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Abstract

Metadata are associated with most of the information we pro-
duce in our daily interactions and communication in the digital
world. Yet, surprisingly, metadata are often still categorized as
non-sensitive. Indeed, in the past, researchers and practitioners
have mainly focused on the problem of the identification of a
user from the content of a message.

In this paper, we use Twitter as a case study to quantify the
uniqueness of the association between metadata and user iden-
tity and to understand the effectiveness of potential obfusca-
tion strategies. More specifically, we analyze atomic fields in
the metadata and systematically combine them in an effort
to classify new tweets as belonging to an account using dif-
ferent machine learning algorithms of increasing complexity.
We demonstrate that, through the application of a supervised
learning algorithm, we are able to identify any user in a group
of 10,000 with approximately 96.7% accuracy. Moreover, if
we broaden the scope of our search and consider the 10 most
likely candidates we increase the accuracy of the model to
99.22%. We also found that data obfuscation is hard and inef-
fective for this type of data: even after perturbing 60% of the
training data, it is still possible to classify users with an accu-
racy higher than 95%. These results have strong implications
in terms of the design of metadata obfuscation strategies, for
example for data set release, not only for Twitter, but, more
generally, for most social media platforms.

Introduction

Platforms like Facebook, Flickr, and Reddit allow users to
share links, documents, images, videos, and thoughts. Data
has become the newest form of currency and analyzing data
is both a business and an academic endeavor. When online
social networks (OSNs) were first introduced, privacy was
not a major concern for users and therefore not a priority
for service providers. With time, however, privacy concerns
have risen: users started to consider the implications of the
information they share (Stutzman, Gross, and Acquisti 2013;
Humphreys, Gill, and Krishnamurthy ) and in response OSN
platforms have introduced coarse controls for users to man-
age their data (De Cristofaro et al. ). Indeed, this concern is
heightened by the fact that this descriptive information can be
actively analyzed and mined for a variety of purposes, often
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beyond the original design goals of the platforms. For exam-
ple, information collected for targeted advertisement might
be used to understand political and religious inclinations of a
user. The problem is also exacerbated by the fact that often
these datasets might be publicly released either as part of a
campaign or through information leaks.

Previous work shows that the content of a message posted
on an OSN platform reveals a wealth of information about
its author. Through text analysis, it is possible to derive age,
gender, and political orientation of individuals (Rao et al. );
the general mood of groups (Bollen, Mao, and Pepe ) and
the mood of individuals (Tang et al. 2012). Image analy-
sis reveals, for example, the place a photo was taken (Hays
and Efros ), the place of residence of the photographer (Ja-
hanbakhsh, King, and Shoja 2012), or even the relationship
status of two individuals (Shoshitaishvili, Kruegel, and Vigna
2015). If we look at mobility data from location-based social
networks, the check-in behavior of users can tell us their
cultural background (Silva et al. ) or identify users uniquely
in a crowd (Rossi and Musolesi ). Finally, even if an attacker
only had access to anonymized datasets, by looking at the
structure of the network someone may be able to re-identify
users (Narayanan and Shmatikov ). Most if not all of these
conclusions could be considered privacy-invasive by users,
and therefore the content is what most service providers are
starting to protect. However, access control lists are not suffi-
cient. We argue that the behavioral information contained in
the metadata is just as informative.

Metadata has become a core component of the services
offered by OSNs. For example, Twitter provides information
on users mentioned in a post, the number of times a message
was re-tweeted, when a document was uploaded, and the
number of interactions of a user with the system, just to name
a few. These are not merely extra information: users rely on
these to measure the credibility of an account (Wang et al.
) and much of the previous research in fighting social spam
relies on account metadata for detection (Benevenuto et al. ;
Stringhini, Kruegel, and Vigna ).

In this paper, we present an in-depth analysis of the identi-
fication risk posed by metadata to a user account. We treat
identification as a classification problem and use supervised
learning algorithms to build behavioral signatures for each
of the users. Our analysis is based on metadata associated to
micro-blogging services like Twitter: each tweet contains the



metadata of the post as well as that of the account from which
it was posted. However, it is worth noting that the methods
presented in this work are generic and can be applied to a
variety of social media platforms with similar characteristics
in terms of metadata. In that sense, Twitter should be consid-
ered only as a case study, but the methods proposed in this
paper are of broader applicability. The proposed techniques
can be used in several practical scenarios such as when the
identifier of an account changes over time, when a single user
creates multiple accounts, or in the detection of legitimate
accounts that have been hijacked by malicious users.

