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Abstract

The word-of-mouth diffusion has been regarded as an impor-
tant mechanism to advertise a new idea, image, technology, or
product in online social networks (OSNs). This paper studies
the prediction of popular and viral image diffusion in Pinter-
est. We first characterize an image cascade from two perspec-
tives: (i) volume — how large the cascade is, i.e., total num-
ber of users reached, and (ii) structural virality — how many
users in the cascade are responsible for attracting other users.
Our model predicts whether an image will be (a) popular in
terms of the volume of its cascade, or (b) viral in terms of
the structural virality. Our analysis reveals that a popular im-
age is not necessarily viral, and vice versa. This motivates us
to investigate whether there are distinctive features for accu-
rately predicting popular or viral image cascades. To predict
the popular or viral image cascades, we consider the follow-
ing feature sets: (i) deep image features, (ii) image meta and
poster’s information, and (iii) initial propagation pattern. We
find that using deep image features alone is not as effective
in predicting popular or viral image cascades. We show that
image meta and poster’s information are strong predictors for
predicting popular image cascades while image meta and ini-
tial propagation patterns are useful to predict viral image cas-
cades. We believe our exploration can give an important in-
sight for content providers, OSN operators, and marketers in
predicting popular or viral image diffusion.

Introduction

Online social networks (OSNs) have seen phenomenal
growth: over a billion users on Facebook, and hundreds
of millions on Twitter, Instagram, and Pinterest. This new
social ecosystem generates rich social data, which enables
data-driven studies on human behavior as well as informa-
tion diffusion patterns (e.g., political propaganda, product
advertisement, or content distribution), which are often re-
ferred to as ‘Computational Social Science’ (Lazer et al.
2009).

The word-of-mouth information diffusion (Rodrigues et
al. 2011; Rahman, Han, and Chuah 2015; Han et al. 2014)
has been regarded as an important mechanism to adver-
tise a new idea, technology, content, or product in OSNs.
This in turn has spurred many data-driven computational
studies on how information (e.g., a photo, news, URL, or
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product) spread in various OSNs such as Facebook, Twit-
ter, or Pinterest (Bakshy et al. 2012; Kupavskii et al. 2012;
Lerman and Ghosh 2010; Han et al. 2014). A news, idea,
photo, URL, or product can be reshared multiple times (e.g.,
like retweet in Twitter or repin in Pinterest) in OSNs, hence
generating a cascade that potentially reaches a large number
of audiences.

These studies have revealed valuable insights into the
macro-level information propagation patterns (e.g., cascade
size). Despite the large theoretical and empirical literature
on the information diffusion in OSNs, however, relatively
little has been known about the micro-level dynamics of vi-
ral cascades, in part because requisite data for building a
complete information cascade has not been available until
very recently (Goel et al. 2015). Often time, ‘virality’ is
used to refer to ‘popularity’ of diffusion (Khosla, Sarma,
and Hamid 2014; Jenders, Kasneci, and Naumann 2013;
Guerini, Staiano, and Albanese 2013; Totti et al. 2014;
Khosla, Sarma, and Hamid 2014). However, viral diffu-
sion is not only about popularity (macro-level view, i.e.,
cascade size) but also about how information propagates
via person-to-person viral contagion (i.e., micro-level view).
Such a person-to-person diffusion process is analogous to
the spread of biological viruses. That is, unlike the ‘broad-
cast” where a single source directly spreads information to
the most of recipients like mass media, many individuals
participate in spreading information in viral diffusion. Fig-
ure 1 shows an illustrative example of different 11-nodes dif-
fusions where an information reaches 10 audiences through
different propagation scenarios. The leftmost figure shows a
typical broadcast scenario, while the rightmost showcases a
viral diffusion through a chain.

Recently, with the availability of large-scale user inter-
action data over OSNSs, there have been effort in inves-
tigating dynamics of viral cascades (Cheng et al. 2014;
Goel et al. 2015; Deza and Parikh 2015). For example, the
structural virality of retweet cascades was measured in Twit-
ter (Goel et al. 2015), which showed that the correlation be-
tween the size of a cascade and its virality is low. Also, some
work tried to use image features for predicting image viral-
ity (Deza and Parikh 2015; Guerini, Staiano, and Albanese
2013), revealing a possibility to use content information in
predicting viral diffusion. Cheng et al. studied a cascade
growth prediction problem, and tried to predict whether a



given cascade (with size k) grows beyond the median size of
all the cascades with at least k£ reshares (Cheng et al. 2014)
in Facebook. These work have revealed valuable theoretical
insight into viral diffusion in social media.

