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Abstract

Peer-to-peer (P2P) lending or crowdlending, is a recent inno-
vation allows a group of individual or institutional lenders to
lend funds to individuals or businesses in return for interest
payment on top of capital repayments. The rapid growth of
P2P lending marketplaces has heightened the need to develop
a support system to help lenders make sound lending deci-
sions. But realizing such system is challenging in the absence
of formal credit data used by the banking sector. In this pa-
per, we attempt to explore the possible connections between
user credit risk and how users behave in the lending sites.
We present the first analysis of user detailed clickstream data
from a large P2P lending provider. Our analysis reveals that
the users’ sequences of repayment histories and financial ac-
tivities in the lending site, have significant predictive value
for their future loan repayments. In the light of this, we pro-
pose a deep architecture named DeepCredit, to automatically
acquire the knowledge of credit risk from the sequences of
activities that users conduct on the site. Experiments on our
large-scale real-world dataset show that our model generates
a high accuracy in predicting both loan delinquency and de-
fault, and significantly outperforms a number of baselines and
competitive alternatives.

Introduction

Online P2P lending has grown significantly over the recent
years according to the alternative finance industry reports
across the world. In 2015, $2.3 billion of finance was origi-
nated through P2P lending in the UK alone, helping cement
online marketplaces as part of the financial mainstream. For
the US, P2P lending remained the largest alternative finance
market segment with $21 billion recorded in 2016. In China,
by the end of 2011, 50 P2P lending providers were reported
to be operating and the number had climbed to over 2400
providers by the end of 2016, with more than $100 billion
outstanding loans, which makes China’s P2P lending sector
the largest in the world.

Compared with the traditional financial loans, P2P plat-
forms cut off the role of financial intermediaries such as
banks. Thus, in addition to providing a media for trading,
these platforms also have the responsibility to manage risk
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and protect the profits of lenders. Unfortunately, the lend-
ing platforms are hardly able to get formal credit informa-
tion used by banks, which makes the risk assessment in
these platforms more difficult. Most lending sites rely on the
credit scores provided by third-part agencies, such as FICO
scores (Corporation 2017) from Fair Isaac Corporation and
VantageScore (VantageScore Solutions 2017). Although ap-
plicants with higher credit scores are less likely to default,
credit scores cannot directly and accurately predict individ-
ual loan defaults. Also in certain countries such as China,
there’s no unified credit scoring system even in conventional
commercial banks.

The main contribution of this paper is that we propose a
new risk-assessment strategy, which we call the clickstream-
based model, to infer the risk of a loan from the activities
that users conduct on the site. A clickstream is the sequence
of HTTP requests made by a user to the P2P lending site,
where the majority of which are financial activities with spe-
cific monetary objectives (such as borrow/lend, repay, de-
posit/withdraw and money transfer). Through studying the
unique clickstream data from one of the largest P2P plat-
forms in China, we uncover that the risk for a user’s upcom-
ing loan is highly correlated with his repayment/debt history
(e.g., past payment outcomes and unpaid debt) and the types
and sequence of his recent financial activities indicating cash
flow. For instance, the activity transitions indicating a high
demand for money and outward transfer of money from the
lending platform can be signal for the risk.

The informativeness of the clickstream data provides a
new opportunity to tailor risk assessment to the individual
loans. However, modeling such a fine-grained user behavior
dynamics brings up several challenges:

• Temporal dynamics: The risk of individual loans de-
pends on not only the long-term financial profile of the
user but also short-term financial distress. It is important
to explore the time information in clickstream to identify
certain impending risk conditions.

• Information integration: An effective strategy is needed
to explore feature interactions between the repayments on
loans and financial activity sequences which contain the
complementary information reflecting a person’s financial
state over time (e.g., debt and cash flow dynamics).

• Ground-truth missing: Although a user’s recent repay-
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Figure 1: Illustration of financial activity types.

ment history provides strong sign of his ability and will-
ingness to repay, when we make prediction on a loan, we
cannot known the repayment outcomes of previous loans
which are not yet due for payment.

To address the aforementioned challenges, we propose a
new Long Short-Term Memory (LSTM) variant, time-aware
LSTM (TLSTM), to better capture a user’s short-term and
long-term dynamics at the same time. By utilizing the pro-
posed TLSTM unit, we propose a novel deep architecture,
named DeepCredit. It uses a two-layer TLSTM where the
repayment and financial activity sequences are separately
encoded by the first-layer ones, and then integrated togeth-
er by the second-layer one. This hierarchical architecture
can efficiently learn the complementary information of two
types of sequences over time. Meanwhile, the model also
uses feed-forward neural networks (FCN) to concurrently
generate predictions on past loans as remedy for the incom-
plete ground-truth. These intermediary predictions can also
be thought of as a teacher supervising for effectively inte-
grate the repayment and activity information at the corre-
sponding step.

