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Abstract

Node attribute prediction tasks arise in a wide range of classi-
fication tasks on social networks. Examples include detecting
spam accounts, identifying compromised accounts, and in-
ferring user demographics for targeted marketing. Despite the
prevalence of these types of tasks in machine learning and so-
cial science settings, clear problem definitions are lacking. Do
all nodes have to be connected in a single network instance?
What if there are labels in one network but not another? In this
work, we propose a taxonomy that distinguishes between dif-
ferent node attribute prediction tasks; we formalize the exist-
ing distinction between within-network and across-network
attribute prediction, which have been informally described in
prior work, and also introduce a variation we call across-layer
attribute prediction. With this framework in place, we observe
that methods framed as applicable to across-network tasks
have a history of being evaluated on across-layer problem in-
stances.While the methods do well in the across-layer setting,
we find that when evaluated in genuine across-network set-
tings, performance can be more limited than previously sug-
gested. We provide a way to analyze and possibly reconcile
this predictive performance gap, and highlight why across-
network prediction remains an important and open problem
domain.

Introduction

Predicting node attributes on networks is a problem with a
rich history in graph mining and the social sciences (Sen
et al. 2008; Wang, Gong, and Fu 2017; Jia et al. 2017;
Chakrabarti et al. 2017). The extensive literature on at-
tribute prediction has generally categorized problems as ei-
ther within-network (Bhagat, Cormode, and Muthukrishnan
2011; Desrosiers and Karypis 2009; Macskassy and Provost
2007) or across-network tasks (Lu and Getoor 2003; Craven
et al. 1998), with within-network prediction receiving the
most attention. The within-network setting studies a single
fixed network, only partially labeled, and the prediction goal
is to infer the missing labels within this single network.
The across-network setting instead assumes one wants to
infer the attributes of an unlabeled network based on an-
other labeled network. Earlier work has shown promising
results with transferring structural information across net-
works. However, in this work we identify important dis-
tinctions between the tasks that can explain predictive per-
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formance differences, and show that across-network predic-
tion can be a more challenging task than previously appre-
ciated. Formalizing the distinction between attribute predic-
tion problems requires consideration of how the labeled net-
work and unlabeled network are related to each other, if at
all, in order to understand how different methods may or
may not be suitable for such tasks.
Overview of attribute prediction taxonomy. Within-
network attribute prediction has been widely studied, and
effective methods for many domains include relatively sim-
ple approaches based on majority vote algorithms among
network neighbors (Macskassy and Provost 2007), longer-
range network aggregation methods based on collective in-
ference (Neville and Jensen 2000; Jensen, Neville, and Gal-
lagher 2004; Sen et al. 2008), LINK methods (Lu and
Getoor 2003; Zheleva and Getoor 2009) that employs rows
of the adjacency matrix as feature vectors, methods for semi-
supervised learning on graphs (Zhu, Ghahramani, and Laf-
ferty 2003; Zhou et al. 2004; Koutra et al. 2011), as well
as methods based on embedding-based representations, both
unsupervised (DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), LINE (Tang et al. 2015), and node2vec (Grover
and Leskovec 2016)) and semi-supervised (Yang, Co-
hen, and Salakhudinov 2016). These methods for within-
network prediction are fundamentally driven by various
structural assumptions about how attributes are distributed
within a single network of study, assuming that either ho-
mophily (McPherson, Smith-Lovin, and Cook 2001) or
structural equivalence (Burt 1987; Altenburger and Ugander
2018; Peel, Delvenne, and Lambiotte 2018) governs some
extent of how individuals relate to each other in the network.
As such, these methods all base their predictions on similari-
ties (of some variety) along edges or paths, and are explicitly
not identifying innate structural features of nodes with given
attributes.
Meanwhile, the across-network task assumes one wants to

infer the attributes of unlabeled nodes in one network based
on labels for nodes in another network (where no edges or
paths exist to relate unlabeled to labeled nodes). For exam-
ple, consider a social network of students at one college ac-
companied by the self-reported gender labels of these stu-
dents, which we’ll refer to as a source graph. In across-
network prediction, one seeks to infer the gender labels of
students in another social network for a completely different
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college, which we’ll refer to as a target graph. We assume
for now that one does not observe edges, if they exist, be-
tween the source graph and the target graph. Without any
way to relate unlabeled to labeled nodes, the only methods
that are admissible for across-network tasks are methods that
learn relationships between attribute labels and innate struc-
tural features of nodes: how many friends they have, how
many triangles they belong to, and so on.
In this work, we observe that previous benchmarks for

across-network tasks have been evaluated on a simplified
variation of the problem that analyzed a single node set
across different edge types, or what we call “across-layer”
prediction. The term “across-layer” invokes the language
of multilayer networks (Kivelä et al. 2014; Pilosof et al.
2017) and notes that the two networks are most accurately
viewed as two different layers of a single multilayer network
object. Informally, the distinction between across-network
and across-layer prediction is the latter involves predictions
between two “networks” that share a common node set,
making it possible to bridge information from the source
graph into the target graph via the known node correspon-
dence. When previous benchmarks for across-network tasks
are actually evaluated on across-network prediction settings
and not across-layer settings, we find that predictive perfor-
mance can suffer.
We highlight the importance of distinguishing between