In security, there are at least two areas that look at identity
from opposite perspectives: on one hand, research in authen-
tication looks for methods that, while unobtrusive and usable,
consistently identify users with low false positive rates (Patel
et al. 2016); and, on the other hand, work on obfuscation and
differential privacy aims to find ways by which we can pre-
serve an individual’s right to privacy by making information
about them indistinguishable in a set (Li, Li, and Venkatasub-
ramanian ). This study is relevant to both: we claim that in
the same way that our behavior in the physical world is used
to identify us (Bailey, Okolica, and Peterson 2014; Bo et al. ;
Wang and Geng 2009), the interactions of a user with a sys-
tem, as represented by the metadata generated during the
account creation and its subsequent use, can be used for iden-
tification. If this is true, and metadata can in fact be linked to
our identity and as it is seldom if ever protected, it constitutes
arisk for users’ privacy. Our goal is therefore, to determine if
the information contained in users’ metadata is sufficient to
fingerprint an account. Our contributions can be summarized
as follows:

e We develop and test strategies for user identification
through the analysis of metadata through state-of-the-
art machine learning algorithms, namely Multinomial
Logistic Regression (MLR) (Bishop 2001), Random
Forest (RF) (Breiman 2001), and K-Nearest Neighbors
(KNN) (Huang, Yang, and Chuang 2008).

e We provide a performance evaluation of different classi-
fiers for multi-class identification problems, considering a
variety of dimensions and in particular the characteristics
of the training set used for the classification task.

e We assess the effectiveness of two obfuscation techniques
in terms of their ability of hiding the identity of an account
from which a message was posted.

Motivation
Formal Definition of the Study
We consider a set of users
U = {uy,us,.. coyupr b
Each user u; is characterized by a finite set of features
Xte = {glhy glhq ... 2% g}

In other words, we consider M users and each user is repre-
sented by means of R features. Our goal is to map this set of
users to a set of identities

I={iy,is,...

<y Uy -

Sy ey UM}
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We assume that each user uj maps to a unique identity ;.

Identification is framed in terms of a classification prob-
lem: in the training phase, we build a model with a known
dataset; in our case, we consider a dataset in which a user uy,
as characterized by features X,,, , extracted from the user’s
profile, is assigned an identity ¢;. Then, in the classification
phase, we assign to each user g, for which we assume that
the identity is unknown, a set of probabilities over all the
possible identities.

More formally, for each user uy (i.e., our test observation)
the output of the model is a vector of the form

Pl(ﬁ’k) - {pll (ak)7pl2 (ﬂk)7 <oy Piyg (I&k)}’
where p;, (i) is the probability that the test observation
related to uy will be assigned to identity 7; and so on. We
assume a closed system where all the observations will be
assigned to users in I, and therefore, Zilel pi, (4g) = 1.
Finally, the identity assigned to the observation will be the
one that corresponds to argmaz;, {p;, (ix)}

Two users with features having the same values are indis-
tinguishable. Moreover, we would like to point out that the
values of each feature can be static (constant) over time or dy-
namic (variable) over time. An example of a static feature is
the account creation time. An example of a dynamic feature
is the number of followers of the user at the time the tweet
was posted. Please also note that, from a practical point of
view, our objective is to ascertain the identity of a user in the
test set. In the case of a malicious user, whose identity has
been modified over time, we assume that the ‘real’ identity
is the one that is found in the training set. In this way, our
method could also be used to group users with very similar
characteristics and perhaps conclude that they belong to the
same identity.

Attack Model

The goal of the study is to understand if it is possible to cor-
rectly identify an account given a series of features extracted
from the available metadata. In our evaluation, as discussed
before, the input of the classifier is a set of new (unseen)
tweets. We refer to a successful prediction of the account
identity as a hit and an unsuccessful one as a miss. We as-
sume that the attacker is able to access the metadata of tweets
from a group of users together with their identities (i.e., the
training set) and that the new tweets belong to one of the
users in the training set.

We present the likelihood of success of an identification
attack where the adversary’s ultimate goal is to identify a user
from a set given this knowledge about the set of accounts. To
achieve this, we answer this question: Is it possible to identify
an individual from a set of metadata fields from a randomly
selected set of Twitter user accounts?

Methods
Metadata and the case of Twitter

We define metadata as the information available pertaining to
a Twitter post. This is information that describes the context
in which the post was shared. Apart from the 140 character
message, each tweet contains about 144 fields of metadata.



Table 1: Description of relevant data fields.