This paper demystifies the prediction of popular or vi-
ral image diffusion in Pinterest, an interest-driven OSN,
from a practical and engineering standpoint. To this end, we
first characterize an image cascade from two perspectives:
(i) volume — how large the cascade is, i.e., total number of
users reached, and (ii) structural virality — how many users in
the cascade are responsible for attracting other users, which
is measured by the ‘Wiener Index (WI)* (Wiener 1947;
Goel et al. 2015; Cheng et al. 2014; Choi et al. 2015). Here,
the popular cascades are the ones that have high volumes
while the viral cascades are defined as the ones that have
high WIs. Note that ‘popularity’ does not imply ‘virality’,
and vice versa. An image can be popular but not viral. Sim-
ilarly, a viral diffusion may not end up in a large cascade.

We attempt to predict whether an image will be (a) popu-
lar in terms of cascade size/volume, and/or (b) viral in terms
of WI. We investigate what factors have the strong predictive
power of popular or viral image cascades. In particular, we
explore two factors that contribute to popular or viral diffu-
sion — human social context and properties of content. The
ability to predict whether the diffusion of a content would
go viral and reach a large user population is of interest to re-
searchers, OSN operators, marketers, and content providers.

We shed light on these issues by performing a data-driven
analysis on a large-scale dataset that contains 337 K im-
ages shared by 1 M users in Pinterest. We had kept track
of a propagation path of each image (i.e., pin in Pinterest)
in each category (e.g., animal, kids, travel) in Pinterest for
44 days from June 5 to July 18, 2013. Our analysis reveals
that there is overall a positive correlation between the vol-
ume and structural virality of an image cascade. However,
we find that popular images are not always necessarily viral;
we show that two popular images with the same popularity
propagate through very different scenario, i.e., one by broad-
cast and the other by a person-to-person contagion process.
This motivates us to study what different factors are useful
for predicting popular or viral image cascades. In addition,
we consider different scenarios in predicting the popular or
viral image diffusion, e.g., only image information is avail-
able, user information is hidden due to privacy issues, etc. In
particular, we seek answers to the following questions:

e Q1 - If only an image is given (and available), can
we predict whether it becomes popular or goes viral?
We apply deep learning techniques (Deng et al. 2009;
Simonyan and Zisserman 2014) for extracting image fea-
tures, which are used for predicting popular or viral image
cascades. We find that using deep image features alone
is not as effective in predicting popular or viral cascades,
which is in line with previous work in other OSNs (Cheng
et al. 2014; Totti et al. 2014).

e Q2 — At the moment when an image is posted and its
meta and/or poster (or pinner) information is avail-
able, can we predict whether the image becomes pop-
ular or goes viral? We find that meta information of

83

an image such as its category, source, or title, as well
as its poster’s information are useful in predicting pop-
ular or viral image cascades. We also find that combining
image meta and pinner features improves the prediction
performance, which signifies that image meta and pinner
features are complementary to each other. Note that im-
age meta and pinner features are the strongest predictor
in predicting popular image cascades, implying that we
can accurately forecast the image popularity using the im-
age meta information (e.g., category, source, or title) and
poster’s information (e.g., his/her connectivity or activ-
ity), at the moment when the image is posted.

e Q3 -If an initial image propagation pattern is observ-
able, does it help to predict popular and/or viral image
cascades? We find that the initial propagation pattern of
an image cascade is useful whether it will become pop-
ular or go viral. However, the information of users who
initially participate in the cascade do not contribute much
in predicting popular and viral image cascades. Note that
the initial propagation pattern of an image and its meta
info are the best predictors in predicting viral image cas-
cades, implying that if we observe the initial propagation
pattern of an image, we can accurately predict whether
the image will go viral in the future. It is worth to note
that image meta information is commonly useful for pre-
dicting future popular and viral image diffusion.

The rest of this paper is organized as follows. After re-
viewing the related work, we describe our measurement
methodology. We then investigate the characteristics of im-
age cascades in Pinterest. We finally propose models to pre-
dict popular or viral image cascades in Pinterest.

Related Work

Information cascades in OSNs: As OSNs have become
one of the popular platform to spread information such as
news, photo, URL, or product, there have been huge ef-
fort in studying information adoption and propagation in
various OSNs (Aral and Walker 2012; Bakshy et al. 2012;
Wang et al. 2011; Rahman, Han, and Chuah 2015; Choi et
al. 2015). Bakshy et al. studied the role of social networks
in information diffusion in Facebook, and showed that ex-
posed users in the network are more likely to spread infor-
mation (Bakshy et al. 2012). Aral et al. identified influential
individual and susceptible users in adopting the product in
Facebook (Aral and Walker 2012). Rahman ef al. (Rahman,
Han, and Chuah 2015) analyzed the adoptions and propa-
gations of Facebook gifting applications, and showed that
the evolutionary perspectives of cascades such as their ini-
tial growth rates are important factors for predicting the final
population size of the application cascades. Choi et al. char-
acterized online conversations in Reddit, and revealed how
content properties and user participation behaviors are asso-
ciated with successful conversation (Choi et al. 2015).

