
Identifying Misinformation from Website Screenshots

Sara Abdali1, Rutuja Gurav1, Siddharth Menon1, Daniel Fonseca1, Negin Entezari1, Neil Shah2,
Evangelos E. Papalexakis 1

1 Department of Computer Science and Engineering University of California, Riverside
900 University Avenue, Riverside, CA, USA

2 Snap Inc.
{sabda005,rgura001,smeno004,dfons007,nente001}@ucr.edu

epapalex@cs.ucr.edu
nshah@snap.com

Abstract

Can the look and the feel of a website give information
about the trustworthiness of an article? In this paper, we
propose to use a promising, yet neglected aspect in de-
tecting the misinformativeness: the overall look of the do-
main webpage. To capture this overall look, we take screen-
shots of news articles served by either misinformative or
trustworthy web domains and leverage a tensor decomposi-
tion based semi-supervised classification technique. The pro-
posed approach i.e., VizFake is insensitive to a number
of image transformations such as converting the image to
grayscale, vectorizing the image and losing some parts of
the screenshots. VizFake leverages a very small amount
of known labels, mirroring realistic and practical scenar-
ios, where labels (especially for known misinformative arti-
cles), are scarce and quickly become dated. The F1 score of
VizFake on a dataset of 50k screenshots of news articles
spanning more than 500 domains is roughly 85% using only
5% of ground truth labels. Furthermore, tensor representa-
tions of VizFake, obtained in an unsupervised manner, al-
low for exploratory analysis of the data that provides valuable
insights into the problem. Finally, we compare VizFake
with deep transfer learning, since it is a very popular black-
box approach for image classification and also well-known
text text-based methods. VizFake achieves competitive ac-
curacy with deep transfer learning models while being two
orders of magnitude faster and not requiring laborious hyper-
parameter tuning.

Introduction
Despite the benefits that the emergence of web-based tech-
nologies has created for news and information spread, the in-
creasing spread of fake news and misinformation due to ac-
cess and public dissemination functionalities of these tech-
nologies has become increasingly apparent in recent years.
Given the growing importance of the fake news detection
task on web-based outlets, researchers have placed consid-
erable effort into design and implementation of efficient
methods for finding misinformation on the web, most no-
tably via natural language processing methods (Ciampaglia
et al. 2015; Rubin et al. 2016; Horne and Adali 2017; Shu

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 2 3

4

4

Figure 1: Creating a tensor-based model out of news
articles’ screenshots and decomposing the tensor using
CP/PARAFAC into latent factors and then creating a nearest
neighbor graph based on the similarity of latent patterns and
leveraging belief propagation to propagate very few known
labels throughout the graph. As illustrated, the F1 score of
both real and fake classes is roughly 85% using just 5% of
known labels. Moreover, VizFake has exploratory capabili-
ties for unsupervised clustering of screenshots.

et al. 2017). intended to discover misinformation via nu-
ances in article text. article’s text Although utilizing tex-
tual information is a natural approach, there are few draw-
backs: most notably, such approaches require complicated
and time-consuming analysis to extract linguistic, lexical,
or psychological features such as sentiment, entity usage,
phrasing, stance, knowledge-base grounding, etc. Moreover,
the problem of identifying misinformativeness using textual
cues is challenging to define well, given that each article is
composed of many dependent statements (not all of which
are fact-based) and editorialization. Finally, most such ap-
proaches require extremely large labeled sets of misinfor-
mative articles, which are often unavailable in practice due
to lack of reliable human annotators, as well as quickly be-
come “dated” due to shift in topics, sentiment, and reality
and time itself. These article-based labels inherently result
in event-specificity and bias in resulting models, which can
lead to poor generalization in the future for different article

Proceedings of the Fifteenth International AAAI Conference on Web and Social Media (ICWSM 2021)

2

types.
In this work, we take a step back to tackle the problem

with a human, rather than an algorithmic perspective. We
make two choices that are not made jointly in prior work.
Firstly, we tackle misinformation detection by leveraging a
domain-level feature. Secondly, we focus on the discovery
of misinformation using visual cues rather than textual ones.
We expand upon these two points below. Firstly, leveraging
domain features for misinformation detection is not only an
easier but also a likely more fruitful/applicable problem set-
ting in practice. In reality, most highly reputed news sources
do not report misinformative articles due to high editorial
standards, scrutiny, and expectations. For example, the pub-
lic fallout from misinformation being spread through famous
organizations like CNN or BBC would be disastrous. How-
ever, there are many misinformation farms and third-parties
which create new domains with the intent of deceiving the
public (Boatwright, Linvill, and Warren 2018). Moreover,
these actors have little incentive to spread real articles in
addition to fake ones. Thus, in most cases, domain feature
could prove to be a better target to stymie the spread of
misinformation. Conveniently, several crowd-sourced tools
and fact-checkers like BS Detector 1 or Newsguard 2 pro-
vide domain-level labels rather than article-level, which we
utilize here.

Secondly, visual cues are a promising, yet underserved re-
search area, especially in the context of misinformation de-
tection. While past literature in text-based methods in this
space is rich (see (Oshikawa, Qian, and Wang 2018) for an
overview), prior work on visual cues is sparse. Past works
(Jin et al. 2017; Gupta et al. 2013; Sun et al. 2013) primar-
ily focus on doctored/fake-news associated images and vi-
sual coherence of images with article text. However, since
these works are limited to fake news which spreads with
images, they are inapplicable for articles which do not in-
corporate multimedia. Moreover, these works all have in-
herent article specificity, and none consider the overall vi-
sual look and representation of the hosting domain or web-
site for a given article. Intuitively and anecdotally, in con-
trast to unreliable sources that tend to be visually messy
and full of advertisements and popups, trustworthy domains
often look professional and ordered. For example, real do-
mains often request users to agree to privacy policies, have
login/signup/subscription functionalities, have multiple fea-
tured news articles clearly visible, etc. Conversely, strong
tells for fake domains tend to include errors, negative space,
unprofessional/hard-to-read fonts, and blog-post style (Cyr
2013; Yan, Yurchisin, and Watchravesringkan 2011; Wells,
Valacich, and Hess 2011). Figure 1 demonstrates this di-
chotomy with a few examples. While we as humans use
these signals to quickly discern the quality and reliability of
news sources without delving into the depth of the text, prior
works have not directly considered them. Thus, we focus on
bridging this gap with the assumption that many misinfor-
mative articles do not need to be read to be suspected.