across-network vs. across-layer tasks because across-
network prediction requires learning social structure innate
to the way the nodes in the source graph are positioned that
also holds true in the target graph. In certain domains this
might sound like a surmountable task. For example, when
seeking a predictive model of gender based on structural
features, perhaps male users make systematically more
or less phone calls than women, or male call patterns
form many more triangles (Blumenstock and Eagle 2010;
Psylla et al. 2017). One might plausibly speculate that
across-network gender prediction might be a relatively
easy problem. However, at least for the social settings we
study, across-network prediction appears to be notably
more difficult than (a) within-network prediction and (b)
more difficult than what previous results on across-network
prediction suggest. We will highlight in a simulated network
setting when we expect across-network tasks to have more
limited performance.

Overview of categorizing features. The feature repre-
sentations of nodes play a critical part in determining the
performance of the different prediction tasks. We categorize
the features admissible for each prediction task based on
two different properties: dependence on node labels and
dependence on node identities. Label-dependence (Gal-
lagher and Eliassi-Rad 2010) captures whether a node
depends on attribute labels of other nodes in the graph, e.g.,
fraction of friends that are male (label-dependent) vs. degree
(label-independent). Identity-dependence captures whether
a feature depends on the exact identity of any node such
as, e.g., being friends with node 17 (identity-dependent)
vs. degree (identity-independent). As will be explained in
more detail and is also shown in Figure 2, we explain which

features are admissible for each prediction task.

Summary of contribution. The paper proceeds as fol-
lows. We first formalize a taxonomy of node attribute pre-
diction tasks (within-network, across-network, and across-
layer) and a taxonomy for node features that are admis-
sible for these different sets of tasks (label-independent,
label-dependent, and identity-dependent). Then we lever-
age a simulated network setting to directly compare within-
network, across-network, and across-layer tasks under two
data-generating-processes. Then, we describe three attribute
prediction settings where we can make pairwise compar-
isons between methods. We observe that across-network
prediction can be more difficult than previously appreci-
ated and that across-layer problems can be easier than pre-
vious approaches may have suggested. Finally, we suggest
ways to analyze and possibly close the predictive perfor-
mance gap between across-network prediction and the other
approaches. Amidst recent calls to establish unified bench-
marks for comparing different network prediction meth-
ods (Hu et al. 2020), this work also highlights the need to
clarify the type of node attribute prediction task a particular
method is being evaluated on.

Within-Network, Across-Network, or

Across-Layer

We define within-network, across-network, and across-layer
attributed prediction tasks, as illustrated in Figure 1, based
on (a) whether there is one node set of interest, consisting
of labeled and unlabeled nodes, or whether there are mul-
tiple (disjoint) node sets, and (b) whether there is a sin-
gle network generating process or multiple network generat-
ing processes. Next, we define label-independent and label-
dependent feature representations of nodes in graphs and
discuss how these representations are then admissible (or
not) for each of these different tasks as shown in Figure 2.

Defining Node Attribute Prediction Tasks. The standard
prediction task on networks is to begin with a graph G =
(V,E) that may be directed or undirected, weighted or un-
weighted, along with a labeling function ` : V ! L that
maps nodes to some label space L. In order to connect the
discussion of disparate networks (in across-network tasks),
we introduce an abstraction that captures the generative pro-
cess, called the network generating process (NGP), of how
edges form on node sets. Examples of NGPs include “Face-
book friendships”, “phone calls during month t”, or “spatial
proximity during month t0”. This abstraction allows us to
then talk about how different networks may share (or not) a
common NGP. Giving consideration to when two networks
share the same generative process – as a separate matter
from whether they share nodes or not – gives more precision
for distinguishing between types of node attribute prediction
tasks.
For a generic node set V , we refer to the set of nodes

whose attributes are labeled/unlabeled as VL (labeled) and
VU (unlabeled) and assume both sets are non-empty. A net-
work generating process P then maps a node set to a set of
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Figure 1: (Left): We illustrate a general way to classify the
type of node classification problem. (Right): We visually il-
lustrate the different node attribute prediction tasks.

edges, P(V ) = E. It will be useful to divide the edges into
subsets that are between unlabeled nodes (EUU ), between
labeled and unlabeled nodes (ELU ), and between labeled
nodes (ELL). Not all these edge sets need be non-empty.

We begin our distinction between different node predic-
tion tasks based on the configuration of a source graph
Gs = (Vs, Es) for learning a predictive model and a tar-
get graph Gt = (Vt, Et) for inferring labels. We are given
attribute labels yi 2 L for each node vi in a labeled set of
nodes VL ⇢ Vs. The labels belong to a space L that can
be binary (e.g., fraudulent vs. not fraudulent accounts on a
transaction platform), multi-class (e.g., majors in a college
network), or continuous (e.g., age). We aim to make predic-
tions ŷi for each node vi in an unlabeled set of nodes VU .

