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Abstract

Social interactions between people are a central mechanism
by which behavior spreads. Several field studies have shown
how observing peer behavior affects ones own behavior in a
wide range of domains including health, information diffu-
sion, advertisement, and education. However, the role of ob-
serving peer experience or outcome—the reward for the ob-
served peer behavior—has largely gone uninvestigated. Here
we examine evidence from a large-scale online setting, game
play records from League of Legends match-ups, where we
are able to disentangle the effects of observing peer behav-
ior from observing peer experience. We find that in addition
to positive peer effects from observing behavior, the effect
is accentuated by observed experience, with a large positive
effect when observing a good outcome and a small (but still
positive) effect when observing a bad outcome. We further
find that this experience-driven peer effect is moderated by
time, becoming more pronounced when less time passes be-
tween observing the positive outcome and making the de-
cision. Finally, we find mixed evidence of heterogeneity by
skill, finding some settings where the experience-driven peer
effect is stronger among high-skill users and others where it
is stronger among low-skill users. Our findings demonstrate
the importance of the role of observed peer experience be-
yond peer behavior, and elucidate important heterogeneities
in experience-driven peer effects. We anticipate this result to
be of use to both practitioners and theoreticians of social in-
fluence. For example, online platforms may wish to broadcast
the positive outcomes of peers, more than mere behaviors,
when a user performs a behavior desirable to the platform.
Furthermore, efforts aimed at maximizing the social spread
of a product may benefit from modeling experience-driven
peer effects as part of the spreading process.

Introduction
A wide variety of human behaviors spread via peer to peer
social interactions. These peer effects have been shown to
cause people to exercise (Zhang et al. 2015; Aral and Nico-
laides 2017), interact with advertisements (Bakshy et al.
2012a), learn (Hoxby 2000), and share information (Bakshy
et al. 2012b). In addition, a separate vein of both empiri-
cal and theoretical work explores how network structure af-
fects the manner by which behaviors spread, including ideas
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such as complex contagion where multiple peers must adopt
for a behavior to spread (Centola and Macy 2007). Further-
more, extensive investigation has gone into how to seed in-
terventions as to maximize the spread of a behavior (Kempe,
Kleinberg, and Tardos 2003; Centola 2010).

An understanding of peer effects is especially relevant to
the design of web platforms, as their design inherently dic-
tates how peer effects unfold and information spreads, influ-
encing how users behave on the platform. Furthermore, be-
cause platforms can control what peer behavior a user sees,
they offer the ability for researchers to randomize peer ob-
servation, allowing for accurate measurements of peer ef-
fects in various settings. The detailed trace data which comes
along with these online observations also signals an oppor-
tunity to understand in detail the mechanisms by which peer
influence occurs. Analogous to Anderson, Kleinberg, and
Mullainathan (2017), who use a large scale chess database
to closely examine what factors lead humans to make errors
in decision making, we can study what factors, including ob-
served experience, attenuate or amplify peer influence.

Peer influence could plausibly affect many separate parts
of a decision making process. Consider a decision maker
who is trying to choose a behavior from a set of options and
observes a peer perform a certain behavior. The observation
may influence the decision maker in the following ways:
• Information-Driven: If a decision maker does not know

a behavior is possible, observing a peer do that behav-
ior will modify the set of choices that the decision maker
considers.

• Behavior-Driven: Observing a peer choose a particular
behavior over other behaviors may increase the agent’s
posterior estimate of the result of the behavior, as they
may infer the peer believes it is superior to alternative be-
haviors.

• Experience-Driven: If experiences are observable by the
agent, they may update their posterior belief about the
result of an observed behavior with the observed expe-
rience.

Further, in the dichotomy of informational and direct-benefit
effects (Easley and Kleinberg 2010), all three of these peer
effects should be considered to be informational, in the sense
that they all focus on social learning rather than peer exter-
nalities. These effects are also generally distinct from and
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should not be confused with normative, interpersonal con-
cepts such as conformity (Asch 1956; Wheeler 1966).

In this work we do not study information-driven effects
because in our setting, League of Legends, users choose
from a fixed set of displayed choices. We instead focus on
disentangling behavior-driven and experience-driven peer
effects. Prior empirical work on social influence has not typ-
ically focused on the role the observed outcome of a behav-
ior plays, instead only investigating whether the behavior
was observed. In reality, whether a behavior spreads may
strongly depend on the outcome of peers and the observa-
tion of those outcomes. For a farmer considering whether to
buy weather insurance, peer effects are plausibly (and found
to be) stronger when their peers have secured insurance pay-
outs versus not (Cole, Stein, and Tobacman 2014). One can
easily imagine analogues in other domains: a patient in a
medical setting may undertake a treatment more readily (or
only) if a peer has had a good outcome, or a web user may
re-share a news story posted by a peer more readily (or only)
if it receives many likes. These experience-driven peer ef-
fects are distinct from a more behavior-driven effect, where
only the behavior but not the outcome is seen. The idea that
good payouts should be influential on adopting a behavior is
consistent with a Bayesian updating model (Banerjee 1992;
Gallagher 2014) where individuals use observed experiences
of their peers to learn the results of various behaviors and
choose the behavior which maximizes expected utility, and
is related to the concept of social comparison, where an indi-
vidual uses a peer’s performance to judge one’s own hypo-
thetical performance (Martin, Suls, and Wheeler 2002). In
this work, we seek to quantify the relative strength of these
effects in a highly instrumented setting.