Given these two facets, we ask: “can we identify misin-

1http://bsdetector.tech/
2https://www.newsguardtech.com

formation by leveraging the visual characteristics of their
domains?” In this work, we propose an approach for clas-
sification of article screenshots using image processing ap-
proaches. In contrast to deep learning approaches such as
convolutional neural networks (CNNs) which take a rela-
tively long time to train, are data-hungry, and require care-
ful hyperparameter tuning, we propose a novel tensor-based
semi-supervised classification approach which is fast, effi-
cient, robust to image resolution, and missing image seg-
ments, and data-limited. We demonstrate that our approach
henceforth refereed to as VizFake, can successfully clas-
sify articles into fake or real classes with an F1 score of 85%
using very few (i.e., < 5% of available labels). Summarily,
our major contributions are as follows:
• Using visual signal for modeling domain structure: We

propose to model article screenshots from different do-
mains using a tensor-based formulation.

• Fast and robust tensor decomposition approach for
classification of visual information: We propose a
tensor-based model to find latent article patterns. We com-
pare it against typical deep learning models. VizFake
performs on par, while being significantly faster and need-
less to laborious hyperparameter tuning.

• Unsupervised exploratory analysis: Tensor-based repre-
sentations of VizFake derived in an unsupervised man-
ner, allow for interpretable exploratory analysis of the
data which correlate with existing ground truth.

• Performance in label-scarce settings: In contrast to deep
learning approaches, VizFake is able to classify news
articles with high performance using very few labels, due
to a semi-supervised belief propagation formulation.

• Experimenting on real-world data: We evaluate
VizFake on a real-world dataset we constructed with
over 50K news article screenshots from more than 500
domains, by extracting tweets with news article links. Our
experiments suggest strong classification results (85% F1
score) with very few labels (< 5%) and over two orders
of speedup compared to CNN-based methods.
The remainder of this paper is organized as follows: First,

the proposed VizFake is described. Next, we discuss the
implementation details and the dataset. Afterwards, the ex-
perimental evaluation of the VizFake as well as variants
and baselines is presented. Then, we discuss the related
work, and finally we draw the conclusions.

Proposed Method
Here, we discuss our formulation and proposed semi-
supervised tensor-based approach i.e., VizFake method.

Problem Formulation
We solve the following problem:

Given (i) a collection of news domains and a number
of full-page screenshots of news articles published
by each domain and (ii) a small number of labels.
Classify the unlabeled screenshots as misinforma-
tion or not.

3

Semi-supervised Tensor-based Method i.e VizFake
VizFake aims to explore the predictive power of visual in-
formation about articles published by domains. As we ar-
gued above, there is empirical evidence that suggests this
proposition is plausible.Thus, we introduce a novel model to
leverage this visual information. We propose a tensor-based
semi-supervised approach that is able to effectively extract
and use the visual cue which yields highly predictive rep-
resentations of screenshots, even with limited supervision,
also, due to its elegant and simple nature, allows for inter-
pretable exploration. VizFake has the following steps:

Tensor-based modeling The first step of VizFake refers
to constructing a tensor-based model out of articles’ screen-
shots. RGB digital images are made of pixels each of which
is represented by three channels, i.e., red, green, and blue. So
each image channel shows the intensity of the corresponding
color for each pixel of the image.

A tensor is a multi-way array. We use a 4-mode tensor em-
bedding for modeling news articles’ screenshots. since each
channel of an RGB digital image is a matrix, by stacking all
three channels we create a 3-mode tensor for each screen-
shot and if we put all 3-mode tensor together, we create a
4-mode tensor out of all screenshots.

Tensor Decomposition As we mentioned above, a tensor
is a multi-way array, i.e., an array with three or more dimen-
sions. The Canonical Polyadic (CP) or PARAFAC decom-
position, factorizes a tensor into a summation of R rank-
one tensors. For instance, a 4-mode tensor X of dimensions
I × J ×K ×L is decomposed into a sum of outer products
of four vectors as follows:

X ≈ ΣR
r=1ar ◦ br ◦ cr ◦ dr

where ar ∈ RI , br ∈ RJ , cr ∈ RK dr ∈ Rl and the outer
product is given by (Papalexakis, Faloutsos, and Sidiropou-
los 2016; Sidiropoulos et al. 2016):
(ar,br, cr,dr)(i, j, k, l) = ar(i)br(j)cr(k)dr(l)∀i, j, k, l

We define the factor matrices as A = [a1 a2 . . . aR], B =
[b1 b2 . . .bR], C = [c1 c2 . . . cR] and D = [d1 d2 . . .dR]
where A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R and D ∈ RL×R

denote the factor matrices and R is the rank of decomposi-
tion or the number of columns in the factor matrices. More-
over, the optimization problem for estimating the factor ma-
trices is defined as follows:

min
A,B,C,D

= ‖X − ΣR
r=1ar ◦ br ◦ cr ◦ dr‖

2

For solving the optimization problem above we use Al-
ternating Least Squares (ALS) which solves for any of the
factor matrices by fixing the others due to simplicity and
the speed of this algorithm (Papalexakis, Faloutsos, and
Sidiropoulos 2016; Sidiropoulos et al. 2016).

Having the mathematical explanation above in mind, the
second step of VizFake is decomposition of the proposed
tensor-based model for finding the factor matrix correspond-
ing to article mode, i.e., factor matrix D which comprises
latent patterns of screenshots. We will leverage these latent
patterns for screenshot classification.

.

Figure 2: Proposed tensor-based modeling and semi-
supervised classification of the screenshots i.e. VizFake.

Semi-supervised classification The third and last step of
VizFake is the classification of news articles using the fac-
tor matrix D corresponding to article mode resulted from the
decomposition of the tensor-based model.

As we mentioned before, each factor matrix comprises the
latent patterns of the corresponding mode in R dimensional
space. Therefore, each row of factor matrix D is an R di-
mensional representation of the corresponding screenshot.
So, we can consider each screenshot as a data point in R
dimensional space. We create a K-nearest neighbor graph
(K-NN) Graph by considering data points as nodes, and the
Euclidean distance between the nodes as edges of the graph.

Belief propagation (Braunstein, Mézard, and Zecchina
2005; Yedidia, Freeman, and Weiss 2005) is a message
passing-based algorithm that is usually used for calculat-
ing the marginal distribution on graph-based models such
as Bayesian networks, Markov, or K-NN graph. In this al-
gorithm, each node of a given graph leverages the messages
received from neighboring nodes to compute its belief (la-
bel) using the following iterative update rule:

bi(xi) ∝
∏
j∈Ni

mj↪→i(xi)

where bi(xi) denotes the belief of node i, mj↪→i(xi) is a
message sent from node j to node i and conveys the opin-
ion of node j about the belief of node i, and Ni denotes all
the neighboring nodes of node i (Braunstein, Mézard, and
Zecchina 2005; Yedidia, Freeman, and Weiss 2005).

