appears at the end of trajectory T seqNonStat, but not in
T binNonStat.

Note that the two types of non-stationary trajectories con-
verge to each other as ∆t gets smaller and smaller, becoming
more and more independent of ∆t.
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Estimating Predictability of Users’ Mobility on the
Web
Having constructed a user’s trajectory, we can now study the
dynamics of the user’s mobility on the Web. Without loss
of generality, we can represent any trajectory as a discrete
series

T = {x1, x2, . . . , x`} ,
where xt ∈ V is a location (i.e., a website URL, a domain, or
a category), V is the set of visited locations, and ` is the tra-
jectory length. Here we are interested in the dynamics of this
time series; we want to study (1) the location preferences of
a user and (2) the emerging visitation patterns in these pref-
erences. Specifically, we aim to investigate the uncertainty
embedded in this time series.

In this paper, we use three concepts of uncertainty from
the Information Theory field:

(i) Time-uncorrelated entropy (Sunc) that accounts for the
frequency with which users visit locations.

(ii) Maximum entropy (Srand) that considers only the num-
ber of unique locations visited.

(iii) Time-correlated entropy (S) which considers the visi-
tation patterns of the users.

These three measures allow us to quantify the uncertainty in
users’ browsing behavior, enabling us to estimate the extent
to which users exhibit routineness and compute the theoret-
ical limits of predictability of users’ trajectories.

Users’ location preferences To study a user’s location
preferences, we can examine the number of unique locations
visited by the user and the probability p(i) of visiting a lo-
cation i (i.e., the normalized frequency of visits).

The size of V , denoted by N = |V|, relates to the pref-
erence breadth of a user. It tells us how broadly this user
explores the Web throughout a particular time frame. This
quantity, however, neglects the frequency with which the
users visit locations, missing the likely existence of favorite
websites, categories, or domains. To account for frequency,
we need to examine the spread of the probability distribu-
tion p(i). For instance, if a user visits all locations at the
same frequency, then p(i) ≈ 1/N , whereas if a user mostly
visits a specific location j, then p(i) peaks at i = j. We want
to quantify the peakiness of the distribution p(i).

From an information-theoretic perspective, we want to
measure the uncertainty of a random variable (in our case,
the random variable is the time series T ). For analyzing
this scenario without accounting for temporal correlations,
we can use Shannon entropy, denoted here as the time-
uncorrelated entropy Sunc, defined as

Sunc(p) = −
∑
i∈V

p(i) log2 p(i) (1)

and expressed in bits (Cover and Thomas 2006). Sunc(p)
measures the average amount of memory needed to store the
outcome of the random variable associated with p(·). That
is, the more certain we are about the outcome of a random
variable, the less memory we need to store the variable, thus
the lower Sunc(p).

In our case, Eq. (1) quantifies the uncertainty concerning
the locations a specific user visits over time. For instance,
when a user keeps visiting only one location, the entropy
Sunc(p) is zero because of the low uncertainty of this user’s
behavior. In contrast, a user without a favorite location ex-
hibits the highest uncertainty and the maximum entropy. The
maximum entropy Srand occurs when p(i) = 1/N for ∀i
and can be defined as the following:

Srand(p) = log2 N. (2)

This quantity represents the uncertainty in a user’s location
when the user’s visitation behavior follows a uniform dis-
tribution (i.e., without any preference towards specific loca-
tions). Srand(p) can be seen as the worst-case scenario of a
variable with a sample space of size N , such that this uncer-
tainty equals to guessing a user’s location randomly.

Users’ visitation patterns Though Sunc(p) provides us
with a simple uncertainty measure, it neglects long-range
temporal correlations in the trajectories—a potential feature
in web mobility. A temporal correlation might emerge be-
cause of repetitive patterns of visitation on the Web (e.g., al-
ways accessing a social media website after reading the
news). Such patterns in a user’s trajectory decrease the un-
certainty about this user, regardless of the Shannon entropy.
Indeed, a user might lack favorite locations but have favorite
patterns of visitation (see Figure 2). To capture this uncer-
tainty in web mobility, we need to examine trajectories as
the result of processes that generate sequences.