Beyond empirical work, theoretical models of social
influence often touch upon one of experience-driven or
behavior-driven effects, but not the other. For instance, much
of the literature on social herding (Banerjee 1992) constructs
models based on the experience-driven mechanism, updat-
ing posteriors from observed experience, but ignores that
observing peer behavior independently of payout may affect
decision making. On the other hand, many cascade models
consider the behavior-driven mechanism, where nodes are
“activated” into behaviors depending on the number or pro-
portion of neighbors who are “activated”, regardless of ob-
served experiences. The theoretical literature on influence
maximization allows for some heterogeneity in the strength
of the tie/influence (Aral and Dhillon 2018), but largely uses
simplifications and does not consider experience-driven and
behavior-driven effects separately.

A recent exception to the neglect of the role of observed
experience is a line of work examining the question of
whether observed payouts affect behavior adoption beyond
observed behavior in weather insurance adoption patterns.
In rainfall index insurance, farmers receive a payout on their
insurance policy if rainfall at a measured station is out-
side an acceptable range for growing crops, insuring them
against catastrophic weather. A field experiment with farm-
ers in rural India finds that farmers are more likely to adopt
if policies purchased in the previous year by fellow villagers
had high returns (Cole, Stein, and Tobacman 2014), sug-

gesting experience-driven peer effects at an aggregate, vil-
lage level. A separate field experiment with Chinese farm-
ers (Cai, De Janvry, and Sadoulet 2015) finds that observ-
ing peer farmers purchase index insurance without knowing
previous payoffs has no effect on whether farmers adopt, al-
though they do find spillover effects from information dif-
fusion, suggesting that there is not much behavior-driven
peer influence. Together, these studies tentatively suggest
that the main mechanisms by which farmers are influenced
by peers into adopting rainfall insurance are information and
experience-driven, and that there may be experience-driven
peer influence even in settings where there is no behavior-
based peer influence, further emphasizing the importance of
disentangling the two effects.

One heterogeneity in peer influence that researchers have
thought about are the disparate impacts of observing differ-
ent types of peers. For example, Granovetter makes the point
that strong ties are individually stronger than weak ties, but
the latter are more numerous, and thus more likely to pro-
vide job opportunities in aggregate (Granovetter 1977). Sim-
ilarly, observing two peers who are not socially connected
adopt a behavior may be less (or more) influential than ob-
serving two peers from the same social circle do a behavior
(Ugander et al. 2012; Su et al. 2020). Many of these hetero-
geneities can be thought of driven by the position of alters
in the network, but independently from that, the social status
of the observed peer may also play a role in the strength of
the peer effect (Paluck, Shepherd, and Aronow 2016). While
interesting, we do not study the role these structural factors
play in this work.

Understanding the role of observed experience in behav-
ior contagion informs many decisions made by practitioners
in the space. For example, if observing positive experiences
is the central mechanism mediating peer effects, the decision
of whether a social intervention will work may be strongly
informed by whether the intervention comes with a posi-
tive experience, and further whether peers can easily observe
those experiences. It may also inform influence maximiza-
tion efforts: if both observed experience and behavior are
important, jointly modeling both experience and behavior
may result in better performance compared to a contagion
model based on only one mechanism. Instead of solely op-
timizing based on the network structure, this could result in
seeding which more heavily prioritizes individuals who are
predicted to have highly visible positive experiences. In par-
ticular, strong experience effects suggest that influence max-
imization may be more useful in settings where the network
is strongly homophilous in expected (positive) experiences
of the intervention.

In this work, we identify a large-scale online setting where
we can investigate in detail the roles that both behavior and
observed experience play in behavior adoption. We carry
out our investigation on the decision of champion (charac-
ter) selection in League of Legends (LoL), the most popu-
lar video game in the world, with over 100 million monthly
and 8 million daily active users (Volk 2016; Goslin 2019)
in 2019. Online settings are widely used to study social in-
fluence due to their large size and detailed trace data. Fur-
thermore, games such as Second Life (Bakshy, Karrer, and
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Adamic 2009) have been used to study social influence in
settings where users organically make decisions, and LoL
itself has been used to study collective intelligence within
teams (Kim et al. 2017). We applied and were granted access
to the official LoL API, which we used to examine the match
history of a month of games for 20,000 players, observing
which champions each player and their counterpart on the
opposing team chose, giving us the observed behavior. We
further recorded whether their counterpart won or lost the
game, giving us the observed experience. We then ask: how
does observing behavior and experience affect which cham-
pions users select? To answer this question, we define a test
statistic measuring how often players choose the champion
they just observed, compute its empirical value, and gener-
ate its distribution under a range of null hypotheses where
we vary whether there are experience-driven and behavior-
driven peer effects. We find that there are both behavior-
driven and experience-driven peer effects in LoL champion
selection, where players are more likely to choose a cham-
pion if they observe it in their previous game. Further, we
find that the effect is diminished (but still positive) when
the champion is observed losing, and augmented when the
champion is observed winning. Investigating heterogeneity
in the experience-driven peer effect, we find moderate evi-
dence that it is moderated by time, becoming stronger when
the positive experience is more recent. These results are con-
firmed by two robustness checks we perform, where we vary
both the set of the users we consider as well as the experi-
ence metric.