For within-network problems, the source and target net-
work are the same, VU = Vs \VL. For across-network prob-
lems, we assume VU \ VL = ; and therefore VU = Vt.
For across-layer problems, we have VU \ VL 6= ;. In ap-
plied work, one generates a model based on VL and predicts
on VU , ignoring settings where VU \ VL 6= ;. We simplify
the node set definitions here for simplicity, though the set-up
can generalize to layers which only share a subset of nodes.
We refer the interested read to (Kivelä et al. 2014) which
documents the history of multilayer networks and alterna-
tive set-ups throughout the literature.

Within-Network Prediction: In the setting where the tar-
get graph Gt and source graph Gs are the same, then we
define a single graph G = (VL [ VU , ELL [ ELU [ EUU ).
We will assume that G is connected (in the case of directed
graphs, weakly connected), implying that ELU 6= ;. When
the network is connected, there exists an undirected path
from each unlabeled node in VU to each labeled node in
VL. Predicting attribute labels for these unlabeled nodes thus
constitutes a within-network attribute prediction task.

In general, within-network prediction may be posed on
networks of multiple connected components as long as
each component contains labeled nodes (a slightly stronger,
component-wise condition). If using only path-based rela-
tional methods, a problem on multiple components can then
be decomposed and studied as disjoint within-network tasks
on each component.

Across-Network Prediction: Next, suppose Gs 6= Gt

and that Vs \ Vt = ;, but that Gs and Gt arise sepa-
rately from a common network generating process P of in-
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Figure 2: Characterizing which feature representations are
admissible for each node prediction task. We observe that
label-dependent features are never permissible for across-
network tasks. We denote with * that label-dependent fea-
tures can usually be used for an across-layer task as long as
there is partial overlap in the node sets between layers.

terest (i.e. friendship, calls, etc.) with P(Vs) = Es and
P(Vt) = Et. The fact that the networks arise separately
means the labeled nodes set and the unlabeled node set of
interest are not connected in a single network instance, so
there are no paths from any node in Vs to any node in Vt.
When tasked with predicting the attribute labels for the un-
labeled nodes, we call this across-network attribute predic-
tion.

For within-network prediction tasks where attribute labels
are few and far between, predicting attribute labels for nodes
far from the labeled set may mimic an across-network task.
For example, in the telephone survey conducted by Blumen-
stock et al. (Blumenstock, Cadamuro, and On 2015) there
were just 856 labeled nodes in a national call network of
1.5 million nodes. As such, very few unlabeled nodes were
directly connected to any labeled node, and relatively few
nodes were within 2-hops of any labeled node. That said,
because of the small-world phenomenon (Travers and Mil-
gram 1967), most nodes are within just a few hops of even a
small random sample (Radaelli et al. 2018).

Across-Layer Prediction: Finally, suppose thatGt 6= Gs

but the source and target node sets are equivalent or have
partial overlap. Further, assume there are different network
generating processes Ps and Pt that underlie Gs and Gt,
e.g., one NGP generates a phone call network while the other
generates a text messaging network. When predicting labels
for the unlabeled nodes in the target graph Gt, we call this
task across-layer attribute prediction.

One way to see the distinction of across-layer as dis-
tinct from across-network is to consider the identifier at-
tribute or the unique id of each node (Perlich and Provost
2006). Then in an across-layer set-up, the identifiers are pre-
served for different network generating processes whereas
in an across-network set-up the identifiers are distinct be-
tween the nodes in the source and target graphs. An exam-
ple of across-layer attribute prediction is making attribute
predictions across time (Henderson et al. 2011, 2012). Con-
sider attribute-labeled network data from one time period
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(e.g., January) and the goal is to predict attribute labels
in another time period (e.g., February). That is, we’d say
that V = VJan = VFeb with PJan(V ) = EJan and
PFeb(V ) = EFeb. This task is also not a within-network
task, as there are distinct network generating processesPJan

and PFeb. That said, for across-layer tasks it is possible to
use relational learning with label-dependent features, as we
shall see in the next section, making it altogether similar to
a within-network task. It is important to highlight, however,
that the success of relational learning across layers relies on
the general transferability of insights derived from the net-
work generating process (NGP) of the source graph, Ps, to
the NGP of the target graph, Pt. If, to take an extreme ex-
ample, one NGP encodes friend relations while the other en-
codes enemy relations, we would not expect a model for pre-
dicting attributes based on friend relations to be transferable
to predict attributes based on enemy relations.