First, we denote a block of L consecutive random vari-
ables as XL = X1 . . . XL, and xL = x1 . . . xL is an in-
stance of this variable. In our case, xL can be any sequence

Ti = {A,B,A,A,B,A,B,A,B,A,B,B,A,B,A,B,A,B}

A B

p(
i)

AA AB BA BB

p(
i)

(a) (b)

Example
A = mail.google.com
B = facebook.com

Figure 2: We need to account for long-range temporal cor-
relations to study the predictability of users’ browsing be-
havior. For example, consider a hypothetical user trajectory
of accessing an e-mail account then a social media website
(top). When a user follows such a sequence over time, the
absence of favorite locations makes the Shannon entropy to
approach its maximum value, Sunc ≈ Srand (a). This trajec-
tory, however, is quite predictable; we can see a clear pattern
repeating itself. Indeed, when we examine the probability of
the blocks of length L = 2, we find some favorite patterns in
the trajectory (b). The rate at which the uncertainty increases
with L is called the source entropy rate. This quantity mea-
sures the intrinsic uncertainty of a user trajectory as we learn
about the sequences that this user follows over time.
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of length L in a trajectory of a user. If we denote pL(·) as
the probability function of XL, we can define the entropy of
pL as the following:

S′(pL) = −
∑

sL∈VL

pL(sL) log2 p
L(sL), (3)

where VL is the sample space containing all the visited se-
quences of length L, and we establish S′(p0) = 0 (Crutch-
field and Feldman 2003). This quantity is the so-called block
entropy or total Shannon entropy of length-L, and it is a con-
venient measure of uncertainty of the sequences in a trajec-
tory (Crutchfield 2011).

Instead of focusing on a specific length L, we can exam-
ine the relationship between S′(pL) and L to investigate the
uncertainty in the trajectories. Specifically, we would like to
analyze how S′(pL) changes as we have longer and longer
L-blocks. In this way, we learn about the uncertainty of a tra-
jectory while discounting for the recurrent patterns in it. For
this purpose, we use the source entropy rate of a stochastic
process, defined as

hµ = lim
L→∞

S′(pL)/L, (4)

when the limit exists (Crutchfield and Feldman 2003; Cover
and Thomas 2006). The entropy rate tells us the irreducible
uncertainty of a process that persists even when we ac-
count for the temporal correlations. In our case, hµ quan-
tifies the intrinsic uncertainty of a trajectory even when we
learn about the sequences (i.e., patterns of visitation) that
this person follows throughout time.

In our paper, we follow previous work (Song et al. 2010b;
Smith et al. 2014; Ikanovic and Mollgaard 2017) and es-
timate the entropy rate of a trajectory using the Lempel–
Ziv compression algorithm; we call this estimate the time-
correlated entropy and denote it as S. The Lempel–Ziv al-
gorithm attempts to find the optimal dictionary to compress
a given sequence, and it has been shown to quickly converge
to the entropy rate as the sequence length approaches infin-
ity (Kontoyiannis et al. 1998).

By comparing time-correlated entropy with time-uncorre-
lated entropy, we can investigate the role of routines in users’
web browsing behavior. The higher the difference between
the entropies, the more individuals repeat visitation pat-
terns. These recurrent visitation patterns occur because of
preferred sequences in visiting websites, categories, or do-
mains. We call this preference web routineness. This prop-
erty of web browsing behavior emerges from individuals’
choices under the structural constraints of the Web and can
affect the extent to which we can predict their trajectories.

Estimating predictability These entropy quantities en-
able us to assess the uncertainty embedded in the browsing
behavior of individuals; however, they fail to explicitly tell
us how well we could predict a user’s trajectory despite its
intrinsic uncertainty. We want to learn about the probability
Π of correctly predicting future locations, given a past se-
ries of observations. It is possible to show that Π is subject
to Fano’s inequality2, and has an upper bound, denoted as

2We omit details of the analytical derivation and refer the inter-
ested reader to the literature (Song et al. 2010b; Smith et al. 2014).