League of Legends
There are three stages to playing a game of LoL: Match-
making, Champion Selection, and Multiplayer Online Bat-
tle Arena. First, players enter the matchmaking queue either
by themself or with a single friend. Each player chooses a
primary and secondary position out of the five total posi-
tions. From all the players in the queue, the matchmaking
algorithm attempts to choose 10 players with similar Elo rat-
ing, a system for rating player skill (Elo 1978), and assigns
the chosen 10 players to two teams of five (Isto 2013). It
also assigns the players to the 5 unique positions per team
based on their expressed preferences. We take advantage of
the randomization offered by matchmaking: controlling for
time and skill, users are randomly assigned to games, and
thus, peers to observe. Further, LoL’s matchmaking system
highly values balancing the two teams in a game, preferring
to “wait a little longer in the queue to get a fairer match”
(Isto 2013).

In the player selection phase, each player simultaneously
is given the option to choose one champion to ban. Then,
the players take turns choosing characters out of the pool
of 131 remaining champions, of which each champion may
be chosen at most once. This champion selection decision is
our main behavior of interest. In particular, we focus on the
champion chosen by the user’s opponent (the player on the
opposing team with the same position as the user), and see
if our user adopts that champion by selecting it in the fol-
lowing game. We also focus our analysis on games played
in one out of the five positions, top lane, which spends the

most time during the game fighting one-on-one with the op-
posing counterpart, due to differential champion popularity
per position1.

In the Multiplayer Online Battle Arena stage, all 10 play-
ers control the character they chose in a shared Battle Arena.
Simply put, members of each of the two teams work with
their teammates and attempt to destroy the other team’s
base while preventing the other team from destroying theirs.
Games typically last for around 30 minutes. This is the phase
where the player of focus observes the experience resulting
from their opponent’s choice. In particular, we use the sim-
plest notion of observed experience: whether their opponent
wins the game. Later, we perform analyses to confirm that
our results are robust to the choice of position and measure
of experience.

Research Questions

We are interested in whether there are peer effects for cham-
pion adoption: does observing an opponent pick a champion
increase the probability that a player chooses that cham-
pion in their subsequent game? In other words, are there
behavior-driven peer effects? Further, we are interested in
the role of observed experience: if the player observes their
opponent having a good experience with their champion se-
lection, are they more likely to adopt? Here we measure ex-
perience by observing if their opponent won the game, but
later we find that our results are robust to the chosen experi-
ence measure. In addition to studying observed experience,
our main construct of interest, we also examine how it inter-
acts with both the sophistication of the user and the recency
of which it was observed. With respect to sophistication, we
want to understand if increasing sophistication with a system
interacts with the role of peer effects, which occurs for other
decision-making heuristics such as loss aversion (Haigh and
List 2005). Additionally, studying users of varying rank al-
lows us to check for heterogeneous effects of observed ex-
perience by sophistication. The Bayesian learning interpre-
tation of peer effects suggests this may be the case because
more sophisticated users may have stronger priors on ex-
pected experience resulting from choices, and their poste-
rior beliefs may not update as much from a single instance
of data compared to a less sophisticated user. The effect of
recency, or the time gap between the user observing the peer
behavior and making a decision, on the peer effect is an im-
portant question for the design of interventions: is it impor-
tant to show the peer behavior and experience right before
the decision, or is it more beneficial to have time between?

Data

We examine the match histories for one month of play
(September 2018) for the players ranked 1-10,000 and
100,000-110,000 on the ranked ladder for the North Amer-

1League of Legends teams have 5 members, each playing a dif-
ferent position: top lane, mid lane, bottom lane, support, and jun-
gle. Each position corresponds to different parts of the map and
different champions are popular for different positions.
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Figure 1: The number of games users played with each
champion by skill level, with champions organized by pop-
ularity, showing the heterogeneity in champion popularity.

ican LoL server (at the start of the month)2. We use the
LoL API to scrape their match history, obtaining records of
864,305 games by 16,629 players, excluding the ∼5% of
games where the Riot API failed to record the position of
the opponent. For each match, we observe the champion c
the player chose, the champion o the opponent chose (again,
focusing only on players and opponents in the “top lane” po-
sition), the champion s the player chose in their next game
where they play the same position, k which denotes whether
the player is among our high skilled (rank 1-10,000) or low
skilled (100,000 - 110,000) sample, and the observed expe-
rience ei (whether the opponent won or lost). Thus, each
point of data is a tuple of form (ci, oi, si, ki, ei). We call
the set of all observed games D = {(ci, oi, si, ki, ei)}. To
avoid merely detecting when an opponent chooses the char-
acter that our player wanted to play, we filter our data to
only contain games where the user picks first: that is, c is
picked before o and thus there is exogenous variation in o
among users who choose the same c. Table 1 and figure 1
summarize our filtered data, showing the number of scraped
players, how many games they played in our month of data
in the top lane where they chose first, and how often each
champion was played3.