A few recent studies have shifted focus to micro-level dy-
namics of viral cascades (Cheng et al. 2014; Goel et al. 2015;
Guerini, Staiano, and Albanese 2013; Deza and Parikh 2015;
Khosla, Sarma, and Hamid 2014). The structural virality of
cascades was measured based on the user dynamics informa-



tion in Twitter (Goel et al. 2015). For predicting image viral-
ity, some work used image features (Deza and Parikh 2015;
Guerini, Staiano, and Albanese 2013; Khosla, Sarma, and
Hamid 2014; Cheng et al. 2014), revealing a possibility to
use content information in predicting viral diffusion. Deza
and Parikh studied the viral image prediction from a com-
puter vision perspective (Deza and Parikh 2015). They eval-
uated several image features for predicting image virality.
The most relevant work to this paper is that by Cheng et
al. (Cheng et al. 2014), which studied models for predicting
whether a given cascade (with size k) grows beyond the me-
dian size of all the cascades with at least k reshares, which
is a growth prediction problem. They showed that tempo-
ral and structural features are key predictors of the photo
reshare cascade growth in Facebook (Cheng et al. 2014).
While the work by Cheng et al. (Cheng et al. 2014) provided
an important theoretical insight into cascade prediction, this
paper goes one step further from a practical and engineer-
ing standpoint; we focus on a popularity or virality predic-
tion problem in Pinterest, based on the following feature sets
which can be observed in different scenarios: (i) image fea-
tures that can be obtained before posting, (ii) image meta
and poster’s information that can be obtained at the moment
of posting, and (iii) initial propagation pattern. We explore
which factors are strong predictors in predicting popular or
viral image cascades, respectively.

Pinterest — an interest-driven OSN: Unlike other popu-
lar friendship-based OSNs such as Facebook, interests drive
user activities or connectivities in Pinterest (Han et al. 2014;
Gelley and John 2015). Han et al. revealed that pin propaga-
tion in Pinterest is mostly driven by content properties like
its topic, not by users’ characteristics (Han et al. 2014). Gel-
ley and John also showed that ‘following’ is not significantly
associated with content sharing in Pinterest (Gelley and John
2015). Zhong et al. proposed models to predict whether a
user will be interested in repinning the given pin (Zhong,
Karamshuk, and Sastry 2015). Han et al. (Han et al. 2015)
proposed a method to predict which topics an individual
user will be interested in. Totti et al. evaluated the predictive
power of different features on image popularity (Totti et al.
2014), and showed that visual properties have a lower pre-
dictive power than social cues. This paper proposes models
for predicting popular or viral images based on two factors
— human social context and properties of content, which can
give an important insight into resource allocation for content
providers and marketers in Pinterest-like OSNs.

Methodology

In this section, we first characterize our image cascade
model in terms of volume and structural virality. We then
describe our dataset used in this paper.

Image Cascade Model

We first model an image cascade as an undirected tree, T' =
(U, R), where U is the set of users including a pinner and
follow-up repinners for a given image (or a pin) posted by
the pinner, and R is the set of repinning activities, i.e., pin
propagation. We characterize the image cascade 7" based on
the following two metrics:
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Figure 1: Illustrative examples of different 11-node diffu-
sions: from a simple broadcast (on the far left) to a viral
diffusion through a chain (on the far right). The bottom axis
shows the Wiener Index (WI) values calculated for the 11-
node cascades, Vo = 11.

e Volume (|U]) of cascade T is the number of nodes in the
tree. For example, |U| of the cascade in Figure 1 is 11.

e Structural virality (or W) of cascade T represents the
average range of a node’s effect in an image cascade. To
quantify the structural virality, we adopt a well-known
metric ‘Wiener Index (WI)’ (Wiener 1947; Goel et al.
2015; Cheng et al. 2014; Choi et al. 2015), which is de-
fined as the average hop count between all pairs of nodes
in a tree 1. More specifically, W1 of cascade T" can be
calculated as follows:
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[U1(UT—-1) \UI

where U is the set of users in T’, and d;; is the distance (or
hop count) of the shortest path between users ¢ and j in 7.
Figure 1 shows the three 11-node trees with their WIs. As
shown in Figure 1, given the same number of nodes, i.e.,
an image reaches to 10 audiences through different prop-
agation scenarios, the WI becomes the minimum if all the
repinners directly get the image from the pinner (i.e., the
leftmost scenario in Figure 1), and the maximum if 7" be-
comes a chain (i.e., the rightmost scenario in Figure 1).