Πmax.
In our case, this upper bound reveals the theoretical upper

limit to predict an individual’s future location correctly if
we restrict ourselves to only the browsing trajectories from
the web tracking data. For instance, a user having an upper
limit of Πmax = 0.6 exhibits an intrinsic uncertainty that
makes their behavior indistinguishable from random 40% of
the time. Because of this randomness, the best accuracy level
that a predictive algorithm can achieve for this user is 60%.
That is, Πmax tells us how much predictive power we can the-
oretically have by possessing just the browsing trajectories
from the web tracking data of an individual.

It is impractical to compute Πmax directly, but the quantity
has an explicit relationship with the entropy rate:

S = Hb(Π
max) + (1−Πmax) log2(N − 1), (5)

where Hb(·) is the binary entropy function, defined as
Hb(p) = −p log2 p + (1 − p) log2 (1− p), and N is the
alphabet size (i.e., the number of unique locations vis-
ited) (Song et al. 2010b). To find the predictability upper-
bound Πmax of a user, we just have to solve Eq. (5) using a
numerical solver, provided that we know S and N for this
user. This approach also allows us to find the hypothetical
predictabilities of users if their trajectories were random or
absent of temporal correlations by substituting S in Eq. (5)
with the corresponding entropy value. More precisely, we
replace S with Srand and Sunc to find Πrand and Πunc, re-
spectively.

Comparing predictabilities Having the three predictabil-
ity values (Πrand, Πunc, and Πmax) for the users provides us
with a framework for comparing users and investigating the
impact of emerging preferences and routines in their trajec-
tories. First, predictability values lie within [0, 1], making
it convenient to compare users with a varying number of
visited locations—different from absolute entropy numbers.
Second, the distinct types of predictability help us interpret
the results by yielding two null models. Indeed, finding the
hypothetical values of Πrand and Πunc helps us to contex-
tualize Πmax. Each of these predictability values represents
a version of a user’s trajectory when we remove a specific
feature of it. Πunc represents the predictability of a trajec-
tory if we randomize the original trajectory, removing all
the temporal correlations. Πrand represents the predictability
of a trajectory if we remove all repeated visits to locations
from the original trajectory, removing all user preferences.
With these values as a baseline, we can now compare them
with Πmax to understand the impact of web routineness on
the predictability of a user’s web browsing behavior.

Dataset of Web Browsing Traces
Our anonymized dataset consists of one month’s (October
2018) web tracking data of 2, 148 German users. For each
user, the data contains the URL3 of the webpage the user
visited, the domain of the webpage, category of the domain4,

3URLs are anonymized, and personally identifiable information
such as user names or passwords have been removed.

4Categories were inferred using https://docs.webshrinker.com/
v3/website-category-api.html, which provides 41 distinct cate-
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Gender Population Sample Age Population Sample Age Population Sample
Female 50.6 51.2 (48.5) 18-24 9.7 12.7 (11.3) 45-54 19.3 22.8 (24.9)
Male 49.4 48.8 (51.5) 25-34 16.3 20.1 (18.6) 55-64 18.6 21.6 (24.2)

35-44 15.6 18.4 (16.1) 65-80 20.5 4.4 (4.9)

Table 1: Comparison of German population margins of gender (male, female) and age (18-80 years) with our sample’s compo-
sition (percentage values). Filtered sample in parentheses. Unfiltered sample refers to all 2, 148 users, while the filtered sample
depicts the 1, 455 users who have long enough trajectories to estimate their predictability reliably (see Section “Ensuring Data
is Sufficient to Estimate the Predictability”).

time of visit, and active seconds spent by the user on the
page. In total, these 2,148 users made 9,151,243 URL visits,
spanning 49,918 unique domains.

Evaluating web tracking data We used web traffic data
from Alexa5 to evaluate whether the most visited domains in
Germany also feature prominently in our dataset. We com-
pared the 5000 most visited domains from Alexa with the
aggregated number of visits to these domains in our web
tracking data. We found them to be highly correlated (Pear-
son’s correlation coefficient r = 0.78).