We conduct experiments on large-scale real dataset show-
ing that, in terms of area under the curve (AUC), the Deep-
Credit can achieve 0.87 and 0.90 predication accuracy on
delinquency and default, respectively. Further, we find the
prediction errors of our model are highly acceptable. In the
case of false negative, our model tend to miss less serious
delinquency with few days late in the repayment, which are
more tolerable. In the case of false positive, our model tend
to incorrectly classify the loan paid by incurring another
with a higher interest rate. Despite these loans were repaid
on time, the corresponding users actually become riskier in
the near future due to struggling with more debt.

Data Analysis

In this section, we examine the feasibility of using click-
stream data gathered from the P2P lending sites to predict
the risk of individual loans. For a given loan, lenders are
especially concerned with the borrower’s willingness to re-
pay and ability to repay, respectively. So we characterize the
loan risk in terms of delinquency (late payment) and default
(capital loss). In particular, a loan becomes delinquent when
the payment is not made by the due date, and goes into de-
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Figure 2: Illustration of action sequence partition
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Figure 3: The repayment delay sequence of delinquent users,
where each point (i, j) gives the repayment delay (in week)
for jth loan of user i.

fault when the payment has been missed for an extended
period of time. We use the Peer-to-Peer Finance Association
(P2PFA)’s definition of a default (120+ days delinquency).

Clickstream Data

Our study is based on the complete clickstreams for 10K
users from an anonymous platform, which is one of the
largest P2P lending provider in China. The users in our
dataset are selected at random from the population who have
posted at least one loan in March, 2017. Each click is char-
acterized by a timestamp, an anonymized userID, an activity
and related variables. The activity describes the action the
user is undertaking. For example, the “post” activity corre-
sponds to a posting-loan request, with the variables of loan
amount, interest rate and period. Since we are attempting
to the evaluate the financial status of users, we restrict our
attention to those financial activities involving the money-
amount variable. With this focus, our dataset summarizes
4,881,056 financial activities for these 10K users, of which
712,857 are loan requests.

Figure 1 illustrates the typical financial activity. A user u
can post a loan request and borrow money from lenders who
are willing to lend. When the loan comes due, the borrower
can repay the loan, or otherwise, trigger the miss-payment
action. In addition, a user can directly transfer in/out money
from/to other users without necessarily being associated to a
loan. Also, a users can recharge the money into his platform
account from his bank accounts for investment or repayment
purpose, and can withdraw money from platform account
into bank account. So a clickstream is able to capture a user’s
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Figure 4: The correlation of past loan repayments with
future repayment, where 0/1 indicates an on-time repay-
ment/delinquency on the corresponding loan.
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Figure 5: The effect of the temporal factor on loan risk.

cash flow and debt dynamics (e.g., unpaid debt and overdue
loan amount) which is informative for user financial state
and potential risk.

In order to analyze the correlation between action patterns
and individual loan risk, we first investigate how the borrow-
er has performed on loan repayment in the past. Also, for
each user, we partition the clickstream into a set of subse-
quences S, where each sk ∈ S contains the activities a user
engages in during the period between posting (k−1)th loan
and kth loan, as shown in Figure 2. We choose post action
as the partition point because we need to predict a user’s
risk right after he posting a new loan. This partition helps us
to examine if there exists differences across the sequences
of user activities before they post loans with different final
outcomes (e.g., on-time repay or delinquency).

Repayment Sequences

To gain a basic understanding, we pick 100 users that have
delinquent loans in the past. For each user, we look at his
repayment delays on past loans arranged in ascending or-
der of the loan posting time, as shown in Figure 3. We see
that delinquent loans tend to be bursty in the sense that there
is a local concentration of multiple late repayments in the
sequence. An intuitive explanation of this burstiness is that
users are unlikely to repay several temporal-close loans in
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Figure 6: The effect of the Delinquent amount (RMB) on
loan risk.
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Figure 7: The effect of the unpaid loans on loan risk.

the status of financial distress. The figure also shows that
loans with relatively longer repayment delay are more like-
ly to be concentrated, implying that users are more difficult
to recover from severe financial distress. The delinquency
concentration highlights the feasibility of using the payment
history and associated delinquency variables to predict fu-
ture loan repayments.