Dataset

To explore image cascades in Pinterest, we analyze a dataset
collected from Pinterest for 44 days from June 5 to July 18,
2013, which contains 337,345 (original) images (i.e., pins),
their associated 1,190,220 repins, and 1,047,545 users.
Among the 337,345 images, 144,080 images are shared by
at least one repinners, hence we could obtain 144,080 image
cascades whose volumes are higher than 1. During the mea-
surement period, we collected all the newly posted pins (and
their pinners) from the menu of each category (e.g., kids,
education, history) in Pinterest. Note that there were 33 cat-
egories at the moment of data collection such as ‘travel’,
‘kids’, or ‘women’s fashion’ in Pinterest. Table 1 summa-
rizes the 33 Pinterest categories with their associated num-
bers of corresponding pins/repins. A Pinterest user can share
a posted pin via repinning, and the shared pin also can be
shared subsequently by other users. We kept track of this



1 diy & crafts(189176) 2 education(80910) 3 animals(75299) 4 T food & drink(67730) 5 quotes(45849) 6 design(45758) 7 | health & fitness(45225)
8 humor(42656) 9 art(41939) 10 | womens’ fashion(38698) || 11 | architecture(37557) 12 | film, music & books(37403) 13 | home & decor(34655) || 14 products(34333)
15 men’s fashion(28951) 16 | science & nature(24324) || 17 geek(20633) 18 technology(20306) 19 travel(19060) 20 outdoors(18149) 21 weddings(17927)
22 | cars & motorcycles(17447) || 23 hair & beauty(17074) 24 celebrities(15543) 25 gardening(14736) 26 tattoos(11644) 27 | photography(10390) 28 history(7159)
29 kids(6508) 30 sports(6343) 31 | holidays & events(5159) || 32 shop(4075) 33 | illustrations & posters(3916)
Table 1: 33 Pinterest categories with their numbers of associated pins/repins.
1 fitsugar.com(8760) 2 | designspiration.net(4503) 3 | womenshealthmag.com(3410) || 4 imdb.com(3131) 5 greatist.com(3008)
buzzfeed.com(2930) 7 | saatchionline.com(2458) 8 fitnessmagazine.com(2445) 9 | teacherspayteachers.com(2416) || 10 archdaily.com(1934)
11 bhg.com(1717) 12 houzz.com(1595) 13 prevention.com(1466) 14 food.com(1442) 15 allrecipes.com(1440)
16 | marthastewart.com(1439) || 17 behance.net(1417) 18 ebay.com(1404) 19 wikipaintings.org(1297) 20 | themetapicture.com(1263)
Table 2: A summary of top 20 sources and their numbers of original pins.
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Figure 2: Distributions of volume and structural virality of
image cascades.

repinning process and collected all the corresponding repin
and repinner information. Eventually, our dataset includes
(i) pin and repin information, e.g., category, source!, de-
scription, etc., and (ii) pinner and repinner information, e.g.,
number of followers/followees, number of pins, etc.

Image Cascade Analysis

In this section, we first investigate the characteristics of im-
age cascades in Pinterest. We then explore whether popular
images (i.e., cascades having high volume) are also viral.

Characteristics of image cascades

CDF

10° 10*  10°

10
Avg. Inter-repin Time (m)

0
0t 102 10 10 10° 10!

First Inter-repin Time (m)

0 ;
10° 10°

(a) First repin time (b) Average inter-repin time

Figure 3: Distributions of repin times of image cascades.

'A source indicates the URL the pin. Table 2 describes the top
20 sources and their numbers of original pins in Pinterest in our
dataset.

85

structural virality also shows a heavy tail distribution, which
only spans two orders of magnitudes. While around 81% of
WI values are smaller than 2 and 99.7% of them are smaller
than 5, top 0.1% of WIs are greater than 6.32. This implies
that most of image cascades in Pinterest are not likely to
span deep. Note that the average, median, and maximum
structural virality is 1.66, 1.6, and 26.12, respectively.

To capture how quickly users propagate images in the top
1% image cascades in terms of volume and structural viral-
ity, we calculate the first inter-repin times (i.e., time differ-
ence between the original pinning and the first repinning)
and the average inter-repin times of the top 1% cascades in
Figure 3. In calculating the average inter-repin time, we only
consider the time differences (in a cascade) within the range
of [u — 20, u + 20] for excluding outliers. As shown in
Figure 3, the inter-repin times of the top popular cascades
(with high volumes) are higher than those of the top viral
cascades (with higher WIs), meaning that users in viral cas-
cades tend to propagate images more quickly. This implies
that the propagation speed can be used to predict popular or
viral image cascades. For example, if we observe the initial
propagation speed of a cascade, we may forecast whether
the cascade goes viral in the future.