Comparing the demographics of our panelists and the
German population For each user in our dataset, we have
self-reported information (collected via a survey) about their
gender and age. We compare our sample’s distributions with
German population margins for gender and age (Table ??).6
We observe that our sample’s gender distribution matches
closely with the German population’s. However, the older
population (65 years and above) is under-sampled in our
panel. This difference could potentially be due to lower
internet usage by older people, or due to the opt-in, non-
probability recruitment of the panelists.

Ethics The web tracking data for the users in our dataset
was collected by a GDPR compliant digital panel company
in Europe. All the participants of the company’s online panel
have agreed to anonymously share their survey (e.g., the
gender and age information we use) and behavioral data for
business or scientific purposes. The participants willing to be
tracked install an executable file on their desktop. In return,
they receive a monthly reward for their data.

Sharing data We share our anonymized dataset to spur
further research in this area (Kulshrestha et al. 2021).

gories. We manually added two more categories ‘email’ and ‘pro-
ductivity’. Moreover, for popular domains with many sub-domains
with distinctly different functions (such as google.com), we man-
ually re-coded the sub-domains to correct categories. See https:
//github.com/gesiscss/webtracking/ for more details.

5While Alexa is also not representative of German online
population, we use it since it is the most established source
for web traffic data: https://docs.aws.amazon.com/AlexaTopSites/
latest/ApiReference TopSitesAction.html.

6In the absence of high-quality data about German internet
users’ demographics, we compare with offline German population
margins for the year 2018: https://www.destatis.de/EN/Themes/
Society-Environment/Population/Current-Population/ node.html.

Guidelines for Applying the Predictability
Measurement Framework

We now provide some practical guidelines for applying the
framework. As the first step, we present a principled method
for ensuring that the data is sufficient for measuring pre-
dictability. Then, we discuss the impact of some design de-
cisions on the measured predictability and offer guidelines
that could help researchers to reflect on these decisions sys-
tematically.

Ensuring Data is Sufficient to Estimate the
Predictability
To ensure that we have enough data to estimate users’ pre-
dictability, we examine the convergence of Πmax as we add
more and more data. The rationale here is that the quality of
S (i.e., the estimate of the entropy rate, needed to find Πmax)
depends on the trajectory length. As this length approaches
infinity, S converges to the entropy rate. We study this con-
vergence by analyzing the predictability of trimmed versions
of users’ trajectories. For this, we first denote Πmax(`′) as the
predictability of a user estimated using only the first `′ loca-
tions of this user’s trajectory; then, we study the absolute
consecutive differences of Πmax(`′), defined as:

∆Πmax(`′) = |Πmax(`′)−Πmax(`′ − 1)|,

where 1 < `′ ≤ `.
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Figure 3: Mean absolute change in maximum predictability
with increasing trajectory length for random 100 users. The
shaded region depicts the 5th to 95th quantile range.
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To examine the predictability convergence, we selected
100 random users and computed ∆Πmax of their non-
stationary T binNonStat domain trajectories (since these are the
shortest trajectories). We found that the predictability val-
ues stabilize for a trajectory length of `′ = 100, such that
the mean difference is small (∆Πmax(100) = 0.006), as
shown in Figure 3. Therefore, we decided that the length of
users’ non-stationary trajectories must be at least 100 loca-
tions long. In the rest of the paper, we perform our analysis
with the 1, 455 users who satisfy this criterion, excluding
693 users from our study. These 1, 455 users made a total
of 8, 910, 779 URL visits spanning 48, 721 unique domains,
and their gender and age distributions are depicted in paren-
theses in Table ??.

Impact of Design Decisions on Predictability
Next, we discuss the impact of three critical design decisions
on the estimated predictability: (i) stationarity of trajecto-
ries, (ii) temporal resolution, and (iii) spatial resolution.