Label- and Identity-Dependence

The type of node attribute prediction task determines which
feature representations are admissible. A label-dependent
node feature (Gallagher and Eliassi-Rad 2010) depends on
the attribute labels of nodes in the graph, whereas a label-
independent node feature is a feature that does not. In
the context of gender prediction, clear examples of label-
dependent features of a node vi include the number of fe-
male friends of vi or the distance from vi to the nearest male
node. Clear examples of label-independent features include
the degree of vi or the number of triangles containing vi,
neither of which depend on any node labels. When only a
subset of attribute labels are known, label-dependent fea-
tures are traditionally restricted to the known attribute labels
(e.g., the number of known female friends of vi).
We introduce another property of feature representations,

identity-dependence, based on whether the features depend
on the identity labels of nodes in the network. Consider
LINK features (Zheleva and Getoor 2009), where rows of
the graph adjacency matrix are employed as a large sparse
feature vector. LINK features coupled with regularized lo-
gistic regression have been found to be highly effective when
deployed for various attribute prediction tasks (Zheleva and
Getoor 2009; Altenburger and Ugander 2018). These LINK
features might be considered label-independent in the sense
that they do not depend on any node attribute labels. LINK
features do, however, depend on the identity labels, 1, . . . , n,
of the nodes. We will thus consider features that depend on
the identity labels of nodes to be identity-dependent. Invok-
ing the basis used in graph theory to define a graph invari-
ant, we define a feature to be identity-independent if it is in-
variant to arbitrary re-labelings of the node set, and identity-
dependent otherwise.
It is clear that LINK features such as “is friends with node

17” are therefore identity-dependent, even if they are label-
independent. It is also clear that structural features such as
the degree of a node are both label-independent and identity-
independent. Beyond LINK, we note that the feature vectors
produced by embedding methods such as node2vec (Grover
and Leskovec 2016) are identity-dependent, in the sense
that the feature vectors of nodes from a given graph are

not meaningfully related to the vectors from another graph.
More specifically, even if two isomorphic graphs were
passed as input into the optimization problem solved by
node2vec or DeepWalk, the solutions are only defined up
to rotation, making the optimization identity-dependent.
Recent work on relational pooling (Murphy et al. 2019;
Chen et al. 2019) and graph alignment (Bayati et al. 2009;
Kuchaiev et al. 2010; Heimann et al. 2018) (and related
work on aligning language embeddings (Chung et al. 2018;
Lample et al. 2018)) may provide paths forward on adapt-
ing identity-dependent features (including LINK) for use in
across-network tasks. This alignment will always lack guar-
antees as long as it falls short of solving the graph isomor-
phism problem (Babai 2016), which is also why embedding
alignment work has generally focused on comparisons with
the Weisfeiler–Leman graph kernel heuristic (Shervashidze
et al. 2011; Morris et al. 2019)).
We see that in order for a feature to be useful for an across-

network task it must be both label-independent and identity-
independent: features such as “number of female friends” or
“is friends with node 17” clearly can’t be translated from a
source graph containing labeled nodes, where they’ve been
computed, to a target graph for predicting unlabeled nodes.
The nodes in the target graph have no relationship to the at-
tribute labels or identities in the source graph. Meanwhile,
we highlight that identity-dependent methods are admissi-
ble for across-layer tasks because the node set is the same.
Identity-dependent methods are also admissible even for sit-
uations where there are only a partial overlap in the node
sets. We illustrate in Figure 2 which feature combinations
are admissible for different attribute prediction tasks. We
also observe that within-network and across-layer tasks have
access to more feature sets while the across-network task re-
lies on more limited features.

ReFeX/RolX. A prominent suite of feature represen-
tations that are both label-independent and identity-
independent are the ReFeX (Recursive Feature eXtrac-
tion) (Henderson et al. 2011) and RolX (Role eXtrac-
tion) (Henderson et al. 2012) methods, initially developed
for “role discovery”. ReFeX and RolX both aim to learn
functional roles of nodes. In the present work, ReFeX serves
as an important baseline against which we seek improved
methods suitable for across-network prediction.
The ReFeX method works by taking a label- and identity-

independent base representation of a node (typically just in-
degree, out-degree, total degree, and clustering coefficient),
and recursively expanding the representation though con-
catenation with features variously aggregated over neigh-
bors. These aggregations are typically limited to just averag-
ing and/or summation, but other aggregations such as vari-
ance, entropy, or max/min aggregations are also viable, as
long as the aggregations are themselves label- and identity-
independent (e.g., an aggregation of the form “gender of
the lowest id node” would not be identity-independent). The
choice of base representation, aggregation functions, and re-
cursion steps essentially define a ReFeX implementation.
Given ReFeX representations and corresponding known
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attribute labels, one can then train a supervised learning
model (e.g., a random forest or regression model). RolX ex-
tends ReFeX by applying non-negative matrix factorization
to the ReFeX feature matrix as a dimensionality reduction
technique, producing a possibly more interpretable (but sim-
ilar performance) representation. Run for several recursive
iterations, ReFeX quickly generates a vector of hundreds
of features that can then be passed to a (regularized) su-
pervised learning method. The standard implementation of
ReFeX contains an internal pruning mechanism to sequen-
tially exclude features that are highly collinear with previous
features, which can speed up the feature generation process.
It also speeds up the model training process, even if regular-
ization towards sparse models can replicate the same prun-
ing process.
It is clear that the above ReFeX representation is admis-

sible for within-network, across-network, and across-layer
attribute prediction: the node feature representation can be
extracted from both a source networkGs and target network
Gt without any attribute labels needed for Gt. A model
trained on one network can clearly be applied to another
network or another network layer.