Statistic High Skill Low Skill
Total Games 28817 10698
# Active Players 3705 2554
Mean GPP 7.78 4.19
SD GPP 10.84 6.39

Table 1: Summary statistics of scraped games where our
scraped player chose first and played the “top lane” position,
where GPP stands for games per player.

Analysis
After playing a game where they’ve observed the champion
their opponents picked and the outcome of that game, we

2Full analysis code available at https://github.com/wicai/
experience driven

3We note that champion winrates and popularity fluctuate over
time and are loosely related.

are interested in whether the players in the dataset choose, in
their subsequent game, the same champion: in other words,
whether si = oi. To this end, we define a test statistic m,
the proportion of games per player where si = oi, averaged
over all players, which will be central to the analysis:

m(D) = 1

P

P∑
p=1

1

np

np∑
i=1

1sp,i=op,i .

Within the full data D, we have P unique players and np

games played by player p, where sp,i and op,i are the cham-
pions that player p chose in their subsequent game and ob-
served in their current game respectively. Informally we call
m the match proportion.

Randomization Inference
In order to understand if we are truly observing any sort of
peer effect in the observed data, we compare the observed
value of m to its distribution under the null hypothesis that
there are no effects of peer observation or observed experi-
ence on champion selection. To compute such a null distri-
bution, we can take the observed data D and create a ran-
domized dataset D′. In D′, we resample the champions and
experiences that each player observes. That is, for each game
gi = (ci, oi, si, ki, ei) inD, we generate a corresponding tu-
ple in D′ as g′i = (ci, o

′
i, si, ki, e

′
i). Then, we compute the

distribution of m(D′) over many instances of D′. In other
words, we ask the question: what would the distribution of
the test statistic be if there were no peer effects and observed
experience did not affect behavior adoption?

The remaining technical question is how to sample o′i and
e′i. First, we resample o′i from the distribution of observed
champions from games played at the same skill level in
the same week. This design avoids selection effects caused
by differences in the distribution of observed champions by
skill or trending popularity of champions over the month of
observations. Then, we resample e′i from the empirical dis-
tribution of ei in games played at the same skill level in the
same week where the player observed champion o′i. That is,
we sample4

e′i ∼ Bern(

∑n
i=1 ei1oi=o′i∑n
i=1 1oi=o′i

)

In addition to the full null hypothesis, described above,
where neither the observed champion nor experience mat-
ters, we consider two weaker null hypotheses:

1. Behavior-driven null: The observed champion matters,
but not the observed experience.

2. Change-driven null: The observed experience matters but
not the observed champion.

The behavior-driven null corresponds to a purely behavior-
driven peer effect, where peer effects are driven solely by

4Sampling e′i from a Bernoulli distribution parametrized by the
mean observed experience can be thought of as a parametric boot-
strap. We prefer this over shuffling because of the small number of
games where rare champion are observed, where shuffling may not
adequately express the true randomness of observed experience.
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observing the behavior of peers (i.e., the users are influenced
by what champions their peers chose, but not whether they
observed the peers winning with them). The second hypoth-
esis, the change-driven null, corresponds to a model where
user behavior changes according to whether they win or lose,
irrespective of which champion they observe. The purpose
of this null is to disentangle two observed experience ef-
fects which are seemingly conjoined in this setting. Because
one team wins and the other team loses in LoL, whenever
a player observes the opposing champion win, that player
must have lost the game. This latter null captures the possi-
bility that players may simply get frustrated when they lose
and pick a different champion than the one they played, but
which champion they lose to does not affect their choice.
We might expect m to be higher under losses under the
change-driven null than under the full null hypothesis be-
cause champions are selected without replacement, so the
champion the player observes cannot be the same as the one
they were originally playing. Therefore, if players tend to
change champions after a loss, even without a predilection
for the champion they observed over other champions, they
might still be more likely to choose the observed champion
because it’s not the one they were originally playing. Un-
der this null, there is still a experience-driven peer effect –
it’s just that the impetus is to simply change one’s behav-
ior (thus the name change-driven), not to adopt the observed
behavior.