Impact of stationarity in trajectories When applying the
predictability framework, we first need to decide which tra-
jectory to construct. This decision is primarily driven by
which prediction task we want to study. While T stat is suit-
able for predicting the next visited location in the next time
bin, T binNonStat or T seqNonStat are suitable for predicting the
next visited location independent of when it is visited. To
investigate how predictability changes depending on these
tasks, we computed the predictability of the users using
these three types of trajectory. We found that these tasks sat-
isfy the following inequality:

Πmax
binNonStat < Πmax

seqNonStat < Πmax
stat ,

where the predictability values correspond to the trajecto-
ries T binNonStat, T seqNonStat, and T stat, respectively. We ob-
serve that as the stationarity in the trajectories increases (i.e.,
the user stays in the same location for more consecutive time
bins), the maximum predictability also increases, as shown
in Figure 4. Our results indicate that it is easier to predict the
location visited by the user in the next time bin rather than
the next (distinct) location visited irrespective of the time of
visit.

Impact of temporal resolution The next decision is the
choice of temporal resolution ∆t. We expect that when ∆t
is close to zero, the uncertainty in the next visited location
(i.e., entropy) is minimal, and the predictability approaches
100%. To investigate this conjecture, we computed the en-
tropy and predictability of the users’ T stat domain trajecto-
ries using varying time bins ∆t ∈ [0.25, 0.5, 0.75, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] minutes.7

As expected, we found that, as the temporal resolution
gets more coarse-grained, the entropy increases while the
predictability decreases (see Figure 5). Note that different
values of ∆t represent slightly different prediction tasks.

In our case, we would like to set a reasonable value to ∆t
based on our data. For this, we measure the average amount

7We found the average session length to be 883 seconds, which
is just under 15 minutes. Hence, we vary ∆t up to 15 minutes only.
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Figure 4: Impact of stationarity in the trajectories on the pre-
dictability.
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Figure 5: Impact of temporal resolution on the predictability.

of time that users spend on each domain visit, finding an
average of around 30 seconds (M=36.91, 95% CI [35.53,
38.29]). Note that the larger the size of ∆t, the more short-
duration visits would get removed from trajectories. There-
fore, we use ∆t = 1 minute for all other results in the paper.8

Impact of spatial resolution The final design decision
pertains to the spatial resolution of the locations in the anal-
ysis. In the cyberspace, this spatial resolution relates to hier-
archical features of locations, such as URLs, sub-domains,
domains, and categories. Deciding the resolution of the anal-
ysis typically depends on the problem at hand. In the limiting
case, when the spatial resolution is too coarse-grained, and
every web location is virtually the same, the predictability of
the next visited location is perfect (i.e., the next location is
always the same location). To investigate the role of spatial
resolution, we measure the predictability of users’ T seqNonStat

trajectories of locations with decreasing spatial resolution,
from URLs (2, 910, 824 unique URLs) to domains (48, 721
unique domains) to categories (409 unique categories). We
find that, indeed, the maximum predictability increases with
more coarse-grained spatial granularity, as shown in Fig-
ure 7. These results imply that we should only compare the

8We also generated our results with ∆t equal to 3, 5, and 8
minutes, finding that the trends in our results still hold.
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Figure 6: Distribution of the three types of entropies (Srand in blue, Sunc in green, and S in orange in the upper panel), and
predictabilities (Πrand in blue, Πunc in green, and Πmax in orange in the lower panel) of all users in our dataset computed using:
(a) stationary trajectories T stat, (b) non-stationary binned trajectories T binNonStat, and (c) non-stationary sequential trajectories
T seqNonStat.

predictability of users’ movements if the spatial resolution
is similar. In the rest of the paper, we present results at the
resolution of domains, unless specified otherwise.

Predictability of Users’ Mobility on the Web
For each user in our dataset, we computed the three en-
tropy (Srand, Sunc, and S ) and predictability (Πrand, Πunc, and
Πmax) values defined in Section “Estimating Predictability
of Users’ Mobility on the Web” for the stationary (T stat) and
non-stationary (T binNonStat, T seqNonStat) trajectories of visited
domains; their distribution are presented in Figure 6.

For both types of trajectories, we found that the ‘real’ un-
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Figure 7: Impact of spatial resolution on the predictability.

certainty (S) in people’s movement in cyberspace is much
lower than the expected entropy values when we disregard
the order (Sunc) or users’ preferences (Srand) for the visited
locations, as shown in the upper panel of Figure 6. These re-
sults indicate that people follow repetitive visitation patterns
on the Web, that is, people exhibit web routineness in their
browsing trajectories.