Since we model homophily (similarity) of screenshots
patterns using a K-NN graph as explained above, we can
leverage Belief Propagation in a semi-supervised manner to
propagate very few available labels throughout the graph. A
fast and linearized implementation of Belief propagation is
proposed in (Koutra et al. 2011) which solves the following
linear system:

[I + aD− c′A]bh = φh

where φh and bh stand for the prior and the final beliefs,
respectively. A denotes the n × n adjacency matrix of the
K-NN graph, I denotes the n×n identity matrix, and D is a
n× n matrix where Dii =

∑
j Aij and Dij = 0 for i 6= j.

4

a and c
′

are also defined as: a =
4h2

h

1−4h2
h

, c′ = 2hh

(1−4h2
h)

where hh denotes the homophily factor between nodes. In
fact, higher homophily corresponds to having more similar
labels. Readers are referred to (Koutra et al. 2011) for more
details. An overview of VizFake is depicted in Figure 2.

Experimental Evaluation
In this section, we first discuss implementation and dataset
details and then report a set of experiments to investigate the
effect of changing rank, resolution, and some image trans-
formation on the performance of VizFake and then we
compare it against CNN deep-learning model, text-base text-
based approaches and webpage structure features.

Dataset Description
Although collecting human annotation for misinformation
detection is a complicated and time-consuming task, there
exist some crowd-sourced schemes such as the browser ex-
tension “BS Detector” which provide a number of label op-
tions, allowing users to label domains into different cate-
gories such as biased, clickbait, conspiracy, fake, hate, junk
science, rumor, satire, unreliable, and real. We use BS De-
tector as our ground truth and consider all of the nine cate-
gories above but “real” as “fake” class. We reserve a more
fine-grained analysis of different “fake” categories for future
work (henceforth collectively refer to all of those categories
of misinformation as “fake”).

We describe our crawling process in order to promote re-
producibility, as we are unable to share the data because
of copyright considerations. We crawled Twitter to create
a dataset out of tweets published between June and August
2017 which included links to news articles. Then, we imple-
mented a javascript code using Node.js open source server
environment and Puppeteer library for automatically taking
screenshots of scrolled news articles of our collected dataset.
• we took screenshots of 50K news articles equally from

more than 500 fake and real domains i.e., a balanced
dataset including 50% from fake and 50% real domains.

• To investigate the effect of class imbalance, we created an
imbalanced dataset of the same size, i.e., 50k but this time
we selected 2

3 of the screenshots from real domains and 1
3

of the data from fake ones.
• Although we tried to select an equal number of articles

per each domain, sometimes fake domains do not last long
and the number of fake articles published by them is lim-
ited. However, we show that this limitation does not affect
the classification, because the result of the fake discrimi-
nation is almost same as the real class.

Implementation Details
We used Matlab for implementing VizFake approach and
for CP/PARAFAC decomposition we used Tensor Toolbox
version 2.6 3(Bader and Kolda 2006). For Belief Propaga-
tion, we used Fast Belief Propagation (FaBP) (Koutra et al.
2011) which is linear in the number of edges. For finding
the best rank of decomposition R and the number of nearest

3
https://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html

(a) F1-Balanced (b) F1-Imbalanced

Figure 3: F1 score of VizFake for different ranks when ex-
perimenting on balanced and imbalanced datasets. The best
ranks for these datasets are 15 and 25 respectively.

neighbors K for both balanced and imbalanced datasets, we
grid searched the values between range 5-30 for R and 1-50
for K. Based on our experiments, we set R to 15 and 25
for balanced and imbalanced datasets, respectively and set
K to 20 for both datasets. We measured the effectiveness of
VizFake using widely used F1 score, precision, and recall
metrics. We run all of the experiments 25 times and we re-
port the average and standard deviation of the results for all
mentioned metrics. The F1 score of different ranks for bal-
anced and imbalanced datasets and both real and fake classes
is shown in Figure 3.

(a) F1-Real

(b) F1-Fake

Figure 4: F1 score of VizFake for different resolutions. F1
score increases slightly when experimenting on higher reso-
lution images.

Investigating Detection Performance
First, we aim at investigating the detection performance of
VizFake in discovering misinformative articles. A caveat

5

in experimentation is that different articles even from the
same domains may have different lengths, and thus screen-
shots of a fixed resolution may capture more or less infor-
mation from different articles. However, fixed-resolution is
an important prerogative for VizFake (and many others),
thus we must use the same length for all screenshots.

Thus, we first evaluate the effect of resolution to choose
a fixed setting for our model in further experiments. We ex-
periment on screenshots of size 200 × 100, 300 × 100, and
400× 100, and simultaneously evaluate the effect of differ-
ent decomposition rank given the association with different
amounts of information across resolutions. Figure 4 shows
the detection performance (F1 scores) across the above res-
olution settings and differing ranks from 15-35, using 10%
seed labels in the belief propagation step.

Our experiments suggest that F1 score does increase
slightly with higher resolutions and decomposition ranks,
but the increases are not significant. We hypothesize that
the invariance to changes in resolution is due to the fact
that coarse-grained features like number of ads, positions of
images in the article, and the overall format of the writing
is still captured even at lower resolutions and the detection
is not heavily reliant on the fine-grained features of the ar-
ticles as shown in Figure 5. This finding is promising, as
it suggests valuable practical advantages in achieving high
performance (88% F1 score) even using very low resolution
or even icon size images and significant associated compu-
tational benefits. Thus, unless specified, in further experi-
ments, we use 200× 100 images.

Investigating Sensitivity to Image Transformation
Next, we investigate different image-level Transformation to
evaluate performance under such settings. Firstly, we con-
sider the importance of colors in the creation of latent pat-
terns and the role they play in the classification task via
grayscaling. Next, we explore how vectorizing the channels
of color screenshots improves the performance.

We first try to convert the color screenshots into grayscale
ones using the below commonly used formula in image pro-
cessing tasks (Kanan and Cottrell 2012):

P = R× (299/1000)+G× (578/1000)+B× (114/1000)

where P, R, G, and B are grayscale, red, green, and blue pixel
values, respectively. Next, we create a 3-mode tensor from
all grayscale screenshots and apply VizFake.