Feature Description

Account creation
Favourites count
Follower count
Friend count
Geo enabled
Listed count
Post time stamp
Statuses count
Verified

UTC time stamp of the account creation time.

The number of tweets that have been marked as ‘favorites’ of this account.

The number of users that are following this account.

The number of users this account is following.

(boolean) Indicates whether tweets from this account is geo-tagged.

The number of public lists that include the account.

UTC time of day stamp at which the post was published.

The number of tweets posted by this account.

(boolean) Indicates that Twitter has checked the identity of the user that owns this account.

Each of these fields provides additional information about:
the account from which it was posted; the post (e.g., time,
number of views); other tweets contained within the message;
various entities (e.g., hashtags, URLSs, etc); and the informa-
tion of any users directly mentioned in it. From these features
(in this work we will use features, fields, inputs to refer to
each of the characteristics available from the metadata) we
created combinations from a selection of 14 fields as a basis
for the classifiers.

Feature Selection

Feature selection methods can be essentially grouped in three
classes following the classification proposed by Liu and Yu
in (Liu and Yu 2005): the filter approach that ranks features
based on some statistical characteristics of the population;
the wrapper approach that creates a rank based on metrics
derived from the measurement algorithm; and a group of
hybrid methods which combine the previous two approaches.
In the same paper, the authors claim that the wrapper method
is guaranteed to find the optimal combination of inputs for
classification based on the selected criteria. Three years later,
in (Huang, Yang, and Chuang 2008), Huang et al. provided
validation by experimentally showing that for classification,
the wrapper approach results in the best possible performance
in terms of accuracy for each algorithm.

From the three proposed, the only method that allows for
fair comparison between different algorithms is the wrapper
method. Since it guarantees optimal feature combination on a
per algorithm basis, it eliminates any bias in the analysis due
to poor selection. Ultimately, we conducted a comprehensive
stratified search over the feature space and obtained a ranking
per level for each of the algorithms. Here, a level corresponds
to the number of features used as input for the classifier and
we will use n to denote it. In the first level, where n = 1
we looked at the predictive power of each of the 14 features
individually; for n = 2 we looked at all combinations of
pairs of features, and so on. We use the term combinations to
describe any group of n un-ordered features throughout the
paper.

The features selected were those that describe the user
account and were not under direct control of the user with
the exception of the account ID which was excluded as it was
used as ground truth (i.e., label) of each observation. As an
example, the field describing the users’ profile background
color was not included in the feature list while the number
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of friends and number of posts were. Table 1 contains a
description of the fields selected.

Implementation of the Classifiers

We consider three state-of-the-art classification methods:
Multinomial Logistic Regression (MLR) (Bishop 2001), Ran-
dom Forest (RF) (Breiman 2001), and K-Nearest Neighbors
(KNN) (Huang, Yang, and Chuang 2008). Each of these
algorithms follows a different method to make the recom-
mendation and they are all popular within the community.

We use the implementation of the algorithms provided by
sci-kit learn (Pedregosa et al. 2011), a Python library. The
optimization of the internal parameters for each classifier was
conducted as a combination of best practices in the field and
experimental results in which we used the cross-validated
grid search capability offered by SciKit-learn. In summary,
we calculated the value of the parameters for each classifier
as follows. For KNN, we consider the single closest value
based on the Euclidean distance between the observations;
for RF, we chose entropy as the function to measure the
effectiveness of the split of the data in a node; finally, for
MLR, we selected the limited-memory implementation of the
Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) optimizer
as the value to optimize (Liu and Nocedal 1989).

Obfuscation and Re-Identification

Obfuscation can only be understood in the context of data
sharing. The goal of obfuscation is to protect the private indi-
vidual fields of a dataset by providing only the result of some
function computed over these fields (Mowbray, Pearson, and
Shen 2012). To succeed, the possibilities are either to ob-
fuscate the data or develop algorithms that protect it (Malik,
Ghazi, and Ali ). We reasoned that an attacker will have ac-
cess to any number of publicly available algorithms, this is
outside of our control. However, we could manipulate the
granularity of the information made available. Our task is to
determine whether doing so is an effective way of protect-
ing user privacy, particularly when obfuscated metadata is
released.

In this work, we focus on two classic obfuscation methods:
data randomization and data anonymization (Agrawal and
Srikant ; Bakken et al. 2004; Polat and Du ). Data anonymiza-
tion is the process by which the values of a column are
grouped into categories and each reading is replaced by an
index of its corresponding category. Data randomization, on



Table 2: KNN classification accuracy using ten observations
per user using follower count and friend count as features in
input. We ran each experiment for an increasing number of
users u.