In the case of the theoretical limits of predictability,
we found that the more information we have about the
users’ trajectories—from the number of locations (Πrand)
to preference for locations (Πunc) to order of location vis-
ited (Πmax)—the higher the predictability. Our results show
that the mean predictability increases from less than 5% to
more than 85% (95% CI [84.79, 85.41]) for T stat, around
60% (95% CI [58.38, 59.20]) for T binNonStat, and around 70%
(95% CI [68.40, 69.14]) for T seqNonStat (shown in the lower
panel of Figure 6). Such an increase in predictability in-
dicates that the routines users follow increase the predic-
tive power we can theoretically achieve based on their web
browsing trajectories.

When we compare our estimated theoretical limit of pre-
dictability with the performance of previously developed
web access prediction algorithms that only utilize users’
web access sequences, (Awad and Khan 2007; Narvekar
and Banu 2015; Deshpande and Karypis 2004; Mabroukeh
and Ezeife 2009; Khalil, Li, and Wang 2009; Manavoglu,
Pavlov, and Giles 2003; Pitkow and Pirolli 1999), we ob-
serve that prior results are in line with our estimated theoret-

334



0.6 0.7 0.8 0.9 1.0
Predictability

0

2

4

6
D
en
si
ty

female
male

0.6 0.7 0.8 0.9 1.0
Predictability

0

2

4

6

8

D
en
si
ty

[18,24]
(24,34]
(34,44]
(44,54]
(54,64]
(64,80]

(a) Gender (b) Age

Figure 8: Distribution of predictability Πmax, computed using stationary trajectories T stat, for users in our dataset grouped by:
(a) gender and (b) age.

ical limits.9

Lastly, note that even though there are definite peaks of
the maximum predictability distributions in Figure 6, there
is a considerable spread across different users. This spread
suggests that it is easier to predict the next visited location
for some users than for the others. In the next section, we
will explore which behavioral and demographic factors ex-
plain this variation in users’ predictability.

What Explains the Predictability?
Demographics We now turn our attention towards exam-
ining whether users with different demographic attributes
demonstrate different degrees of maximum predictability for
their web browsing behavior. We focus our analysis on two
demographic features: gender and age. Although in this sec-
tion, we present the results computed using T stat trajectories,
our results also hold for non stationary trajectories.

• Gender: Our dataset of 1, 455 users consists of 51.5%
men and 48.5% women (see Table ??). We evaluated the
differences between the distributions of the predictability
for the men and women (depicted in Figure 8(a)) using a
two-sample Kolmogorov-Smirnov (KS) test (Berger and
Zhou 2014). We obtained a KS score of 0.086 at the p-
value of 0.008 for the predictability. Since the p-value is
below 0.05, we can reject the null hypothesis and con-
clude that the distributions of predictability of men and
women are significantly different. Additionally, we also
computed the effect size using Cliff’s delta (Cliff 1993).
The value of d = 0.11 indicates that there is an 11%

9We compare the prediction accuracy from prior work with our
estimated limits for T seqNonStat trajectories since the web access se-
quences used in prior work match closest to them. However, we
must note that without knowing the differences between the tra-
jectories used in previous works and our trajectories as well as the
differences in their server log datasets and our web tracking dataset,
this is a less than optimal comparison.

chance that a randomly chosen woman has higher pre-
dictability than a randomly chosen man.

• Age: For studying whether users of different ages demon-
strate different browsing behavior and hence are pre-
dictable to differing extents, we divided our set of 1, 455
users into six age groups: [18-24, 25-34, 35-44, 45-54,
55-64, 64-80] which contain [161, 267, 231, 357, 347,
70] users respectively (see Table ??). Following the same
procedure as above, we applied the two-sample KS test to
the probability distribution of users in every pair of age
groups. As before, we also computed Cliff’s delta. We
show the pairs of age groups for which the differences
were significant in Table ??.10 We note that the “middle-
aged” users (35-44) are typically lesser predictable than
users of most other ages, as shown in the table. Interest-
ingly, even among the “young” users (18-24 and 25-34),
d = −0.24 indicates a 24% chance that a randomly cho-
sen user below the age of 24 has higher predictability than
a randomly chosen user above 24 years of age. We show
the distribution of the predictability of users in different
age groups in Figure 8(b).

