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Abstract

Understanding the factors of network formation is a funda-
mental aspect in the study of social dynamics. Online activity
provides us with abundance of data that allows us to recon-
struct and study social networks. Statistical inference meth-
ods are often used to study network formation. Ideally, sta-
tistical inference allows the researcher to study the signifi-
cance of specific factors to the network formation. One popu-
lar framework is known as Exponential Random Graph Mod-
els (ERGM) which provides principled and statistically sound
interpretation of an observed network structure. Networks,
however, are not always given set in stone. Often times, the
network is “reconstructed” by applying some thresholds on
the observed data/signals. We show that subtle changes in
the thresholding have significant effects on the ERGM re-
sults, casting doubts on the interpretability of the model. In
this work we present a case study in which different thresh-
olding techniques yield radically different results that lead to
contrastive interpretations. Consequently, we revisit the ap-
plicability of ERGM to thresholded networks.

1 Introduction
Online activity provides us with abundance of data, allow-
ing us to reconstruct social networks and analyze the so-
cial processes and dynamics. Recent studies model complex
contagion and information diffusion (Leskovec, Backstrom,
and Kleinberg 2009; Yang and Leskovec 2010; Romero,
Meeder, and Kleinberg 2011; Tsur and Rappoport 2015)
as well as social polarization (Adamic and Glance 2005;
Guerra et al. 2013; Andris et al. 2015). These works assume
a given (mostly fixed) network and study its topology and
its nodal activity but do not address the formation of the
observed network. The social factors that drive the forma-
tion of a social network are of great interest for sociologists,
political scientists and computer scientists alike. Exponen-
tial Random Graph Models (ERGM) is one popular frame-
work for studying network formation1 (Morris, Handcock,
and Hunter 2008).

Ideally, the ERGM framework allow the researcher to
study the significance of the contribution of specific factors
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1Other statistical frameworks, similar in varying degrees are
Latent Space Model (Hoff, Raftery, and Handcock 2002) and
Quadratic Assignment Procedure (Krackhardt 1988).

to the network formation. Given a network and complex hy-
pothesis, ERGM assigns significance values to the various
terms in the hypothesis. ERGM, in that sense, provides prin-
cipled and statistically sound interpretation of an observed
network structure.

Networks, however, are not always given set in stone. Of-
ten times, the network is reconstructed by applying some
thresholds on raw data. For example, consider a network
based on online communication. A plausible approach is to
add an edge (u, v) only if u refers2 to v more than δ times,
where the threshold δ is chosen arbitrarily in a heuristic man-
ner. This thresholding (or edge pruning) is usually required
for noise reduction – avoiding a “hairball” network and al-
lowing a binary3 representation of the network for efficient
computation of statistical dependencies. Figure 1 illustrates
some of the benefits of simple thresholding: removing noisy
communications by applying a threshold of δ = 3 trans-
forms the network of Members of the U.S. Congress from
a “hairball” mess to obvious partisan modules. This popu-
lar thresholding approach is commonly applied in the study
of online social networks; two notable and influential exam-
ples are (Adamic and Glance 2005) and (Romero, Meeder,
and Kleinberg 2011).

In this paper we show that subtle changes in the thresh-
olding have significant effects on the ERGM results, cast-
ing doubts on the interpretability of the model. Specifically,
we reconstruct the political network based on the commu-
nication of members of the U.S. Congress. We specify a
social-science informed ERGM model and show how differ-
ent thresholds, result in very different models, giving rise to
very different and sometimes contradicting interpretations of
the process governing the network formation. These results
raise some concerns regarding the applicability of ERGM
and similar approaches to thresholded networks.

2The type of reference/signal to apply a threshold on depends
on the platform and the network semantics of interest (e.g. men-
tioning or retweeting on Twitter, liking on Facebook, linking in
blogs or citing in academic publications).

3Some differences between binary and weighted networks are
explored in (Barrat et al. 2004) among others.
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(a) No thresholding.

(b) With thresholding δ = 3.

Figure 1: Networks of Twitter communication of members
of the U.S. congress. Color represent partisan affiliation.
Both networks were reconstructed from the data described
in Section 2 and were plotted using the exact same layout
(Fruchterman-Reingold) and parameters.

2 Data

We consider the political network observed by curating the
Twitter communication of members of the U.S. Congress
and Senate (MoCS). We focus on this network for the fol-
lowing reasons: (i) We want a complex network of consid-
erable yet manageable size, (ii) We ultimately care about
interpretation thus we need a network of known actors al-
lowing comparison to well developed theories from political
science.