Delinquency pattern. The delinquency pattern of a user
can be viewed as a sequence consisting the binary delin-
quency outcomes for his previous loans arranged in ascend-
ing order of their posting time. To examine the correlation
between the delinquency pattern and the risk on the next
loan, Figure 4 shows the probability of finding users with the
same delinquency pattern across the past three loans missing
the repayment on the next loan. We see that both recent-
ness and frequencies of past delinquencies indicate future
repayments. The new loans posted by users with more re-
cent delinquencies are more likely to go into delinquency
and default (inertia). Intuitively, the late payments on recent
loans implies that users are experiencing financial problems,
leading to continued risk during the follow-up period.

Time since last delinquency. To examine the effect of tem-
poral dynamics, Figure 5 shows the user risk given the time
since his last delinquency. Not surprisingly, we see the more
recent the user’s last delinquency, the greater the risk. How-
ever, we also notice that the risk probability decreases slow-
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Figure 8: The fraction of each activity in each type of subse-
quence of activities.

ly after the initial rapid decline, which implies that the past
delinquency has long-term effects.

Debt Dynamics.We next examine the effect of current
debt (including unpaid debts and delinquent loan amount) on
loan risk. Figure 6 and Figure 7 show the risk of the next loan
grows along with the current delinquent and unpaid debt.
Here the probability is computed by the fraction of delin-
quent loans among those with the similar debt amount. We
see that the debt-strapped users tend to have high risk, im-
plying that more serious state in financial distress can have
long-lasting repercussions.

Activity Sequences

For action sequence data, we first classify each subsequence
sk into “delinquent” or “non-delinquent” group based on
whether the kth loan will be delinquent or not finally, and
analyze the inter-group differences. We focus on delinquen-
cy which includes the case of default.

Frequencies. Figure 8 shows the distribution of activi-
ties in each group, and we see that posting loans, borrow
and repay are the three most prevalent activities in both
groups. But we still observe several apparent differences.
First, users borrow more frequently before posting delin-
quent loans than before posting non-delinquent ones, indi-
cating a higher demand of money. By contrast, users lend
more frequently before posting non-delinquent loans, which
means they have good financial status at that period. Sec-
ond, we see that users have more activities with the out-
ward transfer of money from his account before delinquent
loans, such as transfer out and withdraw, whereas perform-
ing less activities with the inward transfer of money, such
as be-repaid, transfer in and recharge. Finally, users have
more miss-payment activities before delinquent loans, indi-
cating the higher likelihood of experiencing financial stress.
The above differences can be signal of risk.

Sequences. To understand differences in the activity or-
dering, Figure 9 shows the ratio of 2-gram transition proba-
bility in the non-delinquent subsequence to that in the delin-
quent ones for all pairs of activities, where we take the log-
arithm of the ratio for better plotting. A color pixel at (x, y)
represents the log-ratio of the transition probability from ac-
tivity y in the horizontal axis to activity x in the vertical axis.

Figure 9: The ratio of activity transition probability before
non-delinquent loans to that before delinquent ones.

The color blue indicates this transition is more common in
activity subsequence prior to posting non-delinquent loans
and color red indicates the opposite. By looking the transi-
tions of user activities, the differences between activity sub-
sequences prior to posting delinquent and non-delinquent
loans become more apparent. The more activity transitions
associated with demand for money and outward transfer of
money can be signals for the higher risk of delinquency, such
as post&post, post &withdraw and withdraw&transfer out,
etc, indicating that the user may fall into financial crisis and
need money urgently. By contrast, the more transitions asso-
ciated with investment purpose or inward transfer of money
can be signal for the opposite, such as recharge&lend, with-
draw&lend and recharge&be-repaid, etc, indicating a good
economic situation.

DeepCredit Model

In this section, we introduce our DeepCredit model, which
takes the sequences of previous repayments and financial ac-
tivities as input and generates the delinquent/default proba-
bility for the new loan before it is funded as output. The
proposed architecture consists of the following components.

Input Layer

Given a new loan posted by a user, we use the repayment
sequence P = {p1, . . . ,pT } capturing repayments across
the most recent T loans (including the new loan itself) and
the activity subsequences {Ai|i = 1 . . . T} capturing ac-
tions before posting each of these loans as input. The re-
payment sequence and activity subsequences are arranged
in ascending order of the loan posting time and action time,
respecitvely (as illustrated in Figure 2).

