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Abstract

The problem of maximizing the spread of influence with a
limited budget is central to social networks research. Most
solution approaches available in the existing literature de-
vote the entire budget towards triggering diffusion at seed
nodes. This paper investigates the effect of splitting the bud-
get across two different, sequential phases. In phase 1, we
adopt the classical approach of initiating diffusion at a se-
lected seed-set. In phase 2, we use the remaining budget to of-
fer referral incentives. We formulate this problem and explore
suitable ways to split the budget between the two phases, with
detailed experiments on synthetic and real-world datasets.
The principal findings from our study are: (a) when the bud-
get is low, it is prudent to use the entire budget for phase 1;
(b) when the budget is moderate to high, it is preferable to
use much of the budget for phase 1, while allocating the re-
maining budget to phase 2; (c) in the presence of moderate
to strict temporal constraints, phase 2 is not warranted; (d) if
the temporal constraints are low or absent, phase 2 yields a
decisive improvement in influence spread.

Introduction

With the advent of online social networks, companies are
increasingly giving importance to viral marketing through
word-of-mouth. The added availability of platforms for mo-
bile applications has empowered organizations to implement
referral programs which motivate existing customers to pro-
mote a product amongst friends. It has been observed that
referred customers are more valuable than regular ones; and
that referral incentives are cost effective (Schmitt, Skiera,
and Van den Bulte 2011), and there have been efforts to
determine optimal pricing policies for referral reward pro-
grams (Hartline, Mirrokni, and Sundararajan 2008). On the
other hand, it has been noted that referrals may adversely
affect agents’ responses since they cause referred friends to
infer ulterior motives for the referral (Verlegh et al. 2013).
More importantly though, the authors demonstrate that re-
warding both the referring and the referred agent can elimi-
nate such a negative effect.

In view of the above findings, referral incentives are gen-
erally implemented as a two-way scheme: (a) referral re-
wards given to existing customers for successfully recom-
mending the product or service to their friends and (b) friend
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offers which are given to the referred friends who buy the
product or sign up for the service; thus incentivizing both
parties involved in a successful referral.

Considerable work has been done on influence maximiza-
tion using seed nodes, where the marketing company deter-
mines a small subset of users (seeds) who could be offered
to adopt free samples of the product, hoping to trigger a cas-
cade of subsequent product purchases owing to social influ-
ence (Kempe, Kleinberg, and Tardos 2003). There have also
been studies on multi-phase approach for influence maxi-
mization, wherein the total budget (number of seed nodes)
is split across multiple phases separated by a certain de-
lay (Dhamal, Prabuchandran, and Narahari 2016). We de-
part from these studies in two key ways. First, we explicitly
consider a reward scheme with individual incentives for suc-
cessful referrals in phase 2. Second, in previous works, the
seed-selection algorithm is run at each stage, thus implic-
itly never exceeding the total budget. In contrast, we decide
on the seed-set as well as referral amount only once at the
start of phase 1; thereafter there is no decision involved. This
introduces a unique constrained optimization problem to en-
sure that we do not exceed the budget subsequently.

The dynamics of word-of-mouth campaigns using seed-
ing and referral programs are well understood in isolation,
however, to the best of our knowledge, ours is the first work
that analyzes the combined effect of word-of-mouth market-
ing using seeding coupled with referral incentives.

Problem Formulation

A social network is represented as a directed graph G =
(V, E), with pairwise influence probabilities p,,,. Without
loss of generality, we assume that each product has unit
price, and K is the total available budget. Under the unit-
price assumption, a budget of K corresponds to K free sam-
ples that can be given to initial adopters; we use the terms
‘budget’ and ‘seed nodes’ interchangeably throughout the
paper. Our model is henceforth referred to as 2P-SRI (2
Phase diffusion with Seed nodes and Referral Incentives)

Proposed Model for Referral Incentives

Let «, expressed as a fraction of product price, denote the
incentive (offered as discount or cashback) rewarded to both
the referring and referred agents for a successful referral. Let
h(c) be the resulting fractional increase in edge probability



i.e., under a referral incentive of «, the influence probability
of edge (u,v) increases from its original value p,,, to p%, =
min{1, (14 h(a))puy }. We assume h(-) to be non-negative,
non-decreasing, continuous in [0,1] and satisfies 2(0) = 0.