We next investigate the volume and structural virality of
image cascades across 33 categories (Table 1) and the top
20 sources (Table 2) in Figures 4 and 5, respectively. As
shown in Figure 4, the volume and structural virality are
different across categories. This implies that category and
source information of an image cascade can be one of the
important factors in predicting whether the cascades grows
much or goes viral. Interestingly, ‘humor’ (category index
(CD 8), ‘quotes’ (CI 5), and ‘tatoos’ (CI 26) show higher
volume and structural virality than others while there are
relatively less number of pins/repins in those categories.
Also, the volume and structural virality are different across
sources as shown in Figure 5. Interestingly, the images from
‘themetapicture.com’ (source index (SI) 20) are much more
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Figure 4: Distributions of volume and structural virality of
image cascades across 33 categories.

popular and viral than others; the website is not so popular
in general (the Alexa rank is 20,328 as of October, 2016)
and provides funny pictures. Also, food related sources such
as ‘food.com’ (SI 14) and ‘allrecipes.com’ (SI 15) are likely
to provide popular and viral images to Pinterest.

Are popular images also viral?

We now investigate whether the popular images (i.e., cas-
cades having high volume) are also viral. To this end, we
first plot the volume/virality of each image cascade in Fig-
ure 6(a). As shown in Figure 6(a), there is an overall positive
correlation between the volume and virality, which means
cascades with higher volumes tend to have higher structural
viralities. However, the viralities of cascades with high vol-
umes (e.g., over 100) tend to radiate. The Pearson correla-
tion between the volume and virality of the top 1% cascades
(whose volumes are higher than 74) is 0.42 (p < 0.001).
This implies that popular images are not necessarily viral.
Note that the Pearson correlation between the volume and
virality of the bottom 99% cascades (whose volumes are 74
or smaller) is 0.8 (p < 0.001). When we look at the volume-
based top 1% cascades and the virality-based top 1% cas-
cades, only 17.4% of the cascades are overlapped, which
signifies that top popular and viral cascades are disparate.
This implies that different factors may be useful for predict-
ing popular or viral image cascades, which will be discussed
in the next section.

As an example, we illustrate two cascades with same vol-
ume (N = 101) but different viralities, WI = 2.096 for
the red circle and W1 = 7.128 for the blue diamond in
Figures 6(b) and 6(c), respectively. As shown in Figures
6(b) and 6(c), two similarly popular images can be propa-
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Figure 5: Distributions of volume and structural virality of
image cascades across the top 20 sources.

gated through different scenarios: (i) broadcast where a pin-
ner mostly spreads an image to the most of recipients and (ii)
viral diffusion where an image propagates via the person-to-
person contagion process. This confirms that an image can
be popular but not viral.

To investigate whether popular images are viral in differ-
ent categories and sources, we calculate the Pearson corre-
lation coefficients between the volume and structural viral-
ity in each category and source. Figure 7 shows the two co-
efficient values for the top 1% (with high volumes, repre-
sented as redo dots) and bottom 99% (represented as bar)
cascades, respectively, in each category and source. Overall,
the Pearson correlation coefficients of the bottom 99% cas-
cades are very high, i.e., mostly over 0.7. The coefficients of
the bottom 99% cascades in ‘food & drink’ (CI 4) and ‘shop’
(CI 32) are even higher than 0.9 as shown in Figure 7(a).
However, the coefficients of the top 1% cascades are sub-
stantially lower than those of the bottom 99%. Especially,
the coefficients of the top 1% cascades in ‘men’s fashion’
(CI 15), ‘science & nature’ (CI 16), ‘sports’ (CI 30), and
‘diy & crafts’ (CI 1) are lower than 0.1, meaning that pop-
ular images in those categories are not necessarily viral. We
observe a similar pattern in Figure 7(b) that shows popu-
lar images from particular sources (e.g., ‘imdb.com’ (SI 4),
‘greatist.com’ (SI 5), ‘houzz.com’ (SI 12), ‘allrecipes.com’
(SI 15), ‘wikipaintings.org’ (SI 19)) are not necessarily vi-
ral. Interestingly, top 1% popular images in ‘greatist.com’
(SI 5) and ‘houzz.com’ (SI 12) show even weak negative
correlations, which is a significantly disparate pattern with
the bottom 99% (unpopular) images from the sources.
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Figure 6: Volume and virality of each image. Overall, there
is a positive correlation between the volume and virality.
However, popular images are not necessarily viral, e.g., two
cascades with same volume (/N = 101) have different viral-
ities: W1 = 2.096 for the red circle (b) and W1 = 7.128
for the blue diamond (c).