U top result top 5
10 94.283 (£0.696)  98.933 (£0.255)
100 86.146 (+£0.316)  96.770 (£0.143)
1,000  70.348 (£0.112) 90.867 (+0.076)
10,000  47.639 (£0.039) 76.071 (£0.029)
100,000  28.091 (+0.089) 55.438 (+£0.192)

the other hand, is a technique that alters the values of a subset
of the data points in each column according to some pre-
determined function. We use rounding as the function to be
applied to the data points. For each of the values that were al-
tered, we rounded to one less than the most significant value
(i.e., 1,592 would be 1,600 while 31 would be 30). We mea-
sured the level of protection awarded by randomization by
recording the accuracy of the predictions as we increased the
number of obfuscated data points in increments of 10% until
we reached full anonymization (i.e., 100% randomization) of
the training set.

Inference Methods

Statistical inference is the process by which we generalize
from a sample a characteristic of the population. Bootstrap-
ping is a computational method that allows us to make infer-
ences without making any assumptions about the distribution
of the data and without the need of formulas to describe the
sampling process. With bootstrapping we assume that each
sample is the population and then aggregate the result from a
large number of runs (anywhere between 50 and 1,000 times
depending on the statistic being drawn) (Mooney and Duval
1993). In this study, we are primarily interested in the pre-
cision and accuracy of each classifier as a measure of their
ability to predict the correct user given a tweet. The results
we present in the paper are an average over 200 repetitions
of each experiment. In each experiment, the input data was
randomly split between training and testing sets using a 7:3
proportion, which is a typical setting in the evaluation of
machine learning algorithms.

Experimental Settings
Dataset

For data collection, we used the Twitter Streaming Public
API (Twitter, Inc. 2018). Our population is a random' sam-
ple of the tweets posted between October 2015 and January
2016 (inclusive). During this period we collected approxi-
mately 151,215,987 tweets corresponding 11,668,319 users.
However, for the results presented here, we considered only

't is worth noting that since we use the public Twitter API we
do not have control on the sampling process. Having said that, an
attacker will most probably access the same type of information. A
typical use case is the release of data set of tweets usually obtained
in the same way.
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Figure 1: Change in accuracy for a single feature combination
and increasing number of users.

users for which we collected more than 200 tweets. Our final
dataset contains tweets generated by 5,412,693 users.

Ethics Considerations

Twitter is the perfect platform for this work. On one hand,
users posting on Twitter have a very low expectation of pri-
vacy: it is in the nature of the platform to be open and to
reach the widest audience possible. Tweets must always be
associated with a valid account and, since the company does
not collect demographic information about users upon regis-
tration, the accounts are not inherently linked to the physical
identity of the users. Both these factors reduce but not elim-
inate any ethical concerns that may arise from this work.
Nonetheless, we submitted this project for IRB approval and
proceeded with their support.

Experimental Variables

Number of Users As an attack, guessing is only viable
for smaller user pools: indeed, there is a 1:10 probability of
randomly classifying a tweet correctly for a user pool made
up of 10 users, whereas there is a 1:10,000 probability in a
pool of 10,000 users. The likelihood of guessing correctly
is inversely proportional to the number of users. Therefore,
the first task was to compare and describe the way in which
increasing the number of users affects the accuracy of the
classifiers. We evaluate each algorithm (i.e., MLR, RF, KNN)
on a specific configuration of training data in order to obtain
a trained model. We trained models for all feature combi-
nations, however, we present only the results for the best
combination of parameters for each classifier.

We first analyze the impact of the number of classes. In
Figure 1 we present with fixed parameters the effect of in-
creasing only the number of outputs for each of the classifiers.
Each model was built with two input features (i.e., n = 2
where the features are number of friends and number of fol-
lowers) and 10 observations per user. Some of the results
we present are independent of the underlying classification
algorithm. For these instances, we present results using only
KNN. As it will be shown later in the paper, KNN shows
the best performance in terms of prediction and resource
consumption.

Figure 1 shows that the loss in accuracy is at worst linear.
In a group of 100,000 users, the number of friends and of
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Figure 2: Performance of the top 20% of combinations per
classifier for increasing observations per user.

followers was sufficient to identify 30% of the users (around
30,000 times better than random). However, while the ac-
curacy of the classification gradually declines, there is a
dramatic increase in the cost (in terms of time) when building
the model. As we will discuss in the last part of the Results
section, the greatest obstacle with multi-class classification
is the number of classes included in the model.