We employ the Independent Cascade (IC) model (Kempe,
Kleinberg, and Tardos 2003) to study the stochastic pro-
cess underlying diffusion. At time ¢+ = 0, a subset S* of k
initial adopters is selected, thus triggering phase 1, which
terminates when no further nodes can be reached by the
diffusion cascade. Let Ag denote the set of active nodes
at the end of phase 1. Phase 2 is now initiated by offer-
ing a referral incentive of « to this set of customers, hop-
ing to further influence nodes among Agir = V \ Adgir,
the set of currently inactive nodes. For each v € Ay, let
N) = {u|(u,v) € E;u € Aqir}. Each u € N(v) gets
(another) single opportunity to influence v. Note that « had
already made a failed attempt at activating v in phase 1; and
the probability of a successful attempt in phase 2, given fail-
ure in phase 1, is (%) If v is influenced, both u and v
are rewarded the amount «. Once activated, node v can re-
fer the product to each of its inactive neighbors, say w. This
being v’s first attempt at activating w, it would succeed with
probability py,, with both v and w getting o reward for a
successful referral.

If Apr is the set of nodes that become active due to the
referral program thus defined, the amount spent by the com-
pany on referrals is 2a * | Aef|. Note that after phase 1, the
budget remaining for referral incentives is K —k, so no more
than KQ—;’“ nodes can be activated in phase 2. Since it is not
feasible to ensure a bounded activation in every instance of
the diffusion process, we aim to bound it in expectation.

Objective Function

Let k be the seed budget reserved for the first phase, and S*
be the corresponding seed set of size k. Assume that X" is
the live graph underlying the diffusion process in phase 1.
While X is not visible during the diffusion process, we can
calculate p(X') from edge probabilities in G as follows:

H Puv H (]-7pu1;)

(u,v)eXx (u,v)¢X

Similarly, let ) be the live graph underlying the diffusion
process in phase 2 with « referral incentive. Note that X' C
Y, that is, )Y contains all the edges of X', along with edges
absent in X resampled based on the scaled edge probabili-
ties. Hence p((u,v) € Y|(u,v) € X) = 1. Sampling edges
under the IC model can be understood as follows: for each
edge, we independently sample z uniformly at random in
[0,1]. An edge (u,v) becomes active if and only if z < py,,.
Similarly, the sampling of an edge in ) given its absence in
X can be explained: the probability that it will be present is

p(z < p%lz > puy) = %; and the probability that it
e

will be absentis p(z > piy,[2 > puv) = 1=, So given the
occurrence of X', we have that ) occurs with probability:

PIIX; @) = [wyema (qui;fzv) gy (1 iﬁl)
where p%, = min{1, (1 + h(@))puv}, as defined earlier.
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From X, the set of nodes activated in the first phase can
be determined. Let A be the set of nodes active at the end
of the influence process that starts at S* when the resulting
live graph is X, that is,

Agy = {v| v is reachable from S* in X'}
The nodes activated thus act as effective seed nodes for the

next phase. As above, we define A2, to be the set of addi-
tional nodes influenced in the referral phase, that is,

AY. = {v] v is reachable from Ag in Y} \ Age

ref

Now as both X and ) are unknown at the beginning of the
first phase, the influence function f(S*, @) is in expectation
over all such X”’s and )’s. Thus,

F(S%,a) = 324 p(X) {|AG) (P1¥; ) A }

and we get the following constrained optimization problem,

Select (S*,
f(Skva):ZXp {|Adm|+2yp V|X;a |Aref|}

subject to )y p(X) >y, (V| X; a)|Aref| < Kzgzk

«) to maximize

where the constraint bounds the expected number of nodes
activated in the referral phase. When k£ = K and « = 0,
f(S*, ) reduces to single-phase influence function o (S%),
maximizing which is NP-hard (Kempe, Kleinberg, and Tar-
dos 2003). Hence the above problem is NP-hard.