We collected all tweets posted by members of the U.S.
Congress and Senate during a year spanning from April
2015 to April 2016, a total of about 400,000 tweets (posted
by 520 active users). It is a common practice to look at user
mentions (@) in reconstructing Twitter networks (Romero,
Meeder, and Kleinberg 2011) or retweets (Guerra et al.
2013), among others. Mentions and retweets are seen as
more accurate than just following relations as they demon-
strate an active signal. It is common to assume that while a
single mention can be anecdotal, reoccurring mentions of v
by u provide a strong relational signal. We consider the fol-
lowing thresholds: 3,4,5 and 25, all appear in the literature.
While it is clear that mentioning someone dozens of times is
semantically different than mentioning her only a handful of
times, choosing a threshold between 3 and 5 seems inconse-
quential. Indeed, we show that some standard network statis-
tics remain stable given small variations in the thresholding
(see section 4.1). However, as demonstrated in Section 4.2,
these seemingly inconsequential variations yield major dif-
ferences in the network semantics as modeled by ERGM.

3 Exponential Random Graph Models

While we can use various statistics (e.g. centrality, modu-
larity, degree distribution) to describe an observed network,
these structural features do not provide much insight about
the (social) processes governing the formation of the net-
work. Generally speaking, the network at hand is one spe-
cific realization of a network instance out of a pool of possi-
ble networks. Some of these possible network may have the
same exact topology (e.g. permutation of the nodes in the
observed network) and some other networks may have a dif-
ferent structure. In order to understand the formation of the
specific network we would like to allow statistical inference
of the factors that may be involved in the network forma-
tion. The main challenge, however, is that standard statis-
tical models assume uncorrelated variables, while network
variables are inherently dependent.

There is a number of frameworks that support statistical
inference on networks (see footnote 1). One approach that
is gaining popularity among statisticians, social and politi-
cal scientists is ERGM – Exponential Random Graph Mod-
els. A detailed description of the ERGM framwork and its
evolution can be found in (Snijders 2002; Morris, Hand-
cock, and Hunter 2008; Schweinberger and Handcock 2015;
Wilson et al. 2017). In this section we briefly describe the
ERGM framework and specify our model.

The abstract form of an ERGM model is:

Pr(Y = y) = (
1

k
)exp

∑

A

θAgA(y) (1)

Which reads as ‘the probability of a specific realization
y is a function of a set of nodal and/or dyadic features de-
noted by A, where each node or set of nodes either holds the
feature or not’. Gibbs sampling is used in order to infer θ –
the feature coefficients. A normalization factor k is used to
enforce the learned model to be a probability function.

3.1 Naive Model - Number of Edges

The baseline model is the Erdős Rényi network (Erdös and
Rényi 1959). Given a set of nodes and a general edge likeli-
hood θ, the Erdős Rényi random network is generated by ap-
plying this likelihood at every possible pair of nodes. In our
case, we observe a fixed number of edges and infer θ. We use
this term as a baseline model since no nodal or dyadic terms
such as homophily (nodal feature) or reciprocity (dyadic fea-
ture) are considered. Formally this term is defined as:∑

i,j

θyij

Where i and j are nodes and yij = 1 iff the edge (i, j)
is observed in the network. In the remainder of this section
we further introduce a number of nodal and dyadic terms,
motivate the use of these terms in modeling our network and
define the formal ERGM model we use.

3.2 Nodal and Dyadic Terms

Reciprocity Reciprocity is one of the basic dyadic terms
used in network analysis. The idea of quid pro quod is an
inherent characteristic of many social interactions and can
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be significant in network formation. The likelihood of v fol-
lowing u in a social network like Twitter may increased if
we know that u follows v. Formally, we define the term as
follows: ∑

ij

θryijyji

Where i and j (i �= j) are nodes in the network and yij =
1 iff i follows j. This term is nonzero iff i follows j and j
follows i.

Partisan Homophily We assume that nodes belonging to
the same party are more likely to be connected. Formally
this term is represented as:∑

ij|p(i)=p(j)

θpyij

Where p(i) is the party of node i.

Leadership We assume that leadership positions (party
leaders, speakers, whips) play a role in network formation.
In the Twitter context, they may be more likely to be fol-
lowed, replied to or retweeted. We denote the set of MoCs
in leadership position as L and formally define the leader-
ship term as: ∑

ij|,j∈L

θLyij

Seniority We assume that seniority – the number of terms
a MoC served – may effect the network formation in a nu-
mebr of possible ways – e.g. senior members with a longer
shared history will entertain a more cliquey behavior or that
senior MoCs may have a more central role in the network
due to their experience. Formally we define seniority in a
similar way to leadership:∑

ij|t(j)>3

θsyij

Where t(j) is the number of terms4 j served in the
Congress/Senate.

Twitting Rate Since our network is based on (@) men-
tions, the number edges (incoming and outgoing) a node has
may depend on the number of tweets she posts. High volume
of tweets create visibility and may attract mentions by other
nodes. Likewise, the likelihood of mentioning another user
may increase simply as a function of the number of tweets
a node posts. This term, therefore, serves as a nodal control
term in a similar way to the way the Erdős Rényi term serves
as a control based on the number of observed edges. The rate
term is defined as:

∑

ij|tr(j)∈Pk

θtryij

Where tr(j) is j’s tweeting rate and Pk is the k’s per-
centile of volume of tweets by user (node).