Likewise, to investigate the effect of vectorizing channels
of color screenshots, we created another 3-mode tensor by
vectorizing each channel matrix. The detection performance
using grayscale and vectorized channel tensors in compari-
son to our standard 4-mode tensor (from color screenshots)
are shown in Figure 6. Given these different input represen-
tations, we again evaluate VizFake on different rank de-
compositions. As shown, in contrast to grayscaling, vector-
izing the channels slightly improves the F1 scores.

We hypothesize the rationale for similar grayscale perfor-
mance to the base 4-mode color model is that several im-
portant aspects like number of ads, image positions, writ-
ing styles (e.g., number of columns, font) are unaffected

Figure 5: An example of grayscaling and changing the reso-
lution on overall look of screenshots.

and still capture the overall look of the webpage (see Fig-
ure 5) and thus producing consistent performance. The per-
formance improvement for vectorizaing can be explained as
follows: By vectorizing an image, we treat an image as a sin-
gle observation, or a point in high dimensional pixel space.
As a result, we are calculating all possible combinations of
pixel statistics, both near and faraway statistics. On the other
hand, when we consider an image as a matrix, every dif-
ferent image column is treated as an independent observa-
tion, and each pixel only covaries with pixels in the rows
and the columns and we are not able to capture all possi-
ble pairwise statistics. (Vasilescu 2012) offers a relevant dis-
cussion on vectorization, albeit using subspace arguments
rather than latent factor imposed constraints. Overall, the
minor changes in the F1 score show that VizFake is robust
against common image transformations, suggesting practi-
cal performance across various color configurations and im-
age representation schemes.

Investigating Sensitivity to Class Imbalance
Next, we investigate sensitivity of VizFake to class imbal-
ance, as is often the case in practical settings. We create a
dataset of size 50k with a 1:2 fake to real article split. We
then assume that the known labels are reflective of the class
distribution, and use stratified sampling to designate known
labels for the belief propagation step. Figure. 7 shows the
F1 scores on both balanced and imbalanced data for differ-
ent percentages of known labels.

As we expect, the F1 score of the fake class drops when
we have a scarcity of fake screenshots in the seed label pop-
ulation. Conversely, the F1 score of the real class increases
in comparison to a balanced dataset due to more real sam-
ples. However, even under the scarcity of fake samples, the
F1 score using just 5% of the data is around 70% and using
20% the F1 score is almost 78%, suggesting considerably
strong results for this challenging task. Overall, changing
the proportion of fake to real articles does expectedly im-
pact classification performance. However, performance on
the real class is actually not significantly affected.

6

(a) F1-Real

(b) F1-Fake

Figure 6: F1 score of 4-mode tensor modeling created out of
color screenshots against 3-mode tensors out of vectorized
and grayscale screenshots for different ranks.

Investigating Importance of Website Sections

One might ask, “which parts of the screenshots are more in-
formative?” In other words, in which sections are the latent
patterns formed? To answer these questions, we propose to
cut screenshots into four sections as demonstrated in Fig-
ure 8 and use different sections or their combinations while
excluding others to create the tensor model (a type of fea-
ture ablation study). We propose to create four tensors out
of the top, bottom, 2 middle sections, excluding the banner
and the concatenation of the top and bottom sections, respec-
tively. For this experiment, we used the 4-mode color tensor
and screenshots of size 200 × 100. Thus, each section is of
size 50 × 100. Figure 9 shows F1 scores of VizFake on
the aforementioned tensors in comparison to using complete
screenshots.

The results show that by cutting the top or bottom sec-
tions of the screenshots the F1 score drops by roughly 6%
and 8%, respectively. Moreover, if we cut both top and bot-
tom sections the F1 scores decrease significantly by almost
15%. These two sections convey important information in-
cluding banners, copyright signatures, sign-in forms, head-
line images, ads, popups, etc. We noted a considerable por-
tion of the informativeness is included outside the banners,
as the banners comprise only 10-20% of the top/bottom sec-
tions and the F1 scores when only excluding the banners
are considerably better than when excluding top and bot-
tom both. The middle sections typically consist of the text
of the articles, while other article aspects like pictures, ads,

(a) F1-Real

(b) F1-Fake

Figure 7: F1 score of using VizFake on an imbalanced
dataset (The ratio of screenshots published by fake domains
to real ones is 1 : 2). On the contrary to fake class, the F1
score of real class increases due to having more samples.

and webpage boilerplate tend to be located at the top/bottom
sections. Although the top/bottom sections are more infor-
mative, the two middle sections still contain important in-
formation such as the number of columns, font style, etc.
because the middle sections solely, can still classify screen-
shots with the F1 score of 67% using just 5% of labels.
By capturing all sections, we achieve significantly stronger
results i.e., 83% F1 using just 5% labels. This experiment
suggests that even if the screenshots are corrupted or cen-
sored for privacy considerations e.g., excluding headers and
other obvious website tells, we are still capable of identify-
ing fake/real domains using as little as 50% of the underlying
images.

Comparing Against Deep-learning Models
A very reasonable first attempt at classification of screen-
shots, given their wide success in many computer vision
tasks, is the use of Deep Convolutional Neural Networks
(CNNs). To understand whether or not CNNs are able to
capture hidden features that VizFake scheme cannot ex-
tract, we also try CNNs for classification of screenshots.
From a pragmatic point of view, we compare i) the classi-
fication results each method achieves, and ii) the runtime
required to train the model in each case. In what follows, we
discuss the implementation details.

VizFake configuration We showed that the vectorized
tensor outperforms 3-mode grayscale and 4-mode color ten-

7

Fake Class
VizFake VGG16 deep network

%labels F1 Precision Recall F1 Precision Recall
5 0.852±0.002 0.860±0.005 0.844±0.004 0.799±0.008 0.823±0.027 0.779±0.039

10 0.871±0.001 0.880±0.003 0.863±0.005 0.816±0.003 0.842±0.014 0.793±0.018
15 0.881±0.001 0.890±0.002 0.873±0.003 0.837±0.001 0.883±0.009 0.795±0.009
20 0.888±0.001 0.896±0.002 0.880±0.003 0.849±0.009 0.884±0.023 0.818±0.034

Table 1: VizFake outperforms VGG16 when classifying fake class e.g., F1 score (> 0.85) with only 5% of labels.