Browsing Behavior Likely, the differences in predictabil-
ity between men and women and young and older people
can be explained by differences in their browsing behavior.
We, therefore, analyze the impact of users’ browsing char-
acteristics on the predictability of the domain visited in the
next time bin (using T stat trajectories) and analyze differ-
ences between the behavior of different groups. We observe
similar trends for the next visited categories and other trajec-
tories but omit the results for brevity. For this analysis, we
constructed some augmented features for each user in our

10To adjust for multiple pairwise comparisons (n = 15), we
apply the Bonferroni correction (Shaffer 1995). Doing so, we set
alpha value for the entire set of age-based comparisons to α = 0.05
by setting alpha value of each comparison to α/n = 3.3 × 10−3.
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Age KS test Cliff’s
groups KS score p-value delta

18-24 & 25-34 0.19 8.3× 10−4 −0.24
18-24 & 35-44 0.26 1.8× 10−6 −0.34
35-44 & 45-54 0.16 6.2× 10−4 0.19
35-44 & 55-64 0.21 3.1× 10−6 0.25
35-44 & 65-80 0.28 2.1× 10−4 0.27

Table 2: Differences in the predictability of users of different
age groups. (Only significantly different pairs included.)

dataset based on their web browsing behavior. We then ex-
amined how the users’ maximum predictability varies with
these browsing features using Pearson’s correlation coeffi-
cient r. Next, we describe our constructed browsing features
and the variation of predictability with them.

• User activity: We quantify how active a user is via the to-
tal active seconds that the user is browsing and the count
of the user’s total domain visits during our one-month ob-
servation period. We find that predictability is positively
correlated with total active seconds that the user spends
browsing (r = 0.4001); however, it is not correlated with
the total domain visits (r = 0.0074).

• Diversity of user interests: We capture how varied user’s
interests are, as the number of distinct domains and cate-
gories that the user visits. We observe that the more varied
a user’s interests are, the lower is the user’s predictability
as indicated by a negative correlation between predictabil-
ity and number of distinct domains (r = −0.2282) and
categories (r = −0.1616) visited.

• User stationarity: When a user spends more amount of
time on average on each visit to a domain, we consider
the user to have more stationarity in their browsing be-
havior since they are stationary on a domain for a long
time before moving to another. Therefore, we consider
the degree of stationarity in a user’s browsing trajectory
to be captured by the mean and median amount of time
spent on each domain visit. In both cases, we observe a
strong positive correlation between predictability and sta-
tionarity in the user’s browsing, with r equal to 0.6502
and 0.3320, respectively. This increase in predictability
with the increase in stationarity in users’ browsing behav-
ior also complements our results in Section “Impact of
Design Decisions on Predictability”.

Gender-based differences in Browsing Behavior While
it is interesting that women are more predictable than men,
the higher predictability for women in our dataset can po-
tentially be explained by the lower diversity of interests
(given by the number of distinct domains visited) for women
(M=140.22, 95% CI [132.16, 148.29]) than men (M=161.46,
95% CI [151.81, 171.13]), and higher stationarity (cap-
tured as mean seconds spent per domain visit) for women
(M=37.33, 95% CI [35.54, 39.14]) than men (M=33.14, 95%
CI [31.47, 34.83]).

Age-based differences in Browsing Behavior In the
analysis presented earlier, we found that the “middle-aged”
users (35-44) are typically lesser predictable than users of
most other ages. We observe that the users in the age group
35-44 have the least amount of stationarity in their brows-
ing with the lowest mean amount of time spent per domain
visit (M=29.32, 95% CI [27.21, 31.42]). This low station-
arity could indicate that users in this age group perform a
large variety of tasks on the Web. Even among “young”
users (18-24 and 25-34), higher predictability of users be-
low 24 can partially be explained by their higher stationar-
ity (M=34.44, 95% CI [31.17, 37.72]) as compared to users
above 24 (M=29.36, 95% CI [27.74, 30.97]).