Variations and other methods. The ReFeX idea of extract-
ing node features from a graph recursively has been widely
adopted across diverse works, though the sensitivity of such
recursive feature extraction processes remains unclear. In
Blumenstock et al.’s study predicting poverty and wealth
from mobile phone usage in Rwanda, a recursive feature ex-
traction algorithm based on a deterministic finite automa-
ton (DFA) (Rabin and Scott 1959) is used. This method was
used to generate thousands of features that were then used to
fit regularized linear and logistic regression models, much in
the same way as ReFeX. The call data record (CDR) dataset
used in that study contained rich metadata (time stamped
edges) and also information about cell tower connections
and cell tower locations, necessitating the need for a much
more general feature extraction routine than ReFeX.
While most modern graph embedding-based techniques

(e.g., DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
LINE (Tang et al. 2015), node2vec (Grover and Leskovec
2016), position-aware graph neural networks (You, Ying,
and Leskovec 2019)) for attribute prediction are unsuited for
across-network tasks, recent work has begun to develop so-
called inductive representations (a term of art from trans-
fer learning), which for the purposes of our work means
the representation is both label-independent and identity-
independent) suitable for across-network attribute predic-
tion (struc2vec (Ribeiro, Saverese, and Figueiredo 2017),
graphSAGE (Hamilton, Ying, and Leskovec 2017), DeepGL
(Rossi, Zhou, and Ahmed 2017), CDNE (Shen and Chung
2019), and GraphWave (Donnat et al. 2018)). These methods
all employ ReFeX’s basic idea of feature extraction through
recursion but take added steps to optimize the feature rep-
resentation itself as an inherent part of the supervised learn-
ing process. These methods are thus all much more involved
than the representations we consider, training multi-layer
neural network models with brittle optimization landscapes.
We focus on ReFeX due to its interpretability

Simulated Networks: Predictive Performance

of Label- vs. Identity-Based Features

As will be discussed in the next section, no network datasets
exist to directly compare each of the different node predic-
tion tasks. We instead rely on a stochastic block model to
compare the relative performance of each under different
network generating processes. We first consider when per-
formance on an across-layer task is higher than an across-
network task. Suppose a network instance is generated from
a stochastic block model (SBM) with balanced classes and
with strong block structure (i.e., strong homophily) (Hol-
land, Laskey, and Leinhardt 1983). While there is struc-
tural information contained in label-dependent and identity-
independent features (the relative fraction of friends from
each class), this feature is not useful for inferring class la-
bels across different networks if we do not have the labels
of any nodes on the target graph we seek to make predic-
tions in. That is, a homophily-based feature can be leveraged
for learning in within-network and across-layer settings but
would not be useful in across-network as illustrated in the
top row of Figure 3.
First, in the top row, we consider a network with a

homophily-only structure. More specifically, we generate a
strongly homophilous SBM with two blocks of equal size
(n = 2000 nodes in total, average degree of 84, and for
block structure � = 1.1). These parameters were selected
to mimic some of the structures of the Amherst College
network (FB100) which will be described in the next sec-
tion. For all results we use a regularized Logistic Regres-
sion model. We evaluate the within-network performance of
LINK and ReFeX features on this network instance across a
varying percent of nodes initially labeled, and report mean
AUC and variability over 25 random draws of x% of nodes
initially labeled. We observe that LINK performs very well
since it can leverage the similarity among nodes that serve
as useful features. Meanwhile ReFeX is not able to lever-
age any structural signal because, from the perspective of
ReFeX, nodes in the two blocks look identical. We see that
ReFeX and related label-independent features are blind to
simple, strong, but symmetric structures that do not trans-
late easily to label-independent node features.
Next, in the top-middle row we consider an across-layer

task which utilizes the same SBM set-up but varies the
block structure. We then train on the fully labeled within-
network instance from the within-layer setting, and report
average results across multiple instances for each increas-
ing block structure. We observe that LINK is sensitive to the
increasing homophily while ReFeX again cannot utilize a
homophily-only signal. Finally, we consider in the top-right
row an across-network task. Here we modify the test SBM
so that there are unequal classes n1 = 500 and n2 = 1500
unlike the training network where there are equal classes.
Note that LINK is not able to be used in an across-network
setting, and we observe limited predicted performance from
ReFeX which is not surprising given its low performance for
within-network and across-layer tasks.
In the second row, we consider a network generating pro-

cess where there is both homophily (label-dependent and
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Figure 3: Within-Network vs. Across-Layer vs. Across-Network prediction on a stochastic block model (SBM). In the top
row where we have homophily-only structure, we observe LINK has high within-network and across-layer performance while
recursive features (ReFeX) are limited due to the lack of a structural signal. In the bottom row where we have both homophily
and degree structure, we observe high performance of both methods.