Real Class
VizFake VGG16 deep network

%labels F1 Precision Recall F1 Precision Recall
5 0.854±0.003 0.847±0.003 0.862±0.006 0.809±0.007 0.790±0.021 0.830±0.039

10 0.874±0.001 0.865±0.004 0.882±0.004 0.827±0.003 0.804±0.010 0.851±0.019
15 0.884±0.001 0.876±0.002 0.892±0.003 0.852±0.002 0.813±0.005 0.894±0.010
20 0.890±0.001 0.882±0.003 0.898±0.003 0.860±0.005 0.831±0.021 0.892±0.029

Table 2: VizFake outperforms VGG16 when classifying real class e.g., F1 score (> 0.85) with only 5% of labels.

Figure 8: Cutting a screenshot into four sections.

sors. So, we choose the 3-mode tensor as tensor model. We
use the balanced dataset comprising 50k screenshots with
resolution of 200 × 100 and finally we set the rank to 35
based on what is in Figure. 6.

Deep learning configuration Although our modest-sized
dataset has considerable examples per class (25k), it is not
of the required scale for current deep models; thus, we resort
to deep transfer learning (Pan and Yang 2009).

We choose VGG16 (Simonyan and Zisserman 2014) pre-
trained on ImageNet (Deng et al. 2009) as our base convolu-
tional network and modify the final fully connected layers to
suite our binary classification task.We also tried some other
models, they all basically perform similarly. The perfor-
mance we got was indicative and also was on par with other
models. So, we just report the results for VGG16 which is
robust enough and the hyper-parameter optimization process
is feasible in terms of time and available resources. The net-

work is subsequently fine-tuned on screenshot images. Due
to label scarcity, we want to see if the deep network performs
as well as VizFake when there is a limited amount of la-
bels. Thus, we experiment by fine-tuning on the same label
percentage we use for VizFake. The remaining images are
used for validation and testing.

We use the Adam optimizer (Kingma and Ba 2014) and
search between 0.0001 and 0.01 for the initial learning rate.
We apply sigmoid activation in the output layer of the net-
work and the binary cross-entropy as the loss function. The
batch sizes we experiment with ranged from 32 to 512
and we finally fixed the batch size for all experiments to
512. Batch size significantly impacts learning as a large
enough batch size provides a stable estimate of the gradient
for the whole dataset. (Smith et al. 2017; Hoffer, Hubara,
and Soudry 2017). The convergence takes approximately
50 epochs. We note that the effort required to fine-tune a
deep network for this task was tedious and included manual
trial-and-error, while VizFake requires the determination
of just 2 parameters, both of which produce stable perfor-
mance across a reasonable range.

Comparing classification performance Next, we com-
pare the classification performance of VizFake against the
CNN method we explained above in terms of precision, re-
call, and F1 score. Tables 1 and 2 show the achieved results
of these metrics for VizFake and CNN model. As demon-
strated, VizFake outperforms CNN especially given less
labeled data. For instance, the F1 scores of VizFake for the
fake class when we use only 5%-10% of the labels are 85%-
87%, respectively which is 5-6% higher than the 80%-81%
F1 scores from the CNN model. Thus, VizFake achieves
better performance while avoiding considerable time in find-
ing optimal hyperparameters required for tuning VGG16.

8

(a) F1-Real

(b) F1-Fake

Figure 9: Changes in the F1 score when cutting different
sections of the screenshots. In contrast to 2 middle sections,
Cutting the top and bottom sections causes a considerable
decrease in F1 scores. It seems that style defining style-
defining events of the webpages are mostly focused in the
top and bottom sections of the webpages.

Comparing the time efficiency We evaluate time effi-
ciency by measuring the runtime each method requires to
achieve the best results. We experiment on two settings:

The first one uses a GPU since CNN training is an in-
tensive and time-consuming phase which typically requires
performant hardware. Although using a GPU-based frame-
work is not necessary for VizFake, we re-implemented
VizFake on the same setting we use for the deep learning
model to leverage the same scheme, i.e. Python using Ten-
sorLy library (Kossaifi et al. 2019) with TensorFlow back-
end. Thus, we avoid influence from factors like program-
ming language, hardware configuration, etc.

The second configuration uses a CPU and is the one we
used in prior experiments and discussed in the Implementa-
tion section. Since we are not able to train the CNN model
with this configuration due to excessively long runtime, we
only report them for VizFake.

For both experiments, we measure the runtime of bottle-
necks, i.e., decomposition of VizFake and training phase
of the deep learning method. Other steps such as: K-NN
graph construction, belief propagation, and test phase for
CNN method are relatively fast and have negligible runtimes
(e.g. construction and propagation for the K-NN graph with
50K screenshots take just 3-4 seconds). Due to our limited

Resolution Avg.# Iter. Avg. Time/Iter. Avg. Time
200× 100 7.64 23.76s 181.55s
300× 100 7.88 35.52s 279.95s
400× 100 7.72 47.82s 369.22s

Table 3: Execution time (Sec.) of VizFake for different res-
olutions on configuration 2

Method Avg. # Iter. Avg. time/Iter. Avg. Time
VizFake 7.08 1.05s 7.64s

CNN 50 33.08s 1654s

Table 4: Execution times (Sec.) of VizFake and CNN deep
learning model on configuration 1.

GPU memory, we experiment using a 5% fraction of the
dataset for the GPU configuration. By doing so, we also re-
duce the I/O overhead that may be counted as execution time
when we have to read the dataset in bashes. However, we use
100% of the dataset for the CPU setting. The technical as-
pects of each configuration are as follows:
Configuration 1:
• Keras API for Tensorflow in Python to train the deep net-

work and Python using Tensorly with TensorFlow back-
end for VizFake.

• 2 Nvidia Titan Xp GPUs (12 GB)
• Training: 5% (2500 screenshots of size 200 × 100), vali-

dation: 4% (2000 screenshots)
• Decomposition: 5% (2500 screenshots of size 200× 100)
Configuration 2:
• Matlab Tensor Toolbox 2.6
• CPU: Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz
• Decomposition: 100% (50K screenshots)

The average number of iterations, time per iteration, and
average total time for 10 runs of both methods on Configura-
tion 1 and the same metrics for VizFake on Configuration
2 are reported in Tables 4 and 3, respectively.

Based on execution times demonstrated in Table 4, the
tensor-based method is roughly 216 and 31.5 times faster
than the deep learning method in terms of average time and
average time per iteration, respectively. Moreover, the itera-
tions required for VizFake is almost 7 times less than the
epochs required for the CNN method. Note that these re-
sults are very conservative estimates since we do not con-
sider time spent tuning CNN hyperparameters in this eval-
uation. Table 3 shows the execution time for VizFake on
Configuration 2. Decomposing a tensor of 50k color screen-
shots using CPU is roughly 3 Mins for screenshots of size
200× 100, increasing to 6 Mins for larger tensors.