To simulate m under these two hypotheses, we change
how we resample o′i and e′i from the full null. Under the
behavior-driven hypothesis, we simply let o′i = oi, as we
want to preserve the original observed champion, but resam-
ple ei in the same manner as before. On the other hand, for
the change-driven hypothesis we resample o′i as before, but
do not resample ei. In this manner, we preserve the original
experience observed but modify the observed champion, in
line with the hypothesis that the observed champion does not
matter since the player is only being influenced by losing.

In addition to varying the null hypothesis under which we
simulate the distribution of m, we also vary the set of games
D we compute m over. For instance, we can separate games
played by low skill and high skill players, Dl,Dh ⊂ D,
games where users observed a positive or negative experi-
ence (win or loss),D1,D0 ⊂ D, or evenDc for games where
a certain champion is observed. Importantly, the randomiza-
tion is always done at the level of D, the full dataset, and
then D′ is subsetted to match the subset of interest.

Consequentially, some nulls only affect the distribution
of m over certain subsets. First, m(Dx) = m(D′

x) under the
behavior-driven null unless x includes a subset by observed
experience. This is because under the behavior-driven null,
1sp,i=op,i remains the same for all games, so m only changes
if the set of games it is computed over changes. Then, m will
only vary if resampling the observed experience will change
the games included in the subset of interest. For instance,
whether a game goes into D′

1 and D′
0 depends on which ex-

perience is sampled for that game. Thus, we only consider
the behavior-driven null when we subset the data by experi-
ence. Similarly, the change-driven null will not yield a dif-
ferent distribution of m compared to the full null unless we

subset by experience: in both nulls we resample champions,
and then as per above further resampling experience (as in
the full null) only has an effect if we subset by experience.

Peer Effect
First we compute the test statistic m on the entirety of
the dataset and its distribution under the null hypothe-
ses. The observed m(D) = 0.0205 and the 95% CI is
[0.01337, 0.01759] under the full and change-driven nulls
(recall these yield the same distribution of m). We find
that the observed m is higher than expected under these
nulls, meaning that a user observing a peer play a cham-
pion increases the chance that in the following game the user
chooses that champion.

Having confirmed that peer effects exist in this setting, we
move on to disentangling behavior-driven and experience-
driven peer effects. To this end, we compute m along with its
null distributions for the data subsetted by experience (ob-
served win vs observed loss), shown in figure 2. We find the
observed m is higher than expected under both the change-
driven and full null hypotheses, meaning that we observe
peer influence for champions observed both winning and
losing. This suggests that observed experience is not the only
mechanism by which peer influence occurs in this setting,
and that there is purely behavior-driven peer effect. How-
ever, we note that the difference is far larger for games where
the user observes a win than in those where the user observes
a loss: this difference is quantified in the “Observed Win
vs Loss” comparison in table 2 and is statistically signifi-
cant. We can further test this line of inquiry by comparing m
to its distribution under the behavior-driven null hypothesis,
where we only resample whether the user observed a win or
a loss. The observed m for games where the user observed
a champion win is higher than it is under the behavior-
driven null and m for games with observed losses lower,
meaning that the peer effect cannot solely be explained by
which champion the user observed, thus confirming the ex-
istence of experience-driven peer effects, where users are
more likely to adopt a champion if they observe a positive
experience associated with it.

Heterogeneous Peer Effect: Skill Now, we take advan-
tage of the scale of our data to investigate heterogeneities by
skill and time in the experience-driven peer effect. First, we
investigate player skill as a construct by itself, and compute
m along with its null distributions for the data subsetted by
skill (low skill vs. high skill), finding that m(Dh) = 0.02061
with a null 95% CI of [0.01264, 0.01737] under the full and
change-driven nulls and m(Dl) = 0.02035 with a null 95%
CI of [0.01277, 0.02064]. Our results indicate that the ob-
served m is higher than expected under the null for both
skill levels, but only statistically significant at the p < .05
level for high skill players (although directionally the same
for low skill players). The difference between m and its null
mean is higher for high skill users, as shown in table 2 un-
der the “High vs Low Skill” comparison, although the dif-
ference in differences is not statistically significant. Moving
to the interaction between skill and experience, we compute
m for each of the four conditions of (high skill, low skill)
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Figure 2: The match proportion m by observed experience,
with 95% null confidence intervals in blue. The point es-
timates are above the CIs for the change-driven (middle)
and full null (right) hypotheses, indicating that peer effects
are present in all skill × experience conditions and that ob-
served experience is not the only mechanism at work here,
although the higher difference in the observed win condi-
tions suggests that observing a positive experience increases
the strength. This is further confirmed by examining the re-
lation of the point estimates to the null CIs from the behavior
driven hypothesis (left), which shows that the point estimate
for m is higher under wins and lower under losses than it
would be if observed experience did not affect m.