identity-independent) and degree (label-independent and
identity-independent) structures to leverage. This setting for
the training network instance has n1=500 and n2=1500
nodes with an average degree of 84 and slight block struc-
ture (�=1.1). We expect both LINK and ReFeX to per-
form well in this setting, which we observe in the within-
network and across-layer setting. Additionally, unlike the
homophily-only setting, for an across-network task, we ob-
serve high-performance of ReFeX where the test network
has on n1=800 and n2=1200 nodes. Note that ReFeX is sen-
sitive to increasing homophily as it’s also increasing the dif-
ference in average degree between classes. Again, all results
are reported in terms of mean AUC across multiple testing
instances drawn from the SBM.
This simple example highlights why we might ex-

pect a method like ReFeX to be low-performing in the
across-network setting when there’s label-dependent and
identity-independent signal only (i.e., homophily) vs. high-
performing when there’s label-independent and identity-
independent signal (i.e., degree differences by class).

Datasets

We next demonstrate the empirical prediction performance
differences for within-network, across-network, and across-
layer tasks in the context of student status in the RealityMin-
ing dataset (Eagle and Pentland 2006), gender in the Copen-
hagen Networks Study (Stopczynski et al. 2014; Sapiezyn-
ski et al. 2019), and gender in the Facebook100 (FB100)

dataset (Traud et al. 2011; Traud, Mucha, and Porter 2012).
We summarize in Table 1 the datasets considered and for
which prediction task. Note we rely on these 3 datasets to
make pairwise comparisons of the prediction tasks as there’s
not a single dataset to compare all tasks.
The Reality Mining dataset consists of a study at MIT in

2004-2005 that tracked the cell phone usage of 94 subjects,
including students and faculty. The subjects agreed to have
their interactions and proximity to one another recorded.
One can conceive of different network attribute prediction
tasks such as inferring whether a participant is a graduate
student in the Media Lab or is a business school student
(Henderson et al. 2012). It is possible to view this dataset
through either: (a) the lens of across-layer prediction by
treating each month as a different network-generating layer,
or (b) the lens of within-network prediction by treating the
full network of 94 subjects and their interactions over time as
the single network of interest. However, the dataset has his-
torically been sliced across time for the purpose of creating
a plausible “across-network” task. As we will demonstrate,
this framing leads to a very different task compared to other
settings where the node population of interest is genuinely
different from the source node population.
The Copenhagen Networks Study dataset consists of a

survey of 800 students that recorded different types of inter-
actions among them, including Facebook friendships, SMS
messages, calls, and bluetooth co-location. We can compare
predictive performance in: (a) an across-layer set-up where
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Dataset

Reality Mining Copenhagen FB100

within-network
student status prediction
within MIT (Sloan/not)

gender prediction
within school

gender prediction
within Amherst College

across-layer
student status prediction
across an academic year

gender prediction
across interaction types n/a

across-network n/a n/a gender prediction
across schools

Table 1: The different prediction tasks evaluated for each of the datasets.

layers represent different types of interactions recorded or
(b) a within-network task by treating one interaction type as
the network of interest.
Finally, the FB100 dataset consists of the online friend-

ship networks from the first 100 colleges that accessed the
Facebook platform in 2005, as released by Facebook, and
includes gender, class year, and high school attributes. The
FB100 dataset lends itself well to: (a) across-network tasks
as we have networks across different college settings, and (b)
within-network tasks where we can treat a specific school as
the population network of interest.

Within-Network Prediction

In this section we compare within-network prediction tasks
in three different settings: student status prediction on the
Reality Mining dataset, gender prediction on the Copen-
hagen Facebook network, and gender prediction for a rep-
resentative FB100 college network. For each problem we
vary the percent of nodes, selected uniformly at random, that
are initially labeled in the networks. We consider the predic-
tive performance of statistical models using LINK, ReFeX,
and node2vec features. All these feature representations are
label-independent while ReFeX is identity-independent and
LINK and node2vec are identity-dependent.
LINK-based models can leverage friend-of-friend infor-

mation to achieve high predictive performance in the pres-
ence of monophily (Altenburger and Ugander 2018), an ana-
log of homophily that corresponds to structural equivalence.
In Figure 4 we observe that LINK-regularized logistic re-
gression achieves high performance. As we’ve discussed,
LINK is a label-independent and identity-dependent feature
representation, making it network-specific and only appli-
cable to within-network tasks. As such, LINK cannot be
applied in across-network settings. We therefore also in-
vestigate how well we can do on this within-network task
using label-independent feature representations, specifically
ReFeX, which are the only feature representation permissi-
ble in an across-network setting.
Using ReFeX features, we train a regularized Logistic Re-