Overall, the results suggest that VizFake is 2 orders
of magnitude faster than the state-of-the-art deep transfer
learning method for the application at hand, and generally
more “user-friendly” for real-world deployment.

9

Fake Class
%labels TF-IDF/SVM Doc2Vec/SVM GloVe/LSTM FastText VizFake

5 0.812±0.005 0.511±0.000 0.651±0.019 0.717±0.010 0.844±0.004
10 0.828±0.001 0.530±0.004 0.672±0.024 0.748±0.007 0.863±0.005
15 0.836±0.002 0.540±0.004 0.699±0.020 0.757±0.006 0.873±0.003
20 0.841±0.001 0.546±0.002 0.718±0.002 0.758±0.004 0.880±0.003

Table 5: The F1 score of VizFake for fake class, outperforms the F1 score of state of the art text-based approaches.

Real Class
%labels TF-IDF/SVM Doc2Vec/SVM GloVe/LSTM FastText VizFake

5 0.814±0.004 0.511±0.000 0.650± 0.028 0.650± 0.030 0.862±0.006
10 0.829±0.005 0.520±0.001 0.680±0.005 0.707± 0.016 0.882±0.004
15 0.836±0.003 0.526±0.002 0.698±0.013 0.712±0.010 0.892±0.003
20 0.842±0.001 0.534±0.006 0.712±0.009 0.728±0.009 0.898±0.003

Table 6: The F1 score of VizFake for real class, outperforms the F1 score of state of the art text-based approaches.

Comparing Against Text-based Methods
Even though the main goal of this work is to explore whether
or not we can leverage the overall look of the serving
webpage to discriminate misinformation, we compare the
classification performance of VizFake with some well-
known text-based approaches to investigate how successful
is the proposed approach in comparison to these widely used
methods. We compare against:
• TF-IDF term frequency–inverse document frequency

method is one of the widely used methods for document
classification. TF-IDF models the importance of words
in documents. We create a TF-IDF model out of screen-
shots text and then we leverage SVM for classification.

• Doc2Vec a shallow 2-layers neural network proposed by
Google (Le and Mikolov 2014). Doc2Vec is an extension
to word2vec and generate vectors for documents. Again,
we use SVM classifier.4

• FastText a proposed NLP library by Facebook Re-
search. FastText learns the word representations which
can be used for text classification. It is shown that the
accuracy of FastText is comparable to deep learn-
ing models but is considerably faster than deep competi-
tors5(Bojanowski et al. 2016).

• GloVe/LSTM a linear vector representation of the words
using an aggregated global word-word co-occurrence. We
create a dictionary of unique words and leverage Glove
to map indices of words into a pre-trained word embed-
ding(Lin et al. 2017). Finally, we leverage a LSTM classi-
fier6 pre-trained on IMDB and fine-tune it on our dataset.
We examined embedding length in range 50-300 and fi-
nally set it to 300. The tuned batch size and hidden size
are 256, 64 respectively.

The experimental results of the aforementioned methods are
given in Table. 5 and Table. 6. As demonstrated, the classifi-

4
https://github.com/seyedsaeidmasoumzadeh/Binary-Text-Classification-Doc2vec-SVM

5
https://github.com/facebookresearch/fastText

6
https://github.com/prakashpandey9/Text-Classification-Pytorch

cation performance of VizFake reported in these tables,
outperforms the performance of the shallow network ap-
proaches i.e., Doc2Vec and FastText as well as the deep
network approach i.e., GloVe/LSTM which shows the ca-
pability of VizFake in comparison to neural network meth-
ods in settings that there is a scarcity of labels. The TF-IDF
representation along with SVM classifier leads to classifi-
cation performance close to the proposed visual approach
which illustrates that visual information of the publishers is
as discriminative as the best text-based approaches.

Comparing Against Website Structure Features
A question that may come to mind is ”why not using website
features instead of screenshots?” To address this question,
we repeat the proposed pipeline i.e., decomposition, K-NN
graph, and belief propagation this time using HTML tags
crawled from the serving webpages. To this end, we create
an article/tags matrix then we decompose this matrix using
Singular Value Decomposition (X ≈ UΣVT) and leverage
matrix U which corresponds to articles pattern to create a
K-NN graph and propagate the labels using FaBP. The re-
sult of this experiment is given in Table.7. As illustrated in
Table.7, using HTML tags is highly predictive which is an-
other justification for using the overall look of the webpages.
The question raises now is that ”Why not just using website
features for capturing the overall look, especially when the
classification performance is better?” Here is some reasons
for using screenshots instead of website features:
• HTML source of the domain is not always available or

even if we gain access to the source, the page may be gen-
erated dynamically and as a result, the features that can be
informative are probably non-accessible scripted content.
This is why the HTML source of our dataset provided us
with features mainly related to the high-level structure of
the domain shared between different screenshots.

• HTML feature extraction requires tedious web crawling
and data cleaning processes and is difficult to separate

10

%labels 5 10 15
Fake 0.977±0.0004 0.983±0.0002 0.985±0.0002

Real 0.977±0.0004 0.983±0.0003 0.985±0.0002

Table 7: Performing proposed pipeline on HTML-Tags of ar-
ticles. The result justifies that HTMLs only contain domain
features which is shared between all articles of that domain.

useful features from useless ones. Taking screenshots is
easy and can be done fast and online needless to extra re-
sources or expert knowledge for web crawling.

• Even if we have access to the HTML source and be able
to separate useful features in an efficient way, these fea-
tures do not give us any information about the content of
the web events such as images, videos, ads, etc. If we are
to conduct article-level labeling or even section level la-
beling (usually just some part of an article is misinforma-
tive) we will miss a lot of useful information when we use
HTML features while screenshots capture such details.

Given the reasons above, the screenshots are not only as in-
formative as textual content, but also are preferred over time-
consuming and often less informative HTML features.