In the repayment sequence, each pi ∈ P is a vector con-
tains the following variables related to a loan i:
• Loan features including the loan amount, interest rate and

loan term in days.
• Delinquency feature indicating the binary delinquency

outcome for the loan.
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Figure 10: The architecture of time-aware LSTM (TLSTM).

• Debt features including the unpaid debts and the delin-
quent loan amount at that time.

• Temporal feature gives the time gap between this loan and
the previous loan.

Also, any ai,j ∈ Ai = {ai,1, . . . ,ai,|Ai|} is a vector con-
taining the activity type, involved money amount and the
time interval to the previous activity.

Time-aware LSTM (TLSTM)

Recurrent Neural Networks (RNN) models learn to map in-
put sequences to output sequence via a continuous vector-
valued intermediate hidden state. The most basic RNN are
difficult to train due to the so-called vanishing and exploding
gradient problem. To tackle this problem, the more complex
Long Short-Term Memory (LSTM) RNN were designed.
However, a standard LSTM unit has the implicit assumption
of uniformly distributed elapsed time between the elements
of a sequence. However, in P2P lending, the distribution of
action time intervals is highly irregular varying from sec-
onds to months. So the intervals are important to capture the
relations of user actions, e.g. actions with short time inter-
vals tend to be related and indicate user’s short-term risk.

There are several studies in the literature studying the time
LSTM. For example, the authors of (Zhu et al. 2017) adds
time gates to decay the past cell memory based on the time
intervals. But this model decay all the previous cell mem-
ory, which is not suitable in P2P lending risk prediction,
where we do not want to lose the global risk profile of the
user. For example, the past delinquency of a user should not
be discarded entirely over time, as the past delinquency has
long-term effects (see Figure 5).The prior work (Baytas et
al. 2017) split the cell memory in a linear way, and use a
pre-set function to adjust the memory afterwards. Although
this model can solve the above problem, the pre-set adjust
function and linear split are not well adapted to the data and
thus limit the capacity of the model,besides, after decompos-
ing the previous memory, it lacks an effective combination
method to get the new overall memory.

We propose a new time-aware LSTM variant, TLSTM,
which is illustrated in Figure 10 and its mathematical ex-
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Figure 11: The architecture of H-LSTM model.

pressions is given below:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whcht−1 + bg)

cshortt−1 = tanh(Wshortcct−1 + wshorttΔt+ bshortc)

clongt−1 = tanh(Wlongcct−1 + wlongtΔt+ blongc)

cshortnew
t−1 = tanh(wshrinkΔt+ bshrink)c

short
t−1

cnewt−1 = tanh(wnew
shortc

shortnew
t−1 + wnew

longc
long
t−1 + bmerge)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(1)
where Wx∗ is the transformation matrix from the input to
LSTM states, Wh∗ is the recurrent transformation matrix
between the recurrent states ht, and Δt is the elapsed time
between xt−1 and xt.

In every step, the TLSTM cell decomposes the previous
memory ct−1 into the short-term memory cshortt−1 and the
long-term memory clongt−1 based on Δt. Then the short-term
memory is discounted according to Δt and we get the new
short-term memory cshortnew

t−1 . Intuitively, given a larger Δt,
a more portion of memory could be allocated to the short-
term memory for discounting. Finally, we use a nonlinear
function to merge the cshortnew

t−1 with clongt−1 as new previous
memory cnewt−1 , which is feed into the following LSTM pro-
cess. All the decomposing, discounting and merging func-
tions are learned in the training process through Back Prop-
agation Through Time (BPTT). By doing so the information
contained in the memory of previous time step is adjusted so
that it can discount the short-term effect, meanwhile main-
taining the long-term effect. We denoted the above equa-
tion (1) as TLSTM(.) function.

Hierarchical TLSTM Model (H-TLSTM).

Next, we propose our H-TLSTM model to incorporate both
repayment and action sequence data, as illustrated in Fig-
ure 11.
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In the first-level TLSTM layer, our model uses a TLSTM
function to map the repayment sequence:

hp
i = TLSTM

(
hp
i−1,pi

)
, ∀i ∈ {1, . . . , T}, (2)

where hp
i ∈ RD can be considered as a representation of the

input sequence from repayment p1 to pi.
Meanwhile, in order to alleviate the long-range dependen-

cies in sequence modeling, our model uses an independent
TLSTM for each activity subsequence, so we have:

ha
i,j = TLSTM

(
ha
i,j−1,ai,j

)
, ∀ai,j ∈ Ai, (3)