Number of Entries per User The next variable we con-
sider is the number of observations per user per model. Our
objective is to visualize the relationship between accuracy
and the number of observed tweets to set a minimum value
for the rest of the study.

To set this parameter, we fixed the number of input fea-
tures at n = 2 and v = 1, 000 then we ran models with 10,
100, 200, 300, and 400 tweets per user. Figure 2 shows the
aggregated results for the 20% most accurate feature combi-
nations over 400 iterations. As the figure shows, 10 entries
are not enough to build robust models. For all classifiers we
see that the behavior is almost asymptotic. There is a signifi-
cant increase in accuracy as the number of observations per
user reaches 100. However, for all subsequent observations,
the variation is less apparent. Each of the points in the graph
contains the confidence interval associated with the measure-
ment. However, for RF the largest error is 0.2. It is worth
noting that with our data set we could only scale as far as
10,000 users.

Each experiment presented in the remainder of the paper
was repeated 200 times (each time with a different configura-
tion in terms of users and number of tweets). By standardizing
the number of observations per user at 200 tweets, we pre-
empt two problems: first, by forcing all users to have the same
number of tweets we reduce the likelihood of any user not
having a sufficient number of entries in the training set; and
second, it prevents our results from being biased towards any
user with a disproportionate number of observations. This
might be considered as potentially artificial, but we believe it
represents a realistic baseline for evaluating this attack.

Results

Identification

In building and comparing models we are interested in the
effects and interactions of the number of variables used for
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Table 3: Entropy calculation for feature list.

feature entropy
ACT 20.925
statuses count  16.132
follower count  13.097
favorites count  12.994
friend count 11.725
listed count 6.619
second 5.907
minute 5.907
day 4.949
hour 4.543
month 3.581
year 2.947
post time 1.789
geo enabled 0.995
verified 0.211

building the models. We denote the number of input features
with n and the number of output classes which we refer to as
U.

We define accuracy as the correct assignment of an ob-
servation to a user. In a multi-class algorithm, the predicted
result for each observation is a vector containing the like-
lihood of that observation belonging to each of the users
present in the model. A prediction is considered correct if
the user assigned by the algorithm corresponds to the true
account ID. In the rest of the paper, we report aggregated
results with 95% confidence intervals.

In our analysis, the account creation time was found to
be highly discriminative between users. We present results
with the dynamic features, defined below. Then we present
our findings with the account creation time. Finally, we give
a comprehensive analysis of the task of identification given
combinations of both static and dynamic features for three
different classifiers.

Static Attribute: Account Creation Time Twitter in-
cludes the Account Creation Time (ACT) in every published
tweet. The time stamp represents the moment in which the
account was registered, and as such, this value is constant
for all tweets from the same account. Each time stamp is
composed of six fields: day, month, year, hour, minute, and
second of the account creation. For perfect classification (i.e.,
uniqueness), we look for a variable whose value is constant
within a class but distinct across classes (as explained before,
each user is a class). An example is the account creation time.
We tested the full ACT using KNN and found that, even for
10,000 users, classifying on this feature resulted in 99.98%
accuracy considering 200 runs. Nonetheless, the ACT is par-
ticularly interesting because while it represents one unique
moment in time (and thus infinite and highly entropic), it is
composed of periodic fields with a limited range of possible
values. As we see in Table 3, each of the fields has at least a
75% decrease in entropy as compared to the combined ACT.
Since full knowledge of the ACT can be considered as the
trivial case for our classification problem, in the following
sections we will consider the contribution of each field of the
ACT separately.



Table 4: KNN Classification using dynamic features.

U n features accuracy
3 friend, follower, listed count 92.499 (£0.0008)
10.000 ~  friend, follower, favorite count  91.158 (£0.0006)
? 2 friend, follower count 83.721 (£0.0005)
friend, favorite count 78.547 (+0.0006)
3 friend, follower, listed count 95.702 (£0.0037)
1.000 friend, follower, favorite count  93.474 (40.0015)
’ 2 friend, follower count 91.565 (40.0026)
friend, listed count 89.904 (4+0.0028)
3 friend, follower, listed count 98.088 (£0.0037)
100 friend, follower, favorite count  97.425 (4-0.0058)
2 friend, follower count 97.099 (+0.0051)
friend, listed count 95.938 (+0.0073)
3 friend, follower, favorite count  99.790 (£0.0014)
10 friend, favorites, listed count 99.722 (+0.0015)
2 friend, favorites count 99.639 (£+0.0016)

follower, friend count

99.483 (4+0.0022)

Table 5: RF Classification using dynamic features.