Comparing Predictability in Physical- and
Cyber-space
Finally, we briefly compare our computed predictability
values for mobility in cyberspace with those presented in
prior work for mobility in the physical space. We ob-
serve that the mean predictability of the next visited lo-
cation is lower in cyberspace (85% for stationary and
59% for non-stationary trajectories) than in physical space
(93% for stationary (Song et al. 2010b) and 71% for non-
stationary (Ikanovic and Mollgaard 2017) trajectories).11

Also, while we do observe differences in the distribution
of predictability in the cyberspace for users with different
demographic attributes, such gender- and age-based differ-
ences were not observed for the predictability in the physical
space (Song et al. 2010b).

Discussion & Future Work
In this work, we adapted prior work on mobility in phys-
ical space to present an information-theoretic framework
for estimating the theoretical limits of the predictability of
people’s mobility on the Web and provided some practical
guidelines for its application. We applied the framework to
a dataset of German users to demonstrate that people ex-
hibit web routineness. Users’ repetitive visitation patterns
increase the theoretically achievable predictability of their
web browsing behavior to up to 85%. We also observed
gender- and age-based differences in the predictability of
users’ web browsing behavior. We highlighted that behav-
ioral differences between demographic groups could partly
explain these differences.

Framework premises In our paper, we analyzed the un-
certainty embedded in time series (i.e., web trajectories),
which enabled us to estimate the predictability upper bounds
of users’ trajectories on the Web. We highlight two rele-
vant aspects of this framework. First, this upper bound as-
sumes that individuals are somewhat stationary and unlikely
to change their web browsing behavior drastically. In our
analyses, we failed to recognize drastic changes during the

11It is worth noting that while we do compare the predictability
results in physical- and cyber-space, it is not clear what the compa-
rable values of ∆t should be. Since we observe similarly reduced
predictability for non-stationary trajectories also, we believe the re-
duction in predictability in cyberspace is a robust result.
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observation period of one month. Future work could exam-
ine whether our results hold if one analyzes data that spans a
more extended period (e.g., several years). Second, this up-
per bound tells us the theoretical upper limit to correctly pre-
dict an individual’s future location by restricting ourselves to
web tracking data only (i.e., location sequences). We show
that having just this type of data grants one with a high po-
tential predictive power. However, this upper bound is likely
to increase by using different kinds of data, such as users’
characteristics (e.g., demographic and behavioral features),
visited locations’ characteristics (e.g., topical categories), or
temporal features (e.g., time of the day when web location
was accessed, duration of access); these are also directions
for future research.

Data limitations We focused on a dataset limited to one
country and desktop browsing only. We are aware that a sig-
nificant amount of browsing happens over mobile devices. In
the future, we would like to compare our results for desktop
browsing with those for mobile browsing. Moreover, there
is always a chance that some of the web browsing activity
that we analyze was not generated by humans but by bots.
However, we believe this is unlikely for our dataset since the
panelists’ behavior is closely monitored by the panel com-
pany, and the panelists also take part in frequent surveys. In
this regard, this type of data is of high quality and allows
ethically studying the dynamics of human behavior on the
Web.

Future work In the future, we would like to expand our
current study to model the impact of more demographic and
behavioral attributes of users and to include users from mul-
tiple countries to observe cross-cultural differences in the
routineness of people on the Web. We would also like to ex-
plore the definition of distance measures or cost functions
of moving from one web location to another to broaden our
analysis to use distance-based or cost-aware models of mo-
bility (e.g., radius of gyration). Another line of further re-
search concerns the privacy implications of our work. By
progressively removing available browsing history data for
a user and studying the change in predictability for the next
visited location, we can estimate the privacy risks against
an attacker who may get access to a user’s partial or full
browsing history. Finally, in this work, we estimate the the-
oretical limits of predictability achievable on account of the
routineness that people demonstrate in their web browsing
behavior. Designing specific prediction algorithms to attain
this theoretical maximum performance could be pursued in
the future.
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