× (observe opponent win, observe opponent loss). We com-
pare these values with the distribution of m under all three
null hypotheses. Figure 3 shows the results of this analysis.
We first consider the change-driven and full nulls. We find
that directionally, all point estimates for m are higher than
their distributions under these null, although not all differ-
ences for games with observed losses are statistically signif-
icant at the p < .05 level. This suggests a certain baseline
of behavior-driven peer effect is occurring at all skill levels
for all observed experiences. Further, we indeed find signif-
icant evidence of heterogeneity. In fact, the entirety of the
experience-driven effect in this setting is actually driven by
high-skill users, where m is not significantly different for
low skill users between losses and wins (again quantified in
table 2). Finally, we can again examine the behavior-driven
null to look for evidence of experience-driven peer influ-
ence. We confirm that experience-driven peer effects only
exist in the high skill setting, where the observed m is higher
in observed wins and lower in observed losses than expected
under the null, whereas in the low skill setting it is squarely
in the distribution expected under the null.

Heterogeneous Peer Effect: Time In addition to so-
phistication, we also investigate the effect of how much
time has passed between the user observing an experi-
ence and making the decision of which champion to play
in their next game, which we call the timegap. Again,
we first consider the timegap by itself. We compute m
along with its null distributions for the data subsetted by
timegap (short (< 1hr) vs. long (> 1hr)), finding that af-
ter a long break m(Dlong) = 0.01961 and the 95% null CI

Figure 3: The match proportion m for each of the 4 skill ×
observed experience conditions, with 95% null confidence
intervals in blue. First considering the change-driven and
full null hypotheses, we find that directionally all observed
m are above that expected under the null, although we lack
the power to reach p < .05 for all interaction effects. We
find that the match proportion m exceeds its expectations
under the null the most when high skill players observe a
win. We find that high skill players have higher m after ob-
served wins and lower m after observed losses than expected
under a behavior-driven null but low players do not, suggest-
ing that in this setting experience-driven effects are mainly
observed in sophisticated users.

is [0.0132, 0.01831] under the full and change-driven nulls.
After a short break, m(Dshort) = 0.02325 and the 95% null
CI is [0.01278, 0.01786] under the full and change-driven
nulls. Regardless of the length of break, we find that the ob-
served m exceeds its expectation under the null, but we find
that the difference is higher when the user only takes a short
break: the difference is statistically significant at the p < .05
level and quantified in table 2 under Short vs Long Timegap.
Moving on to the interaction between the timegap and the
experience-driven peer effect, in figure 4 we show the ob-
served m for each of the four conditions of (short timegap,
long timegap) × (observe opponent win, observe opponent
loss) along with its null distribution under our three null
regimes. We find that the experience-driven peer effect is
larger and only statistically significant at the p < .05 level
when the user plays the next game within an hour of the pre-
vious one, although the difference in the experience-driven
peer effect between the two timegap settings is not statisti-
cally significant. Those differences are quantified in table 2,
under Observed Win vs Loss, (Long/Short) Timegap.

By Champion
In addition to aggregating the strength of peer effects over
all champions, we can also do the analysis on individual
champions. In particular, we are curious whether peer ef-
fects vary in some manner depending on the rarity of the
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Comparison Delta SE P-value Significance
1 High vs Low Skill 0.0020 0.00297 0.251
2 Observed Win vs Loss 0.0053 0.00248 0.016 *
3 Observed Win vs Loss, High Skill Players 0.0090 0.00288 0.001 ***
4 Observed Win vs Loss, Low Skill Players -0.0006 0.00447 0.552
5 Short vs Long Timegap 0.0042 0.00251 0.048 *
6 Observed Win vs Loss, Long Timegap 0.0031 0.00307 0.158
7 Observged Win vs Loss, Short Timegap 0.0079 0.00317 0.006 **

Table 2: Comparisons of the difference (Delta) between the observed value of m and its mean under the full null distribution
for a variety of scenarios, where the number of * corresponds to p < .05, .01, .001. We find that the difference between m and
its null expectation is not significantly different for high skill vs low skill users (row 1), but is significantly higher in games
where the user observes a win rather than a loss (row 2), suggesting experience-driven peer effects. Further, we find that this
difference is mainly driven by high skill users (rows 3, 4). Considering heterogeneity by time, we find that m exceeds its null
more when the user chooses their next champion within an hour of observing the experience (short timegap) than waiting more
than an hour (row 5). Furthermore, we find that the experience-driven peer effect is only significant in the short timegap regime
(rows 6, 7), although directionally the same in both timegap settings.

Figure 4: The match proportion m by whether the user took a
long break (> 1 hr) before the next game or not, and whether
they observed a loss or a win, along with its null distribution
under each of our three nulls. We find that under the change-
driven and full nulls, the amount by which m exceeds its ex-
pectation under the null is higher when the user does not take
a long break after observing the positive experience, sug-
gesting that the effect of observing the champion win dimin-
ishes in influence over time. Examining the behavior-driven
null, we find that the observed m is higher than the null after
observed wins and lower after observed losses, suggesting
experience-driven effects in both timegap settings, but m is
further from its expectation under the behavior-driven null
when the user does not take a long break, suggesting that
experience-driven peer effects are stronger in that regime.

champion. In figure 5 we plot the difference between the ob-
served m and its mean under the full null distribution for all
champions. We find that in general, more popular champi-
ons have larger boosts in match proportion compared to less
popular champions - that is, the difference between the ob-