Properties of the Objective Function
Lemma 1. The objective function f(S,«) is equivalent to

Zy P(y; a)‘Adlﬁ‘

Proof. Consider an edge e with original edge probability p,
and enhanced probability p&'. Let X and ) be live graphs for
phase 1 and 2 respectively. Then, X C Y and
(e €)) = (e EX)+Pleg X).Plee Ve X) =
e+ (1—pe). ( p’f) =pe.
Note that the set of nodes reachable from S* in ) is pre-
cisely the set of influenced nodes at the end of both phases.
Thus, the (unconstrained) two-phase objective is equivalent
to the single-phase objective that operates on a graph with
enhanced probabilities. O

Owing to the above equivalence and the single phase ob-
jective function being non-negative, monotone, and submod-
ular, the following result follows.

Proposition 1. For a fixed «, f(S,«) is non-negative,
monotone, and submodular with respect to S.

It is important to note that, despite these properties, owing
to the additional constraint on the number of nodes that can
be activated in the referral phase, the greedy hill-climbing
algorithm is not guaranteed to give a constant factor ap-
proximation of (1 — 1) unlike in the unconstrained case
(Nemhauser, Wolsey, and Fisher 1978).



Experimental Evaluation

For experimental evaluation, we require a concrete func-
tion h(-) satisfying the basic properties mentioned previ-
ously. To model most practical scenarios, we desire h(-)
to obey the law of diminishing returns. In our context, this
means that as the referral incentive increases, additional in-
centive has lower perceived value. We thus model h(«) as
a concave function. A common choice for concave utilities
is the logarithmic function, which also accounts for risk-
aversion (Kahneman and Tversky 1979; Bernoulli 1954),
another well-observed attribute of rational agents. Hence we
consider a simple log function h(a) = In(l 4+ «), which
satisfies all aforementioned properties.

We conduct simulations on synthetic datasets with com-
monly observed degree distributions in complex networks
(power-law, stretched exponential, and log-normal), as well
as on real-world datasets. We employ weighted cascade
(WC) and trivalency (TV) models to transform an undirected,
unweighted network into a directed, weighted one. The WC
model assigns a weight to every directed edge (u,v) equal
to the reciprocal of v’s degree in the undirected network,
while the TV model assigns a weight to every edge by uni-
formly sampling from the set of values {0.001,0.01,0.1}.
For computing objective function value, we run 10* Monte-
Carlo iterations.

Similar quantitative and qualitative results are observed
on all network data, and we report only representative ob-
servations for our experiments on the following datasets -
(a) Les Miserables (LM), consisting of 77 nodes and 508
directed edges (Knuth 1993), used for computationally in-
tensive experiments, and (b) a co-authorship network in the
“High Energy Physics - Theory” papers (NetHEPT) consist-
ing of 15,233 nodes and 62,774 directed edges, for making
deductions on general social networks (Kempe, Kleinberg,
and Tardos 2003; Chen, Wang, and Wang 2010).

Key Implementation Details We have shown that for a
fixed «, the influence function is monotone and submod-
ular with respect to S. This leads to the following natural
approach for finding the best split: we perform grid search
over a discrete range for potential values of «. For each «,
we use a suitable algorithm to find the influence maximizing
seed set S*, while respecting the budget constraint. We call
a (k, «) pair infeasible if selecting exactly k seed nodes in
phase 1 with the corresponding a-reward in phase 2 violates
the budget constraint. In such a case, we reject this value of
k, find the largest k' < k for which (%, &) is a feasible pair,
and replace f(k, ) with f (K, ).

The conventional greedy algorithm starts with an empty
set and successively adds a node with the maximum
marginal influence until £ nodes are reached. In the 2P-SRI
model, including this node in the seed set may cause too
many nodes to become active in the referral phase, thereby
violating the referral budget constraint. This behavior is typ-
ical at higher values of o, where the referral budget is low
but the probability of nodes getting activated in the referral
phase is high. In such cases, we modify the greedy algorithm
to forego the ‘best’ seed, and pick instead a node that yields
the highest spread while respecting the budget constraint.
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Simulation Results

Farsighted versus Myopic Seed Selection The farsighted
approach takes both phase 1 and 2 into consideration to de-
termine the optimal (k, «) pair, as well as the seed set that
maximizes the two-phase objective f(S*,a). In contrast,
the myopic method does not account for the presence of re-
ferral phase; that is, the selected seed set S k aims to max-
imize only the single phase objective function o(S*). The
farsighted greedy algorithm involves two levels of Monte-
Carlo iterations (thus squaring the effective number of itera-
tions) and is not suitable to be run on a large dataset. On LM
dataset, the farsighted and myopic versions of the greedy al-
gorithm perform nearly equally well, hence we implement
only the myopic algorithm for a computationally feasible
running time. Furthermore, in terms of expected influence
using seeding, the PMIA heuristic (Chen, Wang, and Wang
2010) performs close to the greedy algorithm for our opti-
mization problem.