where the last hidden state ha
i,|Ai| summarizes the informa-

tion about all the activities in the subsequence Ai.
Then the model adopts another TLSTM to integrate the

first-level representations of the past repayments and activ-
ities in a higher-level perspective. This allows the model to
efficiently capture interactions among the features of two se-
quences across multiple loans, and thus yielding more accu-
rate predictions. In particular, we feed the concatenation of
the first-level hidden vectors into state-level LSTM layer,

hi = TLSTM
(
hs
i−1,

[
hp
i ;h

a
i,|Ai|

]�)
, ∀i ∈ {1, . . . , T},

(4)
where hs

i represents a summary of repayment and activity
histories up to the ith loan, and the final hidden state hs

T
can be considered as a compact representation of the whole
input history.

After the above two-stage encoding, the model is able to
track the change of financial state with the complementary
information from both sequences. We feed the final hidden
state hs

T of this high-level LSTM into FC layer to predict the
risk of the current loan (i.e., the Tth loan).

Complementary Layer (CL)

As we have discussed in section , the delinquency outcomes
of previous loans (especially those adjacent to the current
loan) have significant predictive value. However, when we
make prediction on a loan of a user, we cannot known
whether some loans he posted previously will be delinquent
or not (i.e., delinquency outcome) if they are not yet due for
payment, referred to as undue loans. For example, Figure 12
shows the cumulative distribution of the number of undue
past loans when a user posts the new loan in our dataset. We
see that in most cases, the ground-truth of loan delinquen-
cy outcome in the repayment sequence is incomplete. Thus,
simply ignoring the delinquency information of undue past
loans can impair the prediction accuracy on the current loan.

Our approach to this problem is to reuse the model’s pre-
dictions on previous loans as a remedy for their incomplete
delinquency information. To do so, an straightforward strat-
egy is to directly replace the unobserved delinquency out-
comes of previous undue loans in the repayment sequence
with their predicted delinquent probabilities. But we find
this strategy is quite inefficient due to the need of model
retraining and error amplification . In particular, as the pre-
dictions of previous loans are unavailable during the train-
ing initially, we need to arrange a user’s undue loans in time
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Undue Loan Number
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Figure 12: The CDF of the number of undue loans when a
new loan is posted.

ascending order, and get their predicted probabilities in the
one-by-one manner. The retraining procedure should be re-
peated until the predictions on all undue loans are obtained
and thus could be up to 30 times according to Figure 12.
Moreover, each retraining procedure only uses limited loan
cases for training, which might incur a relatively large error
and increase the error in subsequent prediction.

To address the above limitations, we add H-TLSTM mod-
el a complementary layer (CL) containing multiple fully-
connected feed-forward neural networks (FCN) to predict
the risk of current and past loans concurrently. As illustrated
in Figure 11, for each previous loan i, we use a FCN which
takes the corresponding hidden state hs

i of the state-level T-
LSTM as input and outputs the delinquent probability Yi of
loan i. To boost our prediction, we feed each delinquency
probability Yi−1 into the encoding of repayment sequence
by rewriting the equation (2) as:

hp
i = TLSTM

(
hp
i−1, [pi;Yi−1]

�
)
, ∀i ∈ {1, 2, . . . , T},

(5)
where hp

i contains the summary of delinquency probabili-
ties of previous i − 1 loans and can be a remedy for their
incomplete delinquency information.

In this way, the model avoids retraining and error ampli-
fication due to concurrent predictions where the full repay-
ment and activity sequences are exploited even for the pre-
diction of each past loan. Also, these complementary predic-
tions can be thought of as a teacher supervising for learning
the integration of repayment and activity states at the corre-
sponding step.

Training

Once a user posts a new loan (before it is funded), our model
predicts if the repayment delay d on this loan is larger than a
certain threshold δ, i.e., Pr(d > δ). For example, the model
predicts the delinquency and default if we set threshold δ =
0 and δ = 120 days, respectively.

Recall that a user’s recent T loans are arranged in ascend-
ing order of posting time and Tth loan is the one newly post-
ed (prediction target). Let θ represent the parameters of the
deep neural network. Given the input repayment sequence P
and activity subsequence set A = {Ai|i = 1 . . . T}, the task
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is specified to find a function f(P,A,θ, δ) to predict the
repayment outcomes of these T loans. Note here the predic-
tions on the previous T −1 loans are used as complementary
information for the prediction of the Tth loan.