u n  features accuracy
3 friend, follower, favorite count 94.408 (+0.0008)
10.000 ~  friend, follower, status count 94.216 (£0.0006)
> 5 friend, follower count 81.105 (£0.0005)
friend, favorite count 75.704 (£0.0006)
3 friend, follower, favorite count 96.982 (£0.0008)
1.000 friend, follower, status count 96.701 (40.0008)
’ 5 friend, follower count 90.889 (£0.003)
friend, favorite count 89.271 (40.004)
3 friend, follower, favorite count 99.286 (+0.0014)
100 friend, listed, favorite count 99.149 (+0.0017)
) friend, follower count 97.690 (£0.0029)
listed, friend count 97.275 (£0.00363)
3 friend, listed, favorite count 99.942 (40.0005)
10 follower, favorites, friend count  99.930 (+0.00061)
) friend, listed count 99.885 (+0.0008)

follower, friend count

99.776 (£0.0013)

Dynamic Attributes

By dynamic attributes we mean all

those attributes that are likely to change over time. From
Table 1 these are the counts for: friends, followers, lists,
statuses, and favorites, as well as a categorical representation
of the time stamp based on the hour of each post.

Table 4 presents the two best performing combinations in
terms of accuracy for each of the values we consider for n
and w. In 10,000 users there is a 92% chance of finding the
correct account given the number of friends, followers, and
the number of times an account has been listed.

Table 5 presents similar results for the RF algorithm. Even
without the ACT, we are able to achieve 94.41% accuracy in a
group of 10,000 users. These results are directly linked to the
behavior of an account and are obtained from a multi-class
model.

Combining Static and Dynamic Attributes As we ex-
pected from our feature selection, the top combinations per
value of n inputs are different per classifier. Tables 6, 7, 8
show the accuracy and the error obtained for the best per-
forming pair of features aggregated over all runs for the three
classifiers. We can see that the least accurate predictions are
those derived by means of the MLR algorithm. Then, prob-
ably for its robustness against noise, RF performs best for

246

Table 6: Accuracy of the top combination for n number of
inputs for the KNN classifier.

U n  features accuracy(%)

3 day, minute, second 96.737(+0.019)

10,000 2 follower, friend count 83.719(+0.021)
1 friend count 14.612(+£0.036)

3 listed count, minute, second 99.648(+0.022)

1,000 2 friend, listed count 92.809(+0.050)
1 friend count 40.151(40.089)

3 month, minute, second 100.00 (+0.000)

100 2 minute, second 98.836(+0.101)
1 friend count 78.650(40.330)

3 month, minute, second 100.00 (+0.000)

10 2 month, minute 100.00 (+0.000)

1 friend count 96.428(+0.312)

Table 7: Accuracy of the top combination for n number of
inputs for the RF classifier.

u n  features accuracy(%)
3 listed count, day, second 94.234(+0.022)
10,000 2  friend count, minute 81.352(£0.347)
1 friend count 23.958(+0.089)
3 friend count, minute, second 99.881(+0.008)
1,000 2 friend count, second 97.28(+0.032)
1 friend count 49.538(+0.086)
3 day, minute, second 100.00 (+0.000)
100 2 friend count, minute 99.595(+0.023)
1 friend count 81.489(+0.299)
3 day, minute, second 100.00 (£0.000)
10 2 day, second 100.00 (+0.000)
1 friend count 96.858(+0.256)

classifier

e KNN
40 . LoGIT
L’ RF

Prediction Accuracy

2
Number of Input Variables

Figure 3: Overall accuracy v = 100.

the smaller user-groups, but it is KNN that provides the best
performance for the case where u = 10, 000.

In general, the classification task gets incrementally more
challenging as the number of users increases. We are able to
achieve a 90% accuracy over all the classifiers with respect to
a 0.01% baseline offered by the random case. If we consider
the 10 most likely output candidates (i.e., the top-10 classes),
for the 10,000 user group there is a 99.22% probability of
finding the user.

Finally, we looked at how the best performing combina-
tions across all algorithms performed in models for each
classifier. The top three combinations per value of n are pre-
sented in Figures 6, 7, 8. For the same value of u as we
increase n the accuracy increases.