Popular and Viral Image Prediction

We have revealed that popular images are not necessarily vi-
ral in Pinterest, which motivates us to study whether there
are distinctive features to accurately predict popular and vi-
ral images, respectively. In this section, we aim to predict
popular or viral image cascades. In particular, we identify
popular cascades whose volumes are higher than 230 and
74, which account for the top 0.1% and 1% of all the image
cascades (in terms of volume or cascade size), respectively.
We also identify ‘viral’ cascades whose structural virality
(or WIs) are higher than 6.32 and 3.85, which account for
the top 0.1% and 1% of all the image cascades (in terms of
WIs), respectively. Note that only a small portion of the top
popular and viral cascades are overlapped as shown in the
previous section; only 17.4% of the cascades are overlapped
between the volume-based top 1% cascades and the virality-
based top 1% cascades.

We cast this problem as a supervised learning problem,
where we observe a set of features of a cascade and pre-
dict whether the given cascade belongs to the top popular or
viral cascades. We build a learning model based on the Ran-
dom Forest ensemble algorithm (Breiman 2001). We used
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Figure 7: Pearson correlation coefficients between volume
and virality of the top 1% (with high volumes, represented
as red dots) and bottom 99% (represented as bars) cascades,
respectively, in each category and source.

other classifiers including support vector machine or logis-
tic regression, but we only report the results of the Random
Forest ensemble classifier as it performs better than others.
We report the followirll\% performance metrics: (i) accuracy

(ACC = %), (ii) true positive rate or re-

call (TPR = %), (iii) false positive rate (FPR =
FPFJF%), and (iv) area under the receiver operating charac-

teristics (ROC) curve (AUC)? (Fawcett 2006), where TP,
FP, FN, and TN represents the true positive, false posi-
tive, false negative, and true negative, respectively. We per-
form a 10-fold cross validation.

Predicting the top popular or viral cascades can be suf-
fered from the class imbalance problem, e.g., the ratio
between the minority and majority classes for identify-
ing the top 0.1% cascades is 1:999. To remedy this issue,
we apply the Synthetic Minority Over-sampling TEchnique
(SMOTE) (Chawla et al. 2002), which allows us to learn
with over-sampled instances from the minority class (i.e.,
top cascades). We learn randomly under-sampled instances
from the majority class (i.e., non-top cascades). We varied
the sampling ratios of minority and majority classes, from
1:1 to 1:2 to 1:4 to 1:8, but we only report the results of 1:1
ratio as it shows a similar performance with others. Note that
we apply this technique only in the learning set.

2AUC indicates the effectiveness of a model. A perfect model
has an AUC of 1 while a random model generates an AUC of 0.5.



We consider different scenarios in predicting the popular
or viral image cascades. In particular, we answer the fol-
lowing questions: (1) If only an image is given (and avail-
able), can we predict whether it becomes popular or goes
viral?, (2) At the moment when an image is posted and its
meta and/or poster (or pinner) information is available, can
we predict whether the image becomes popular or goes vi-
ral?, and (3) If an initial image propagation pattern is ob-
servable, does it help to predict popular and/or viral image
cascades? Answering these questions can give an important
insight into predicting popular or viral image diffusion for
content providers, OSN operators, and marketers.

Predictive power of image itself

We first study the role of image content in its popularity
and virality prediction without using other features such as
poster or posting information. This assumes the situation
where (i) pinner or posting information is not available (e.g.,
due to privacy issues) or (ii) the image is not yet posted by
anyone. To this end, we extract features from an image us-
ing the deep learning technique. We adopt a well-known vi-
sual categorization developed for the task of image classi-
fication and feature learning, ImageNet (Deng et al. 2009),
which defines 1000 image classes (mostly object classes).
We use a convolutional neural network (CNN) (Krizhevsky,
Sutskever, and Hinton 2012), which is known as very ef-
fective for visual feature learning. Our model architecture
is the VGG-16 (Simonyan and Zisserman 2014) and we
use a publicly available pre-trained model on the Imagenet
data. For each image, we extract the final image features
at 1000 category level (referred to as ‘IMAGE’) as well
as intermediate 4096 features at the last fully-connected
layer (F'C'7) (referred to as ‘IMAGE(FC7)’). In addition to
high-level features (‘IMAGE’ and ‘IMAGE(FC7)’), we fur-
ther consider the following low-level features: (i) 512 ‘gist’
image features (Oliva and Torralba 2001) which describe
gradient-based (Gabor filters) scene features such as texture
or edge (referred to as IMAGE(gist)’) and (ii) the mean
and standard deviation of image color in RGB (referred to
as ‘IMAGE(color)’). Based on the extracted image features,
our classifier (i.e., the Random Forest ensemble) identifies
whether the given image belongs to the top popular and/or
viral cascades.