Let L be the log loss function and oi is the repayment
ground-truth of ith loan. Our model parameters are learned
by minimizing the following loss function:

J(θ) = L(f(P,A,θ, δ)T , oT )

+
α
∑T−1

i=1 L(f(P,A,θ, δ)i, oi)

T − 1
+ λ||θ||2,

(6)

where f(P,A,θ, δ)i gives the model’s prediction on the ith
(i ≤ T ) loan, and α captures how the model weighs the rel-
ative importance of prediction accuracy on previous loans.

Evaluation

In this section, we first introduce the settings of our exper-
iments, and then show the experiment results with further
analysis on prediction errors and model parameters.

Experiment Setup

We perform the evaluation on the large-scale dataset we ana-
lyzed before, where we remove the loan requests which have
not get funded at all. It leaves us with a total of 586,957 fund-
ed loans, of which 78,652 (13.4%) are delinquent and 28,174
(4.8%) are default. We separate out the user clickstream data
into a training set and a test set in terms of users, i.e., 80%
users contribute their sequences for training and the remain-
ing 20% for testing. In this way, we ensure that the histori-
cal information of users in the test dataset is not used in the
training. We conduct 5-fold cross validation on the training
dataset and test the model against the test dataset.

The implementation 1 is completed using Tensorflow. All
LSTM networks contain 256-dimensional hidden states, and
every FCN has three layers, containing 256, 128, 64 nodes,
respectively. We empirically set other parameters, including
the learning rate, momentum, and minibatch size, which are
0.001, 0.9 and 128, respectively. We discuss the setting of
parameter T (the length of repayment sequences) and weight
parameter α in loss function (6) in Section . We evaluate
the performance of the prediction based on area under ROC
curve (AUC) metric, which can better handle class imbal-
ance in our dataset.

Baselines

In addition to compare with conventional methods such as
gradient boosting decision tree (GBDT) or hidden Markov
model (HMM), we also evaluate the importance of each de-
sign choice by comparing our complete DeepCredit model
(H-TLSTM + CL) with those variants removing one com-
ponent or disabling one type of input data. The compared
methods are summarized as follows:
• H-TLSTM: The model uses hierarchical TLSTM Model,

with the complementary layer (CL) removed
• H-LSTM+CL: The model replaces TLSTM with tradi-

tional LSTM..
1Code:http://net.pku.edu.cn/p2p/doku.php?id=p2p:deepcredit

Table 1: Experimental results
AUC

Model delinquent default
DeepCredit (H-TLSTM + CL) 0.870 0.901

H-TLSTM 0.843 0.868
H-LSTM+CL 0.830 0.866

TLSTM (activity) 0.815 0.847
TLSTM (repay) 0.811 0.841

XGB 0.804 0.836
HMM 0.744 0.788

LR 0.720 0.756

• TLSTM (activity): The single TLSTM model only takes
the activity sequence as input.

• TLSTM (repay): The single TLSTM model only takes
the repayment sequences as input.

• XGB: The implementation of a tree boosting system with
XGBoost, where we take the each variable in the elements
of repayment and activity sequences as the model feature.

• HMM: We use a hidden Markov model (HMM) based
approach which takes both the activity and repayment se-
quences as observed data. For each posting loan action, we
label it as non-delinquent or delinquent (default) based on
the repayment on the loan, then we use Baum-Welch algo-
rithm to train the model and predict the label of upcoming
requests of posting loans.

• Logistic Regression: We use Logistic Regression (LR) as
a representative of the linear model, with the same input
setting as XGB.

Prediction Performance

Experimental results are shown in Table 1. We see that
the proposed DeepCredit achieves the best performance on
the prediction of both individual delinquencies and defaults,
with the AUC scores of 0.87 and 0.90, respectively. The re-
sults demonstrate the feasibility of using behavior dynamics
collected from the P2P platform itself to predict the risk of
individual loans. More interestingly, we see that the model
yields a higher accuracy in default prediction than in delin-
quency prediction. As default indicates a serious delinquen-
cy, behavioural signals are probably more apparent before
the borrower goes into default.

It is also found that DeepCredit outperforms HMM ,XGB
and LR significantly. The underlying reason is that all the
three baselines are not able to fully explore the complemen-
tary information and long range dependencies over the en-
tire sequence histories, especially the LR model, when deal-
ing with such variety of complex patterns, the linear trans-
formation limits its capability. By contrast, our model us-
es TLSTM models which allows an effective integration of
different sequences and capture the long-term dependencies
between inputs due to their powerful hidden representation.