Figure 5: Difference between observed m and its mean (la-
beled Delta) under the full null, by champion popularity. We
find a positive correlation between champion popularity and
Delta, suggesting that the most popular champions benefit
the most from the peer effect. The outliers and steadily de-
creasing points for popularity range 0.00 to 0.02 are artifacts
resulting from unpopular champions being observed infre-
quently and thus having small denominators in inference:
for example, one outlier has an observed m of 1

13 . Corre-
spondingly, many observed m are 0. However, under the
null, champions have monotonically increasing null m (and
thus, decreasing Delta) as popularity increases. Thus, below
popularity 0.02, many champions have empirical m of 0 but
a steadily decreasing null m, corresponding to steadily de-
creasing points. Inferences on individual unpopular cham-
pions have low power but are not heavily weighted in our
aggregate analyses since unpopular champions are rarely ob-
served.

served m and the m under the full null for games where a
certain champion was observed was higher for already pop-
ular champions. Taking the point of view of a random utility
model, it could be that these champions were already close
to the threshold for being chosen. As popular champions,
we might expect many people to already have high utilities
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for them, which were pushed beyond the choice threshold
by the peer observation. This phenomenon suggests a “rich
get richer” model for the role of peer effects in this setting,
where champions who are already more popular and thus
observed more also get a larger boost from peer effect per
observation because there are more users on the margin for
being converted.

Robustness
Here we assess the robustness of our analysis to two choices
we made earlier: (1) using observed winning/losing as the
chosen metric of experience, and (2) limiting our analysis
the position of “top lane”, the position which spends the
most time alone fighting their counterpart, out of the 5 po-
sitions in League of Legends. Varying both the experience
and position considered, we find that our results largely still
hold, suggesting greater generalizability of the experience-
driven peer effect.

Another Experience Metric
Whether the user observed a win or a lose is a very intu-
itive measure of experience, but also depends on the actions
taken by the opposing team as a whole instead of just the
user’s counterpart. Here we consider a measure of experi-
ence which is more tied to how the user performed rela-
tive to their peer counterpart. In particular, we investigate
the Kills/Deaths/Assists (KDA) ratio, given by kills+assists

deaths ,
a measure of how many takedowns (kills + assists) of en-
emy champions a player helped with compared to how many
times they were taken down by the enemy team (deaths). We
repeat the parts of our main analysis related to observed ex-
perience with respect to this new experience metric. Our re-
sults are quantified in table 3. We find that there is indeed an
experience-driven peer effect, where the difference between
the observed m and its expectation under the null is higher
when a user observes a peer get a higher KDA than when
observing a peer get a lower KDA (row 1). We confirm our
results regarding heterogeneity in skill, again finding that the
experience-driven peer effect is largely driven by high skill
players (rows 2, 3). Finally, we also confirm our results on
heterogeneity by the time between games: m exceeds its null
by a significant amount only when subsetting to observations
with a short timegap, although the difference is directionally
the same for both timegaps (rows 4, 5).

Another Position
In addition to varying the considered metric, we also vary
the subset of users we consider by looking at users who play
the “mid lane” position. Repeating our analysis (quantified
in table 3), we again find evidence of our main experience-
driven effect, where m exceeds its null expectation more
when observing a win than observing a loss (row 7). We
again search for heterogeneity by skill and timegap, finding
that for the overall peer effect, neither is a strong moderator
(rows 6, 10). The finding for skill echoes that of our main
analysis, but the finding for the timegap suggests that it is
not as strong a factor as we found in our main analysis. Fi-
nally, examining heterogeneity of the experience-driven ef-

fect, we find that the effect is more heavily driven by low
skill users in this setting (rows 8, 9), suggesting weaker con-
clusions regarding user sophistication than we might have
drawn from our main analysis. On the other hand, we find
that the experience-driven peer effect is still stronger follow-
ing a short timegap (rows 11, 12), confirming our previous
result.

Conclusion
In this work we investigate in-depth the roles that observed
experience, user skill, and the timegap play in peer effects
in the choice of champion selection in League of Legends.
We find positive evidence of peer effects in this setting, and
that the peer effect is stronger when observing a win than a
loss, although still positive in both instances. We rule out the
possibility that the effects are caused by losing the game ver-
sus observing a win by comparing the observed test statistic
to that of the change-driven null, instead attributing them to
observed experience. We find evidence the average strength
of the overall peer effect remains roughly the same between
users of varying skill level, and that it may be stronger if
there is only a short duration between observing the expe-
rience and choosing a champion (the overall effect is larger
in the top lane but not mid lane). We further find weak ev-
idence for heterogeneity of the experience-driven effect by
skill, where for top lane the experience-driven peer effect
was stronger in high skill users but in mid lane stronger in
low skill users. Finally, we find that the experience-driven
effect is higher when the user takes only a short (< 1 hr) time
between observing the experience and choosing a champion,
finding directionally the same result in both our main analy-
sis and our two robustness checks.