gression model which is flexible in handling correlated fea-
tures. The original ReFeX study paired the ReFeX features
with a LogForest model, an ensemble of logistic regression
models (Gallagher et al. 2008). We find approximately com-
parable performance for Regularized Logistic Regression in-
stead of LogForests (when comparing only on the FB100
dataset) so use regularized Logistic Regression with ReFeX
features. We compute ReFeX features in several different

ways. Specifically, we vary the recursion depth of the feature
generating process, extracting representations based on 1, 2,
3, and a maximum (up to 100) number of recursive itera-
tions. The “max” recursion representations are based on only
a handful of recursions, far less than 100, because of the fea-
ture pruning mechanism built into the ReFeX implementa-
tion we employed. For predicting student status in the Real-
ityMining data, we observe high performance of ReFeX fea-
tures. For predicting gender on the Copenhagen Networks
dataset, we notice that the models trained on ReFeX features
do slightly worse than the models trained on LINK features.
However, for gender prediction on Amherst College we ob-
serve extremely limited performance based on ReFeX fea-
tures.

Across-Network vs. Across-Layer Prediction

Compared to across-layer prediction, across-network pre-
diction can be a more difficult problem than previously ap-
preciated as was demonstrated on the simulated network.
We now illustrate this point by comparing the across-time
(i.e across-layer) prediction for business school student sta-
tus (Reality Mining), the across-layer prediction task for
gender (Copenhagen), and the across-school (i.e. across-
network) prediction task for gender (Amherst College from
FB100). For the Reality Mining data, the across-layer pre-
dictions of student status are based on a time-sliced net-
work with each month corresponding to a different network-
generating layer. From month to month we are still mak-
ing predictions on approximately the same node set, and
arguably label-independent and identity-dependent features
such as LINK are fully admissible. Similarly for the Copen-
hagen network, we observe different interactions among
the 800 study participants with interactions like SMS mes-
saging, Facebook friends, bluetooth co-location, and phone
calls. For the across-layer prediction task, we primarily con-
sider students who participate in a specific interaction type,
which means the node sets approximately coincide across
interaction types. In contrast, the across-network gender pre-
diction task in the FB100 networks takes place across school
networks with disjoint node sets.
We again consider ReFeX feature sets generated by 1, 2,

3, and a maximum number of recursive iterations, allowing
us to identify at which recursion step performance gains oc-
cur. For generating ReFeX features, we note that the node
representations are trained during separate ReFeX iterations,
which can result in features being (a) binned differently (we
standardize all features to be in [0, 1]) and (b) have different
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Figure 4: Within-Network Prediction: We contrast the high predictive performance of inferring whether a student is a business
school student using label-independent (ReFeX) features (left) versus the more limited predicted performance of inferring
gender in the Copenhagen Network study (middle) or in the FB100 dataset (right) using label-independent features.

Figure 5: Across-Layer vs. Across-Network Prediction: We demonstrate across-layer prediction with the Reality Mining and
Copenhagen datasets and demonstrate across-network prediction with FB100. For the across-layer task for the Reality Mining
dataset, we train on the date indicated on the x-axis and report predictions for the subsequent date. For the across-layer task
for the Copenhagen dataset (middle), we train a gender inference model based on Facebook friends and report predictive
performance across different layers (i.e. SMS, bluetooth, calls). For the across-network task in the FB100 dataset (Amherst on
right), we see no significant predictive performance gain at deeper levels of recursion.

feature sets selected by the pruning mechanism. To circum-
vent the latter challenge we employ a “double pass” routine
to find all the features selected by the pruning mechanism
across all networks in the collection in a first pass, and then
repeat the feature extraction while requiring ReFeX to re-
turn the union of all these features (by overriding the pruning
mechanism) as the representation.

For predicting student status in the Reality Mining
dataset, we follow earlier work by using consecutive months
in a paired train/test set-up, observing that this is actually an
across-layer task since all training and testing nodes come
from the same MIT population. For predicting gender in
the Copenhagen dataset, we use the network of Facebook

interactions as the training layer and compare performance
when using different layers for testing. For predicting gen-
der in the FB100 dataset, we use Amherst College as the
training school and compare performance when using differ-
ent schools for testing, noting this is considered an across-
network task since training and testing nodes come from
different college populations. Other test schools give com-
parable results. As illustrated in Figure 5 for the across-
layer task, we observe slight performance improvement at
the maximum number of recursions for ReFeX when pre-
dicting business student status in the Reality Mining dataset,
though the main performance improvement (over the base-
line) comes from the ReFeX base representation (ReFeX
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1x) before any aggregation functions have been applied.
For gender prediction in the across-network task shown in
Figure 5, we observe consistently low-performing predic-
tions across all recursive depths. Compared to the across-
layer Reality Mining problem shown in the left of Figure 5
which is historically posed as an across-network task, we
observe that across-network tasks can be more limited as
shown on the right. For the across-layer tasks, we also re-
port results from LINK which shows higher predictive per-
formance, though is not useful in the across-network setting.
These simple examples demonstrate instances when