Table 8: Accuracy of the top combination for n number of
inputs for the MLR classifier.

u n features accuracy(%)
3 day, minute, second 96.060(=£0.060)
10,000 2  day, minute 29.571(+5.11)
1 second 2.241(+0.080)
3 hour, minute, second 99.329(+0.060)
1,000 2 day, minute 61.77(£5.11)
1 hour 3.105(40.080)
3 day, minute, second 100.00 (£0.000)
100 2 second, minute 98.494(+0.116)
1 second 26.303(£0.536)
3 day, minute, second 100.00 (£0.000)
10 2 day, minute 100.00 (£0.000)
1 second 94.129(+0.702)
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Figure 4: Overall accuracy v = 1, 000.
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Figure 5: Overall accuracy v = 10, 000.
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Figure 6: Performance of the most popular features for n=1.

Obfuscation

The final analysis looks at the effects of data anonymization
and data randomization techniques on the proposed method-
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Figure 9: KNN Change in predictive accuracy with obfus-
cated training data.

ology. As we state in the Method section we start with the
original data set then apply a rounding algorithm to change
the values of each reading. The number of readings given
in input to the algorithm increase in steps of 10% from no
anonymization to 100% perturbation where we show full
randomization. To test obfuscation, we selected the 3 most
accurate combinations of features for n = 2 and u = 1, 000
for each of the classification methods.

While we are not working with geospatial data, we find
that similar to (Quan, Yin, and Guo ), the level of protection
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awarded by perturbation is not very significant until we get to
100% randomization. Figures 9, 10, and 11 show how each
algorithm performs with an increasing number of obfuscated
points. RF is the best performing providing the most accurate
result despite data anonymity. MLR is the most sensitive
of the three. Even with 20% randomization there is a steep
decrease in terms of prediction accuracy.

Execution Time

To compare the performance of the classifiers in terms of ex-
ecution time we used a dedicated server with eight core Intel
Xeon E5-2630 processors with 192GB DDR4 RAM running
at 2,133MHz. For the implementation of the algorithms, we
used Python 2.7 and Sci-kit learn release 0.17.1.

Figure 12 shows execution time as a function of the number
of output classes in each model. Note that the performance
gap between MLR and the other two is significant. While
KNN and RF show a linear increase over the number of
users, the rate of change for MLR is much more rapid. At
u = 1,000 and n = 3, for example, MLR is 105 times slower
than RF and 210 times slower than KNN. The performance
bottleneck for multi-class classifiers is the number of output
classes. Finding a viable solution is fundamental for this
project and for the general applicability of the method.

To address this, we implemented a divide and conquer
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algorithm where we get intermediate predictions over smaller
subsets of classes and build one final model with the (in-
termediate) results. This method allows for faster execution
and lower memory requirements for each model and paral-
lel execution resulting in further performance enhancements.
Figure 13 shows the effectiveness of the proposed method
for v = 100, 1,000, and 10,000. We also observe that the
accuracy is independent from the number of subsets.

Discussion and Limitations

In this paper we have presented a comparison of three clas-
sification methods in terms of accuracy and execution time.
We reported their performance with and without input ob-
fuscation. Overall, KNN provides the best trade-off in terms
of accuracy and execution time with both the original and
the obfuscated data sets. We tested each of the algorithms
following the wrapper method by increasing the number of
input features in each model in steps of one. The results,
summarized in Tables 6, 7, and 8, show that the metadata can
be effectively exploited to classify individuals inside a group
of 10,000 randomly selected Twitter users. While both KNN
and RF are similar in terms of accuracy and execution, MLR
is consistently outperformed. Moreover, as shown in Figures
3, 4, and 5, as the number of output classes increases, the
difference in performance becomes more pronounced. It is
also important to note that, as shown in Table 8, the accuracy
exhibited by MLR depends entirely on the six constituent fea-
tures of the account creation time. Finally, the performance
of MLR is the most sensitive to obfuscation. As shown in
Figure 11, the rounding algorithm results in a monotonic
drop in accuracy for the best performing combinations.



One challenge in multi-class classification lies in the scala-
bility of the algorithm. We found that while both the number
of input features and the number of output classes have a
detrimental impact on performance, the bottleneck of the al-
gorithm is caused by the number of output classes. To address
this, we implemented a divide and conquer algorithm that par-
titions the users and creates models with fewer output classes.
The intermediate outputs of each of the smaller models are
then combined to produce a single result. Figure 13 shows
that this implementation does not affect the accuracy of the
classification algorithms. As shown in the figure, varying the
size of the partitions results in the same precision and recall
for the same total number of users as compared to the results
obtained from a single model. Having shown that the results
are equivalent the implementation becomes a contribution
from our work: partitioning the number of output classes in
intermediate steps results in less memory consumption and
faster execution times.