Figures 8 and 9 show the prediction results on popular
and viral cascades, respectively, using image features. For a
comparison purpose, we include the result of a null model,
‘BASELINE’. Since the ‘BASELINE’ model predicts the
popular or viral cascades according to their distributions, the
ACC's are 99.9% and 99% for predicting top 0.1% and 1%,
respectively. Note that the ‘BASELINE’ has AUC of 0.5.
As shown in Figures 8 and 9, the models using image fea-
tures (‘IMAGE’, ‘IMAGE(FC7)’, ‘IMAGE(gist)’, and ‘IM-
AGE(color)’) perform slightly better than ‘BASELINE’, but
their AUC's are mostly lower than 0.55, implying that us-
ing image features alone is not as effective in predicting
popular or viral image cascades. In other words, popular or
viral image cascades are not predictable using only image
features. Note that high-level features (‘IMAGE’ and ‘IM-
AGE(FC7)’) performs slightly better than low-level features
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Figure 8: Prediction results on popular cascades using image
features.

(‘IMAGE(gist)’ and ‘IMAGE(color)’). We find that ‘IM-
AGE’ mostly performs better than other image feature sets,
hence we only consider ‘IMAGE’ features hereafter.

To identify the specific features that contribute most to-
wards predicting top 1% popular and viral cascades based
on ‘IMAGE’ features, respectively, we apply the Chi-
squared (x?) statistic evaluation (Liu and Setiono 1995) to
all of the ‘IMAGE’ features, which results in assigning a
score to each feature. We rank the features according to
the x? values. The top 3 features for predicting top 1%
popular cascades are ‘menu’, ‘brassiere’, and ‘binoculars’,
while those for predicting top 1% viral cascades are ‘menu’,
‘binoculars’, and ‘plate’.

Predictive power of image meta and pinner
information

We next investigate whether image meta and/or poster (or
pinner) information is useful in predicting popular or viral
image cascades. For the meta information of a pin (referred
to as ‘META’), we consider the following features: (i) cat-
egory popularity (i.e., number of pins) where the give pin
belongs, (ii) source popularity (i.e., number of pins) where
the given pin comes, (iii) maliciousness of the pin, and (iv)
revealed sentiment from the pin’s title and description. For
detecting the maliciousness of a pin, we submit the source
(i.e., URL where the pin comes) of the pin to a commercial
URL scanner, VirusTotal (VirusTotal 2016), which scans a
submitted URL over a corpus of over 60 website scanning
engines. We identify each source as malicious if two or more
security engines indicate it malicious. To calculate the re-
vealed sentiment of a pin, we use LIWC (Linguistic Inquiry
and Word Count), which counts words into psychologically
meaningful categories (Pennebaker, Mehl, and Niederhoffer
2003). We calculate the positive, negative, cognitive, and so-
cial scores of each pin’s title and description using LIWC.
We also consider the following characteristics of a pinner
(referred to as ‘PINNER’): (i) number of pins the pinner has,
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Figure 9: Prediction results on viral cascades using image
features.

(i1) number of followers who follow the pinner, (iii) number
of followees the pinner follows, (iv) number of likes the pin-
ner likes, (v) number of boards the pinner has, (vi) number of
categories the pinner has, and (vii) category entropy of the
pinner. A category entropy quantifies how a user’s interest
(pinning/repinning) is distributed across multiple categories.
We calculate the category entropy of user u as follows:

Cu
Hcategory (u) = - Zp?ln(p};) (2)
=1

where C, is the number of categories the user v has, and p}'
is the portion of pins/repins in the category ¢ by u.

Figures 10 and 11 show the prediction results on popu-
lar and viral cascades, respectively, using image meta and/or
pinner information. To investigate whether there is a syn-
ergy among different feature sets, we also consider (i) image
and image meta features (‘IMAGE+META), (ii) image and
pinner features (‘IMAGE+PINNER’), (iii) image meta and
pinner features (‘META+PINNER’), and (iv) image, image
meta, and pinner features (‘IMAGE+META+PINNER”).

As shown in Figures 10 and 11, ‘META’ and ‘PINNER’
performs better than ‘BASELINE’, meaning that meta in-
formation of an image as well as its poster’s information are
useful in predicting both popular and viral image cascades.
The image meta information shows a stronger predictive
power than pinner’s information in predicting popular im-
age cascades, which implies that information about the im-
age is more important than information of a user who posts
the image. On the other hand, image meta information per-
forms slightly better (or similarly) than pinner’s information
in predicting viral image cascades, implying that viral im-
age cascades are similarly associated with image meta and
pinner information. If we consider both of image meta and
pinner features, i.e., ‘META+PINNER’, it performs better
than others in Figures 10 and 11, which signifies that image
meta and pinner features are complementary to each other.
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Figure 10: Prediction results on popular cascades using im-
age meta and/or pinner information.