within-network prediction can be high (e.g, LINK in
Amherst College) but where across-network prediction per-
formance is more limited (e.g. ReFeX across other FB100
colleges). That is, high predictive performance for within-
network tasks using label-dependent features do not imply
high performance for the across-network task using label-
independent features. We notice in the earlier Figure 4 that
the ReFeX feature set had very limited performance for
within-network prediction on Amherst. Therefore, it is not
surprising that there’s limited performance from ReFeX fea-
tures in the across-network setting as well. Meanwhile, for
the across-layer setting, it is also not surprising that ReFeX
performs well in this task given the high performance of
label-independent features for the within-network task.

“Bridging” and Across-Network Tasks

As was emphasized in the simulated network setting,
if the only structural signal present in a network is a
label-dependent signal such as homophily, then across-
network prediction is constrained, since label-dependent and
identity-dependent information cannot transfer. For improv-
ing across-network tasks, we borrow from the ideal points
literature in American politics, which pursues a structural
approach to rank judges across time based on their vot-
ing behavior (Poole and Rosenthal 2000; Martin and Quinn
2002). This makes it possible to compare judges even when
their periods of service have no overlap, addressing statis-
tical issues such as temporal extrapolation (Ho and Quinn
2010). One of the basic insights of that literature is to lever-
age judges that span multiple courts. These “bridge judges”
serve as a reference point for ranking judges that do not sit
in the same court.
In a similar spirit, we can try to identify “bridges” in an

across-network setting. If such “bridges” exist, then we can
utilize LINK-based methods since there would be nodes or
edges that span the networks. We explore a “bridge” ap-
proach first in a simulated example by identifying edges
that span networks converting this to a within-network task,
and then in an empirical example by identifying nodes that
likely span both networks, converting the across-network
to an across-layer task. For the simulated example, sup-
pose we have Amherst College from the FB100 dataset
that we divide into communities, and focus on two com-
munities where we treat community 1 as the train com-
munity and community 2 as the test community. We then
remove the across-community edges such that community
1 and community 2 are disconnected, creating an across-
community (i.e across-network) task where LINK perfor-

Figure 6: We compare the average predictive performance
of LINK for an across-community task on Amherst Col-
lege when adding back the original edges between commu-
nities versus randomly adding edges from all possible cross-
community pairs of nodes.

mance would have 0.50 AUC on the test community. By
tracking the rise of LINK performance as we randomly add
in across-community edges, illustrated in Figure 6, we ob-
serve that LINK (a) rises rapidly in performance after only
a few edges are added and (b) has notably higher predic-
tive performance when randomly adding back in the em-
pirical across-community edges compared to a null process
of adding in random new across-community edges between
pairs of nodes. This result suggests there exist useful net-
work structure to leverage in an across-network setting if
one can identify even a few edges that connect the networks.
Next, in an empirical example, we try to identify “bridge”

nodes as nodes that are structurally similar across two dis-
tinct networks. This inquiry follows a larger literature on
network alignment approaches (Bayati et al. 2009; Kuchaiev
et al. 2010; Heimann et al. 2018), and we explore a simple
strategy here as a proof-of-concept for this type of approach.
We first use the ReFeX feature representation to identify
structurally similar nodes as defined by those with a small
Euclidean distance between their ReFeX feature representa-
tion. Then we align nodes across the two networks that are
structurally similar, train a LINK model on this consolidated
network representation, and evaluate results on the test net-
work. We observe limited performance of this approach on
the FB100 network. It is possible there might be limited per-
formance because “bridge” nodes don’t exist. Alternatively,
it is possible there is limited performance due to our current
alignment strategy.

Conclusions

This work highlights an important distinction between
across-network and across-layer problems. Our investiga-
tion into across-network prediction follows other applica-
tions studying networks across varied social settings such
as comparing heterogeneity across different networks (Ja-
cobs et al. 2015), evaluating link prediction across different
networks (Dong et al. 2012), and demonstrating how predic-
tion problems can be more difficult than previously appreci-
ated (Cohen and Ruths 2013).
Despite the impressive performance of LINK for the

within-network problem, it is important to note that rela-
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tional inference requires training a model specific to the net-
work in question. As an open question, our analysis provides
no theoretical basis for limiting the predictive performance
of models based on ReFeX features (or any other label-
independent features) relative to performance with LINK;
it is possible the “right” label-independent features enable
across-network predictions with performance on par with
the within-network predictions based on LINK features.
How should we reconsider how we think about across-
network tasks? What does the transferability of a model be-
tween pairs of networks say about those networks in a larger
population? A first step forward is to define a clear consis-
tent set of across-network tasks, with many challenges to
follow.

Code Availability Statement

All replication code is available at https://github.com/
kaltenburger/NetworkPredictionICWSM2021
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