We now discuss the implications of our findings on devis-
ing techniques for data privacy and anonymization. Previ-
ous studies have proposed numerous techniques for privacy
in social-media data mining by focusing on the content of
data rather than its metadata (Patel et al. 2016; Rao et al. ;
Tang et al. 2012; Jahanbakhsh, King, and Shoja 2012). In this
study we have demonstrated that the metadata could also play
a significant role in revealing user identities. Our findings
demonstrate that generic information such as the number of
friends, the number of favorited tweets, the number of fol-
lowers is sufficient to distinguish a user from another with
an accuracy of over 90%. These results have implications
for researchers and practitioners that share datasets: great
care has to be taken not only in obfuscating identities in pri-
mary data (such as posts and profile information) but also
in the metadata (auxiliary fields) associated to them. More
specifically, special attention has to be devoted to the fact
that combinations of input features reveal user’s identities as
was shown in this work.

Related Work
Privacy

“Privacy is measured by the information gain of an ob-
server” (Li, Li, and Venkatasubramanian ). If an attacker is
able to either trace an entry to an account, or an account to a
user, that attacker gains information and the user loses of pri-
vacy. With regards to online social networks, the risks to pri-
vacy presented in (Alterman 2003) are magnified when con-
sidering the temporal dimension. In contrast, the privacy con-
trols that have been introduced are incomplete. Studies have
shown that often times these controls are lacking in terms
of safeguarding against a dedicated adversary (Narayanan
and Shmatikov ) but, most importantly, they are difficult to
use and are yet to be adopted by the majority of users (Bon-
neau, Anderson, and Church ). This results in a wealth of
information about users openly available on the Web. Pri-
mary personal data might be anonymized, but little attention
has been devoted to metadata. This paper shows the privacy
risks associated to metadata in terms of user identification,
demonstrating that obfuscation is often insufficient to protect
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users or the trade-off between obfuscation and utility of the
data might not be acceptable.

Identification of Individuals through Metadata

Various identification methods have been developed to exploit
existing information about physical attributes, behavior and
choices of a user. For example, in (Patel et al. 2016) the au-
thors describe an active authentication system that uses both
physical and behavioral attributes to continuously monitor
the identity of the user. In (Peacock, Ke, and Wilkerson 2004)
the authors give an overview and present the advantages and
disadvantages of keystroke characterization for authentica-
tion, identification, and monitoring. Finally, in (Frey, Xu, and
Ilic ) the authors use smartphone metadata, namely the apps
that have been installed on a phone, to create a signature
achieving a 99.75% accuracy. In this work, for the first time
we present an in-depth analysis of the risks associated to
online social networks metadata. We would like to stress that
metadata is more easily available and/or accessible and, for
this reason, it represents a significant risk for user privacy.

Identification of Devices through Metadata

In (Quattrone et al. ) the authors use phone diagnostics, i.e.,
information such as hardware statistics and system settings,
to uniquely identify devices. Instead, the method presented
in (Kohno, Broido, and Claffy 2005) relies on small but
measurable differences of a device’s hardware clock. In (Bo-
jinov et al. 2014) the authors exploit some characteristics
of hardware components, in this case the accelerometer, the
microphone and the speaker to create a fingerprint without
consent or knowledge of users. This is information about the
sensors and not the measurements collected with them: for
this reason, we characterize each of these as metadata.

Conclusions

In this paper, we have used Twitter as a case study to quantify
the uniqueness of the association between metadata and user
identity, devising techniques for user identification and re-
lated obfuscation strategies. We have tested the performance
of three state-of-the-art machine learning algorithms, MLR,
KNN and RF using a corpus of 5 million Twitter users. KNN
provides the best performance in terms of accuracy for an
increasing number of users and obfuscated data. We demon-
strated that through this algorithm, we are able to identify 1
user in a group of 10,000 with approximately 96.7% accu-
racy. Moreover, if we broaden the scope of our search and
consider the best 10 candidates from a group of 10,000 users,
we achieve a 99.22% accuracy. We also demonstrated that
obfuscation strategies are ineffective: after perturbing 60%
of the training data, it is possible to classify users with an
accuracy greater than 95%.

We believe that this work will contribute to raising aware-
ness of the privacy risks associated to metadata. It is worth
underlining that, even if we focused on Twitter for the experi-
mental evaluation, the methods described in this work can be
applied to a vast class of platforms and systems that generate
metadata with similar characteristics. This problem is partic-
ularly relevant given the increasing number of organizations



that release open data with metadata associated to it or the
popularity of social platforms that offer APIs to access their
data, which is often accompanied by metadata.
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