Among the DeepCredit variations, the improvement of
DeepCredit over H-TLSTM and H-LSTM+CL reveals the
potential benefit of leveraging intermediate predictions with
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Figure 13: Two typical thresholds.
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Figure 14: Delinquent days of false-negative and true-
positive loans, respectively.

multiple FCN networks and time-aware LSTM cells respec-
tively. The results also demonstrate that both the repayment
and financial activity sequences play important roles in the
prediction. Recall the financial volume of P2P lending can
be billions of dollars, an improvement in risk prediction ac-
curacy of just a few percentage points can involve large
amounts of money. Thus, all of our designs are the neces-
sary components of the model.

Prediction Error Analysis

We now examine the loans which our model tends to wrong-
ly predict, in order to better understand the causes of errors.
We focus primarily on delinquency which includes the de-
fault case. Figure 13 shows the ROC curve for delinquen-
cy prediction. To define the prediction error, we choose two
typical classification thresholds which gives 0.1 and 0.2 false
positive rates (FPR), with the corresponding 0.4 and 0.2
false negative rates (FNR), respectively.

We first examine the false negatives (FN), i.e., delinquent
loans incorrectly identified as non-delinquent. Figure 14
shows the delinquent days for FN loans and true-positive
(TP) loans. We can see that the delinquent days of FN loans
are much smaller than those of TP ones. For example, giv-
en a 0.1-FPR threshold, the delinquent days of half of FN
loans are only within one week, and there are almost no de-
fault FN loans. By contrast, almost all the TP loans are 7+
days past due, among which about 40% are default (120+
days delinquent). The measurement indicates that our model
tends to miss less serious delinquency, where the signs of fi-
nancial problems are relatively weak. However, the majority
of missed delinquent loans could be tolerable and acceptable
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Figure 15: (a) debt amount and (b) default rate with different
numbers of false-positive loans.
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Figure 16: Predicting performance over (a) the number of
past loans looked back and (b) weight on past loans.

for the users given only a few days late in the payment.
We next examine the false positives (FP), i.e., non-

delinquent loans incorrectly identified as delinquent. We
find that users are more likely to perform the action pattern
of “borrow · · · repay” when paying FP loans, this means
that most FP loans were paid in a manner of robbing Peter
to pay Paul, i.e., the user pays off a loan by incurring an-
other. However, using one loan with a higher interest to pay
another debt is obviously not an effective way of reducing
debt, although it delays confronting the issue. Thus, despite
FP loans were repaid on time, the users with these loans ac-
tually become riskier in the near future.

Figure 15(a) shows that, on average, the total amounts of
debt of users increase rapidly with the number of FP loans.
And figure 15(b) shows the final default rates (observed in
our dataset) for users with different number of FP loans,
which become much higher than the average default rate
(about 0.06 in terms of users) as the number of FP loans
increases. Given the large amount of debt in the repayment
sequence and the risky patterns in the activity sequence, our
model tends to wrongly predict these loans to be delinquent.
Therefore, the FP of our model can help the platform to iden-
tify potential users struggling with debt, who have high risk
in the near future.

Parameter Analysis

We first examine the effect of parameter T on prediction per-
formance, which determines the number of past loans the
model looks back. Ideally, we would like the parameter T
to be as small as possible, so that training and running our
model is computationally cheap. Figure 16(a) shows the pre-
diction performance under different values of T . We see that
the AUC scores in both predictions increase rapidly once
the model begins to incorporate the information of few re-
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cent loans, demonstrating that reasonable prediction can be
made based on limited history. Moreover, the figure also
shows that looking back longer history is not always the best
choice, which could incur slight performance penalty after
including too many outdated signals.

An interesting observation here is that the default pre-
diction seems to need even less historical information than
delinquency prediction, as the former reaches the peak per-
formance faster than the latter in the figure. An intuitive ex-
planation is that default is usually caused by severe financial
distress, where the recent behavior of the corresponding user
involves more delinquencies and activities related to finan-
cial distress alleviation. This makes the signs of default risk
relatively apparent. Also, a user cannot recovery from a de-
fault loan, whereas he could recover from a delinquency and
to be delinquent again. So users have more complex delin-
quency patterns which also requires a longer history to learn.

We next examine how weight parameter α affects predic-
tion performance, which gives the extent of bias toward the
predictions on past loans once T is fixed. Figure 16(b) shows
the effect of α when the values of T are fixed to 8 and 4
in delinquency and default predictions. As expected, we see
that either too small or too large bias would incur accuracy
loss. Also, the best value of α is relatively smaller in default
prediction than that in delinquency prediction.