Returning to the breakdown of the possible effects ob-
serving a peer could have, the information, behavior, and
experience-driven hypotheses, we find strong evidence of
experience-driven peer effects which are responsible for a
large portion of the overall peer effect. The remainder could
be attributed to either the information or behavior-driven hy-
potheses, but the data leans towards the behavior-driven hy-
pothesis. Evidence of this comes from observing the peer ef-
fect by the rarity of champion, where we find that for rarely
played champion there are weaker peer effects than for more
popular champions. Under the information-driven hypothe-
sis, we would expect to see higher peer effects for rare cham-
pions, as those are called into attention less frequently. The
finding that observing a popular behavior is more likely to
marginally tip an individual into performing the behavior
than observing an unpopular behavior, combined with the
tautology that more popular behaviors are observed more,
suggest a “rich get richer” model of peer effects, where peer
influence mainly serves to make already-popular behaviors
get more popular.

We believe that this work informs efforts in influence
maximization and social interventions. The importance of
observing positive experiences suggests efforts to maximize
influence of interventions might be well served by seeding
users who will have strongly visible positive experiences,
especially ones connected to other such individuals. For ex-
ample, a public health intervention might be best seeded in a
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Comparison Delta SE P-value Significance
1 Observed Higher vs Lower KDA 0.0049 0.00181 0.003 **
2 Observed Higher vs Lower KDA, High Skill Players 0.0093 0.00218 0.000 ***
3 Observed Higher vs Lower KDA, Low Skill Players -0.0022 0.00331 0.748
4 Observed Higher vs Lower KDA, Long Timegap 0.0021 0.00314 0.247
5 Observed Higher vs Lower KDA, Short Timegap 0.0095 0.00324 0.002 **
6 High vs Low Skill, Mid Lane -0.0020 0.00266 0.771
7 Observed Win vs Loss, Mid Lane 0.0049 0.00217 0.011 *
8 Observed Win vs Loss, High Skill Players, Mid Lane 0.0039 0.00239 0.052
9 Observed Win vs Loss, Low Skill Players, Mid Lane 0.0067 0.00359 0.031 *

10 Short vs Long Timegap, Mid Lane 0.0009 0.00217 0.341
11 Observed Win vs Loss, Long Timegap, Mid Lane 0.0022 0.00275 0.210
12 Observed Win vs Loss, Short Timegap, Mid Lane 0.0090 0.00281 0.001 ***

Table 3: Comparisons in our two robustness checks, where we consider a different experience (observing a higher KDA) and
then a different position in the game (mid lane). We find our main effect of interest holds, where the increase in m over the
null (Delta) is significantly higher when observing a positive experience than a negative experience (rows 1, 7), meaning that
we still detect experience-driven peer effects even if we vary the measure of experience or the position considered. Revisiting
heterogeneity, we again find no evidence of difference in the overall peer effect by skill (row 6) in the mid lane, and contrary to
the top lane we find no evidence of the timegap mattering for the overall peer effect (row 10). Examining the heterogeneity of
the experience-driven peer effect, we find that although the experience-driven effects in our main analysis were driven by high
skill users, which is echoed in our KDA robustness check (rows 2, 3), for the mid lane analysis the effect is actually greater
in the lower skill players (rows 8, 9). Finally, examining heterogeneity of the experience-driven effect by timegap, we find the
effect is mainly driven by games with a short timegap (rows 4, 5, 11, 12), which is directionally the same as our main analysis.

cluster of individuals who will likely exhibit positive health
outcomes to their peers. Paradoxically, this may also suggest
that beginning an intervention by seeding in a vulnerable
population may actually inhibit the spread of the interven-
tion if some of the seed users exhibit negative experiences
to others, even if on average the intervention is more helpful
to those in the vulnerable population than others. Of course,
experience-driven peer effects are not the only factor which
should determine seeding. There can be other good reasons
to begin an intervention within a vulnerable population, and
they may be important enough to override the concern of ob-
serving negative peer effects. Furthermore, observed experi-
ences might belie the actual usefulness of the intervention: if
the intervention was in fact useless but the seed individuals
were going to be healthy no matter what, their peers might
mistakenly believe that the intervention would help them,
leading to bad outcomes. This suggests that seeding an in-
tervention in users who will have strongly visible positive
experiences should only be done when a policymaker has
strong prior knowledge that the intervention will be helpful
to those who might observe the intervention and see users’
positive experiences with it.

Finally, understanding the role observed experience plays
allows us to understand when social interventions may or
may not be expected to work. If experiences are not eas-
ily observed (for example, in single-instance decisions like
whether to apply for college, where most social ties are be-
tween individuals who are deciding at the same time), social
interventions may be less successful because they can only
appeal to behavior-driven effects, which may be weaker than
experience-driven effects. We hope that this work inspires
further work in identifying what factors, including status or
foreignness of the behavior, correspond to individuals adopt-

ing peer behavior, and how they interact with observed ex-
perience.
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