Exploratory Analysis
The tensor representation of VizFake is not only highly
predictive in semi-supervised settings, but also lends itself
to exploratory analysis, due to the ease of interpretability of
the decomposition factors. In this section, we leverage those
factors in order to cluster domains into coherent categories
(misinformative or not), in an unsupervised fashion. Each
column of the screenshot embedding C indicates the mem-
bership of each screenshot to a cluster, defined by each of
the rank-one components (for details on how to generally
interpret CP factors as clustering, see (Papalexakis, Falout-
sos, and Sidiropoulos 2016)). Each one of the clusters has
a representative latent image, which captures the overall in-
tensity in different parts of the image indicating regions of
interest that are participating in generating that cluster. To
obtain this image, we compute the outer product of column
vectors of matrices corresponding to pixels and channels i.e.,
A and B for the vectorized tensor and scale it to range 0-255
which provides us with R latent images. We then annotate
the images based on the ground truth only to verify that the
coherent clusters correspond to fake or real examples. We in-
vestigate the interpretability of these latent images by taking
the 90th percentile majority vote from the labels of articles
with high score in that latent factor. The details of clustering
approach is demonstrated in Algorithm. 1.

Examples of latent images corresponding to misinforma-
tive and real classes are illustrated in Figure 10. The darker
a location of an image, the higher degree of “activity” it ex-
hibits with respect to that latent pattern. We may view those
latent images as “masks” that identify locations of interest
within the screenshots in the original pixel space. In Fig-
ure 10, we observe that latent images corresponding to real
clusters appear to have lighter pixels, indicating little “activ-
ity” in those locations. For example, the two latent images

Algorithm 1: Exploratory analysis
1 Input:A, B and C Factor Matrices
2 Result: Latent pattern images
3 \\ scale the result to values between 0-255
4 min = 0;max = 255

5 aij =
(aij−min(aij)×(max−min)

(max(aij)−min(aij)) +min

6 bij =
(bij−min(bij)×(max−min)

(max(bij)−min(bij)) +min

7 for i = 1 · · ·R do
8 Xi

cumulative ≈ ai ◦ bi

9 topn
i = top (100− α) percentile values ci

10 Xi
cumulative =Label-majority-Vote(topni)

11 end

resulted from rank 15 decomposition are lighter than latent
images for the fake class, also the same holds for rank 20.
Moreover, as illustrated in Figure 10, darker pixels are more
concentrated at the top and the bottom parts of the images
which are wider for misinformative patterns and corrobo-
rate our assumption about having more objects, such as ads
and pop-ups, in fake news websites. As mentioned, such ob-
jects are more prevalent at the top and the bottom of the
websites which matches our observation here and the cut-
ting observation we discussed earlier. As shown in Figure 9,
cutting the bottom and top sections lead to more significant
changes in performance than cutting just the banner which
also confirms our assumption about informativeness of these
sections. This experiment not only provides us with a clus-
tering approach which is obtained without labels and corre-
lates with existing ground truth but also enables us to define
filters for misinformation pattern recognition tasks in form
of binary masks, that identify locations of interest within a
screenshot, which can further focus our analysis.

Limitations of the Work

As discussed earlier, collecting annotation for misinforma-
tion detection is a complicated and time-consuming task and
as we increase the granularity of the labels from domain
level to articles level and even article sections it becomes
harder and harder. Moreover, the majority of available
ground truth resources like “BS Detector” or ”NewsGuard”
provide labels pertain to domains rather than articles. De-
spite this disparity, it is shown in several works (Helmstetter
and Paulheim 2018; Zhou 2017) that the weakly-supervised
task of using labels pertaining to domains, and subsequently
testing on labels pertaining to articles, yields negligible ac-
curacy loss due to the strong correlation between the two
targets. However, as mentioned in the webpage structure
section, there are useful article-level information like web
events content that can be taken advantage of when we have
grainier labels and capturing them causes a drop in perfor-
mance because they may be considered as noise when work-
ing with domain level labels. We defer the study of obtaining
and using finer-grained labels for future work.

11

(a) Misinformative latent pattern images (b) Real latent pattern images

Figure 10: Examples of the cumulative structures of all articles corresponding to factors with the majority of misinformative/real
labels. Contrary to the real class, images of misinformative class have darker pixels i.e., the dark portion of the image is wider.

Related Work
Visual-based Misinformation Detection
The majority of work proposed so far focus on content-
based or social-based information. However, there are few
studies on visual information of articles. For instance, in
(Ringel Morris et al. 2012; Gupta, Zhao, and Han 2012)
the authors consider user image as a feature to investigate
the credibility of the tweets. In another work, Jin et al. (Jin
et al. 2017) define clarity, coherence, similarity distribution,
diversity, and visual clustering scores to verify microblogs
news, based on the distribution, coherency, similarity, and
diversity of images within microblog posts. In (Sun et al.
2013) authors find outdated images for the detection of un-
matched text and pictures of rumors. Gupta et al. in (Gupta
et al. 2013) classify fake images on Twitter using a charac-
terization analysis to understand the temporal, social reputa-
tion of images. On the contrary, we do not focus on the user
aspect, i.e., profile image or metadata within a post e.g., im-
age, video, etc. Thus, no matter if there is any images or not,
VizFake captures the overall look of the article.

Tensor-based Misinformation Detection
There are some studies on fake news detection which lever-
age tensor-based models. For example, in (Hosseinimot-
lagh and Papalexakis 2017; Guacho et al. 2018) the authors
model content-based information using tensor embedding
and try to discriminate misinformation in an unsupervised
or semi-supervised regime. In this paper, rather than using
article text, we leverage tensors to model article images. Al-
though VizFake is able to capture the textual look of the
article, we are not using time-consuming text analysis and
we leverage all features of the article such as text, metadata,
domain, etc., when we capture the screenshot of the page.

Conclusions
In this paper, we leverage a very important yet neglected
feature for detecting misinformation, i.e., the overall look of
serving domain. We propose a tensor-based model and semi-
supervised classification pipeline i.e., VizFake which out-
performs text-based methods and state-of-the-art deep learn-

ing models and is over 200 times faster, while also being
easier to fine-tune and more practical. Moreover, VizFake
is resistant to some common image transformations like
grayscaling and changing the resolution, as well as partial
corruptions of the image. Furthermore, VizFake has ex-
ploratory capabilities i.e., it can be used for unsupervised
soft-clustering of the articles. VizFake achieves F1 score
of roughly 85% using only 5% of labels for both real and
fake classes on a balanced dataset and an F1 score of roughly
95% for real class and 78% for the fake class using only 20%
of ground truth on a highly imbalanced dataset.