Related Work

In recent years, P2P lending has attracted many researchers
from different backgrounds, such as sociologists and data
scientists (Zhao et al. 2017). Risk assessment is one of the
most concerning problems in P2P lending, since risk can be
the most important factor affecting the decision making of
lenders. Recall that the task of risk assessment can be for-
mally defined as a assessment model which takes the fea-
tures of loan (and user) as input and the estimated score that
loan will repay in time as output. So the relevant works tack-
ling this problem attempt to develop new assessment models
or to extract new features for better assessment.

A lot of research has been done for risk assessment mod-
els, most of which adopt conventional classification models
from machine learning field to assess the loan risk or bor-
rower credit. For instance, some studies use linear model
such as logistic regression to predict the loan risk (Ceyhan,
Shi, and Leskovec 2011; Zhao et al. 2014; Guo et al. 2016),
whereas others apply nonlinear transformation model with
Random Forest (Malekipirbazari and Aksakalli 2015), ar-
tificial neural networks (Byanjankar, Heikkilä, and Mezei
2015; Zang, Qi, and Fu 2014) and gradient boosting deci-
sion tree (Zhao et al. 2016). There are also some relevant
studies that are from the perspective of extracting assess-
ment features. Luo et al. (Luo et al. 2011) evaluate the risk of
an borrower based on risk preferences of historical individ-
ual lenders. Serrano-Cinca et al (Serrano-Cinca, Gutiérrez-
Nieto, and López-Palacios 2015) find that static features ex-
tracted from the loan’s properties (e.g., rate, amount and pur-
pose) and the associated borrower’s properties (e.g., annual
income, current housing situation, credit history, and indebt-
edness) affect the loan default in LendingClub, and the credit

grade assigned by the P2P lending site is the most predic-
tive factor of default. Emekter et al. (Emekter et al. 2015)
also find that higher interest rates charged on the high-risk
borrowers are not enough to compensate for higher proba-
bility of the loan default. Besides static features, Ceyhan et
al. (Ceyhan, Shi, and Leskovec 2011) examine how the tem-
poral dynamics of bidding behavior predicts the loan out-
come. Zhao et al (Zhao et al. 2016) extract dynamic features
(e.g., auction phase/time, past fully-funded loan percent and
past default loan percent) from the temporal auction and in-
cremental bidding lenders of a loan for better risk prediction.

However, most of the works focus on static features, with
a few on simple dynamic features. The problem of leverag-
ing complex behavior sequence data still needs further in-
vestigation which motivates this work. Furthermore, most
of the methods are devoted to shallow models with fea-
ture engineering. One powerful approach to capture un-
derlying structure in sequential data is Recurrent Neu-
ral Networks (RNNs), such as Long Short-Term Memo-
ry (LSTM) (Hochreiter and Schmidhuber 1997) and Gat-
ed Recurrent Unit (GRU) (Chung et al. 2015), which have
been applied to many areas including natural language pro-
cessing (Sutskever, Vinyals, and Le 2014), speech recogni-
tion (Graves, Mohamed, and Hinton 2013), medical diagno-
sis (Suhara, Xu, and Pentland 2017) and mobile data pro-
cessing (Yao et al. 2017). However, there have not been
works which model user behavioral patterns with RNN for
loan risk prediction problems. Exploiting the power of RNN
along with the informativeness of user behavior dynamics is
a new promising way for risk assessment in P2P lending.

Conclusion

To best of our knowledge, this is the first work to lever-
age clickstreams to predict the risk for individual loans in
P2P lending. Our study uncovered a number of interesting
findings related to the connection between loan risk and se-
quences of activities that users conduct on the site. Based on
these findings, we present a novel DeepCredit model, which
could efficiently infer user risks from their behavior dynam-
ics. With the sophisticated deep architecture, our model is
able to efficiently exploit the complementary information of
different sequences and the feasibility of leveraging previ-
ous predictions to boot the current one. Our experiments on
large-scale real-world dataset show that DeepCredit is able
to achieve 87% and 90% accuracy (AUC values) in delin-
quency and default predictions, respectively. Our model pro-
vides the P2P lending system a function of self risk assess-
ment, where it only needs to passively collect clickstream
data from the platforms itself. The company which provides
us dataset is very pleased with the initial results of our mod-
el. We are now collaborating with the company to imple-
ment our model in production, which enables the platform to
adopt new and potentially more effective risk-management
strategies.
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