Effect of k and o Figure 1(a) presents the expected spread
as a function of varying k and «, for a fixed total budget K.
A clear trade-off emerges between (a) the extent of diffusion
owing to the initial seed-set and (b) the percentage of referral
incentive offered. For the 2P-SRI model to be effective, it
is crucial that there be a significant population of activated
nodes that act as referring agents in phase 2. A small sized
initial seed set limits the number of active nodes at the end of
phase 1, leading to a dearth of referring agents for the next
phase and hence a rather limited spread; this explains the
high values of optimal k. Also, an improved spread is never
attained at very high values of a (beyond 20%) since for a
fixed K and k, a higher o lowers the maximum permissible
number of nodes which can be influenced in phase 2.

Typically, we observe that for TV model, an optimal & is
nearly 85-90% of K with moderately high o (10-15%) (see
Table 1), whereas for WC model, the optimal & is about 95%
of K, with comparatively lower values of « (1.5-2.5%). Fur-
ther, the edge probability enhancement h()p,,, for an edge
(u,v) depends on the initial probability p.,,. The larger this
probability, lower is the o required to convert an edge from
being non-live to live. For NetHEPT dataset, edge probabil-
ities are in a much higher range under WC model than under
TV model; so it suffices to have a very low « for the WC
model, and a relatively higher « for the TV model.

K Expected spread k o % gain
Single phase | With referral
10 60.93 63.94 9 | 0.05 4.93
15 82.57 87.72 13 | 0.05 6.24
20 103.32 109.26 15 | 0.10 | 5.75
50 192.24 204.21 46 | 0.15 6.23
80 263.44 284.89 72 | 0.15 8.14
100 307.29 327.88 82 | 0.15 6.69
200 496.45 527.06 188 | 0.15 6.17

Table 1: Results of simulations on NetHEPT (TV model)
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Figure 1: Performance of 2P-SRI on NetHEPT (TV model) for &' = 100: (a) as a function of k£ and «, (b) with respect to the
progression in time steps, (c) as a function of the delay after which the referral phase is initiated

Effect of Total Budget In our experiments on synthetic
data with log-normal and power-law degree distributions, we
observe that a budget-split is detrimental for low values of
total budget (see Figure 2). If the initial seed set is not of a
reasonable size, a very limited number of nodes is activated
in the regular diffusion phase. This adversely affects the final
spread despite referral incentives; hence if the total budget is
low to begin with, splitting it further may not be warranted.
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Figure 2: Performance of 2P-SRI as a function of total seed
budget on a power-law network of 1000 nodes (TV model)

Scheduling the Referral Phase Figure 1(b) depicts a typ-
ical temporal progression of diffusion for different (k, «)
splits when we wait long enough for the diffusion in phase
1 to terminate before initiating phase 2. However, this wait
may not be advisable in the presence of temporal constraints,
e.g., product value decaying over time, where the rate of dif-
fusion is critical. This can be captured in a time-discounted
objective function v(S) = >_,° 8" - 54(S), where 0(S) is
the expected number of newly activated nodes at time ¢, and
d € [0,1] (lower § means faster decay). Figure 1(c) presents
the performance of 2P-SRI as a function of delay d after
which the referral phase is initiated, for different values of
d with the corresponding optimal (k, ) pairs. The optimal
delay (marked on the plots) decreases as the value of ¢ low-
ers. In Figure 1(c), 2P-SRI gives an improvement when 9 is
relatively high (> 0.9), while it under-performs for low §.
If phase 1 is cut-off after a few time steps (lower delay),
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the number of active nodes is not large enough to trigger
a successful phase 2. Besides, we might end up expending
referrals on nodes that could be activated anyway without an
incentive, i.e. in phase 1 itself. On the other hand, a higher
delay leads to considerable decaying of the product value,
which is reflected in the value of expected spread v/(.S). This
induces a trade-off in determining the optimal delay.
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