Acknowledgements
The authors would like to thank Gisel Bastidas for her in-
valuable help with data collection. Research was supported
by a UCR Regents Faculty Fellowship, a gift from Snap
Inc., the Department of the Navy, Naval Engineering Edu-
cation Consortium under award no. N00174-17-1-0005, and
the National Science Foundation CDS&E Grant no. OAC-
1808591. The GPUs used for this research were donated by
the NVIDIA Corp. Any opinions, findings, and conclusions
expressed in this paper are those of the author(s) and do not
necessarily reflect the views of the funding parties.

References
Bader, B. W., and Kolda, T. G. 2006. Algorithm 862: MAT-
LAB tensor classes for fast algorithm prototyping. Transac-
tions on Mathematical Software 32(4):635–653.

Boatwright, B. C.; Linvill, D. L.; and Warren, P. L. 2018.
Troll factories: The internet research agency and state-
sponsored agenda building. Resource Centre on Media Free-
dom in Europe.

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2016.
Enriching word vectors with subword information. arXiv
preprint arXiv:1607.04606.

Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Survey
propagation: An algorithm for satisfiability. Random Struct.
Algorithms 27(2):201–226.

12

Ciampaglia, G. L.; Shiralkar, P.; Rocha, L. M.; Bollen,
J.; Menczer, F.; and Flammini, A. 2015. Computa-
tional fact checking from knowledge networks. PloS one
10(6):e0128193.

Cyr, D. 2013. Website design, trust and culture: An eight
country investigation. ECRA 12.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. 248–255.

Guacho, G. B.; Abdali, S.; Shah, N.; and Papalexakis, E. E.
2018. Semi-supervised content-based detection of misinfor-
mation via tensor embeddings. 322–325.

Gupta, A.; Lamba, H.; Kumaraguru, P.; and Joshi, A. 2013.
Faking sandy: characterizing and identifying fake images on
twitter during hurricane sandy. WWW 2013 Companion -
Proceedings of the 22nd International Conference on World
Wide Web 729–736.

Gupta, M.; Zhao, P.; and Han, J. 2012. Evaluating event
credibility on twitter. SIAM International Conference In
Data Mining 153–164.

Helmstetter, S., and Paulheim, H. 2018. Weakly supervised
learning for fake news detection on twitter. 274–277.

Hoffer, E.; Hubara, I.; and Soudry, D. 2017. Train longer,
generalize better: closing the generalization gap in large
batch training of neural networks. 1731–1741.

Horne, B. D., and Adali, S. 2017. This just in: Fake
news packs a lot in title, uses simpler, repetitive content
in text body, more similar to satire than real news. CoRR
abs/1703.09398.

Hosseinimotlagh, S., and Papalexakis, E. E. 2017. Unsuper-
vised content-based identification of fake news articles with
tensor decomposition ensembles.

Jin, Z.; Cao, J.; Zhang, Y.; Zhou, J.; and Tian, Q. 2017.
Novel visual and statistical image features for microblogs
news verification. Transactions on Multimedia 19(3):598–
608.

Kanan, C., and Cottrell, G. 2012. Color-to-grayscale: Does
the method matter in image recognition? PloS 7:e29740.

Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv:1412.6980.

Kossaifi, J.; Panagakis, Y.; Anandkumar, A.; and Pantic, M.
2019. Tensorly: Tensor learning in python. The Journal of
Machine Learning Research 20(1):925–930.

Koutra, D.; Ke, T.-Y.; Kang, U.; Chau, D.; Pao, H.-K.; and
Faloutsos, C. 2011. Unifying Guilt-by-Association Ap-
proaches: Theorems and Fast Algorithms. In ECML/PKDD,
volume 6912 of Lecture Notes in Computer Science. 245–
260.

Le, Q., and Mikolov, T. 2014. Distributed representations of
sentences and documents. ICML 2014 4.

Lin, Z.; Feng, M.; dos Santos, C. N.; Yu, M.; Xiang, B.;
Zhou, B.; and Bengio, Y. 2017. A structured self-attentive
sentence embedding. ICLR abs/1703.03130.

Oshikawa, R.; Qian, J.; and Wang, W. Y. 2018. A sur-
vey on natural language processing for fake news detection.
arXiv:1811.00770.
Pan, S. J., and Yang, Q. 2009. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(10):1345–1359.
Papalexakis, E. E.; Faloutsos, C.; and Sidiropoulos, N. D.
2016. Tensors for data mining and data fusion: Models, ap-
plications, and scalable algorithms. ACM Trans. Intell. Syst.
Technol. 8(2):16:1–16:44.
Ringel Morris, M.; Counts, S.; Roseway, A.; Hoff, A.; and
Schwarz, J. 2012. Tweeting is believing?: Understanding
microblog credibility perceptions. Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work
441–450.
Rubin, V. L.; Conroy, N. J.; Chen, Y.; and Cornwell, S. 2016.
Fake news or truth? using satirical cues to detect potentially
misleading news.
Shu, K.; Sliva, A.; Wang, S.; Tang, J.; and Liu, H. 2017. Fake
news detection on social media: A data mining perspective.
KDD.
Sidiropoulos, N.; De Lathauwer, L.; Fu, X.; Huang, K.; Pa-
palexakis, E.; and Faloutsos, C. 2016. Tensor decomposition
for signal processing and machine learning. IEEE Transac-
tions on Signal Processing.
Simonyan, K., and Zisserman, A. 2014. Very deep
convolutional networks for large-scale image recognition.
arXiv:1409.1556.
Smith, S. L.; Kindermans, P.-J.; Ying, C.; and Le, Q. V.
2017. Don’t decay the learning rate, increase the batch size.
arXiv:1711.00489.
Sun, S.; Liu, H.; He, J.; and Du, X. 2013. Detecting event
rumors on sina weibo automatically. 120–131.
Vasilescu, M. A. O. 2012. A Multilinear (Tensor) Algebraic
Framework for Computer Graphics, Computer Vision and
Machine Learning. Ph.D. Dissertation, Citeseer.
Wells, J.; Valacich, J.; and Hess, T. 2011. What signal
are you sending? how website quality influences perceptions
of product quality and purchase intentions. MIS Quarterly
35:373–396.
Yan, R.-N.; Yurchisin, J.; and Watchravesringkan, K. 2011.
Does formality matter?: Effects of employee clothing for-
mality on consumers’ service quality expectations and store
image perceptions. Retail & Distribution Management
39:346–362.
Yedidia, J.; Freeman, W.; and Weiss, Y. 2005. Constructing
free-energy approximations and generalized belief propaga-
tion algorithms. Information Theory 51:2282 – 2312.
Zhou, Z.-H. 2017. A brief introduction to weakly supervised
learning. National Science Review 5.

13