4We note the ambiguity of the term term, here used for the num-
ber of times j was elected for Congress.

3.3 Joint Network Model

We combine all the terms above to one model, providing a
relatively simple yet seemingly powerful and well motivated
model accounting to major factors that may govern the pro-
cess of network formation. Using the notation in Equation 1,
we use Gibbs sampling to jointly infer the θs in the follow-
ing model:

Pr(Y = y) = (
1

k
)exp[

∑

i,j

θyij +
∑

ij

θryijyji

+
∑

ij|p(i)==p(j)

θpyij +
∑

ij|,j∈L

θLyij

+
∑

ij|t(j)>3

θsyij +
∑

ij|tr(j)∈P{1,2,3}

θtryij ]

(2)

4 Results

In this work we aim to examine two main assumptions that
are typically held in network analysis. We show how their
in/validity effects the social interpretation of the network
formation based on statistical inference. The two assump-
tions are:

1. Small thresholding values are used to remove noisy (“oc-
casional”) interaction, hence small variance in threshold-
ing (low) values has minimal effect on network statistics.

2. Different thresholding in network representation captures
different social/network semantics (e.g. high threshold is
expected to only capture the strongest ties). Therefore,
high variance in the thresholding values results in signifi-
cant difference in network statistics.
In Section 4.1 we show that both assumptions hold for

two standard network statistics: modularity and between-
ness centrality. In Section 4.2 we show that while the second
assumption holds, the first, seemingly straight forward, as-
sumption is not supported by the statistical model. Violation
of these assumptions leads to major concerns regarding the
common (and naive) application of the ERGM framework
on thresholded networks.

4.1 General Network Statistics

Results for various thresholds are presented in Table 1. The
modularity values for δ ∈ {3, 4, 5} change only slightly
from 0.317 to 0.328. Similarly, average betweenness central-
ity ranges from 0.0033 to 0.0036. The insignificant change
in the values of both modularity and centrality validates the
first assumption.

Comparing the modularity and betweenness values of δ ∈
{3, 4, 5} to δ = 25 we see a 30% increase in modularity
while the average betweenness centrality drops significantly.
These results support the second assumption and are in line
with the literature, e.g. (Adamic and Glance 2005).

4.2 Instability of Statistical Inference

Using ERGM to infer the θ coefficients for the terms of in-
terest tells a very different story. Table 2 presents the sig-
nificance levels of the different terms in the model. The ob-
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δ = 3 δ = 4 δ = 5 δ = 25
Modularity 0.3177 0.3230 0.3280 0.4354
Betweenness 0.0033 0.0036 0.0035 0.00005

Table 1: Modularity and average betweeness centrality val-
ues given different thresholding (δ).

Term δ = 3 δ = 4 δ = 5 δ = 25
#Edges *** *** *** ***
Reciprocity *** *** *** —
Partisan homophily *(R) — — —
Leadership position **(D) * (D) .(D) **
Seniority *** (↑) **(↑) **(↓)
Tweeting rate — — * (↓) —

Table 2: Significance of various terms obtained by ERGM
and given different thresholding (δ). ↑(↓): significance in
higher (lower) values of the term. — for insignificance.

served number of edges is significant for all δ values (as ex-
pected). Reciprocity is significant for δ ∈ {3, 4, 5} and in-
significant for the higher value of δ (suggesting other terms
come into play for this nonreciprocal network). While the
given number of (observed) edges and reciprocity are stable
across the low δ values, the other terms lend themselves to
inconsistent interpretation. Partisan homophily is significant
only for δ = 3 and only for Republicans. Leadership posi-
tion is significant, though diminishing, only for Democrats
for δ ∈ {3, 4, 5} and for both parties for δ = 25. Senior-
ity matters only for δ ∈ {3, 4, 5}, however it seems that
if we threshold with δ ∈ {3, 4} it is the senior members
who attract incoming edges (due to their seniority?) while
using a threshold of δ = 5 shows that the younger MoCs
attract incoming edges, suggesting a very different interpre-
tation (they are younger and more active? they show higher
tendency to reciprocate? they are more cliquey?). These re-
sults suggest the first assumption is implausible, an alarming
message to the researcher who is interested in the social in-
terplay between the nodes in the network, suggesting that
“noise reduction” and “binarization” should be performed
in a more informed manner.

5 Conclusion

We showed that the common practice of thresholding for
network pruning can lead to instability in results of statisti-
cal inference, and thus to wrong or incoherent interpretation
of the social dynamics that shaped the observed network.
While we cannot yet offer a proven remedy for this problem,
we wish to conclude by mentioning two directions that may
help in addressing this issue: (i) prune the network in a sta-
tistically informed ways e.g. (Serrano, Boguná, and Vespig-
nani 2009; Radicchi, Ramasco, and Fortunato 2011; Dia-
nati 2016), and (ii) apply the newly developed Generalized-
ERGM (GERGM) framework (Wilson et al. 2017) which
theoretically allows inference with weighted edges.
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