Note that the AUC' of ‘META+PINNER’ for predicting the
top 0.1% popular cascades is 0.76, which is much higher
than ‘BASELINE’. The top 3 features (ranked by the y?2
values) in ‘META’ for predicting top 1% popular cascades
are ‘social sentiment score’, ‘positive sentiment score’, and
‘maliciousness’, while those for predicting top 1% viral cas-
cades are ‘maliciousness’, ‘source popularity’, and ‘cogni-
tive sentiment score’. On the other hand, the top 3 features
in ‘PINNER’ for predicting top 1% popular cascades are
‘number of followers’, ‘social sentiment score’, and ‘num-
ber of categories’, while those for predicting top 1% vi-
ral cascades are ‘cognitive sentiment score’, ‘negative sen-
timent score’, and ‘positive sentiment score’. Interestingly,
combining IMAGE’ features (e.g., IMAGE+META’, ‘IM-
AGE+PINNER’, ‘IMAGE+META+PINNER’) do not con-
tribute much in predicting popular and viral image cascades.
It is worth noting that prediction performance of popular
cascades is higher than that of viral cascades, which signi-
fies that image meta and pinner information are more useful
in predicting popular image cascades than viral image cas-
cades.

Predictive power of initial propagation pattern

We finally examine whether the observation of initial im-
age propagation pattern helps to predict popular or viral im-
age cascades. That is, we observe the first k& repins of an
image cascade, and predict whether the cascade will be-
long to the top popular or viral cascades in the future. Note
that higher k£ shows better performance, but we only report
k = 5 here since our goal is to observe the propagation pat-
tern in the very early stage of a cascade. We consider two
perspectives of initial propagation of a cascade: (i) how the
cascade initially looks like (referred to as ‘STRUCT’) and
(ii) who are the early adopters in the cascade (referred to as
‘ADOPTER”).
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The ‘STRUCT” features consist of (i) max width, (ii) max
depth, (iii) wiener index based on Equation 1 (when N = 6),
(iv) width entropy quantifies how the distribution of widths
in a cascade is even or skewed (calculated similarly with
Equation 2), (v) inter-repin times for the five repins, and (vi)
positive, negative, cognitive, and social sentiment scores for
each repin’s description using LIWC. The ‘ADOPTER’ con-
sists of each repinner’s following characteristics: (i) number
of pins the repinner has, (ii) number of followers who follow
the repinner, (iii) number of followees the repinner follows,
(iv) number of likes the repinner likes, (v) number of boards
the repinner has, (vi) number of categories the repinner has,
(vii) category entropy of the repinner (Equation 2), and (viii)
positive, negative, cognitive, and social sentiment scores of
the repinner’s introduction text.

Figures 12 and 13 show the prediction results on popu-
lar and viral cascades, respectively, using the initial prop-
agation pattern. To investigate whether there is a syn-
ergy among different feature sets, we also consider (i)
‘STRUCT+ADOPTER’, (ii) ‘STRUCT+META’, and (iii)
‘ALL’ that includes all the features. As shown in Figures
12 and 13, ‘STRUCT’ performs better than ‘ADOPTER’,
meaning that the initial propagation shape of the cascade is
stronger predictor than the information of users who initially
participate in the cascade. The ‘STRUCT+ADOPTER’ per-
forms worse than ‘STRUCT’, meaning that ‘ADOPTER’
may not contribute much in predicting popular and viral
image cascades. Note that the top 3 features (ranked by
the x2 values) in ‘STRUCT’ for predicting top 1% pop-
ular cascades are ‘wiener index’, ‘social sentiment score’,
and ‘positive sentiment score’, while those for predicting
top 1% viral cascades are ‘width entropy’, ‘max depth’,
and ‘repin time’. On the other hand, if we combine the
‘STRUCT’ and ‘META’ features, it performs better than oth-
ers in Figures 12 and 13, which implies that ‘META’ and
‘STRUCT’ features are complementary to each other. Note
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Figure 12: Prediction results on popular cascades using ini-
tial propagation pattern.

that ‘STRUCT+META’ are not mostly about ‘human fac-
tors’ but more about ‘content factors’, implying that content
factors are important predictors in predicting popular and vi-
ral image cascades.

In summary, ‘META+PINNER’ is the strongest pre-
dictor in predicting popular image cascades while
‘STRUCT+META’ is the strongest predictor in pre-
dicting viral image cascades. This implies that we can
forecast popular image cascades using the image meta and
pinner information at the moment when an image is posted.
Also, if we observe initial propagation pattern of an image
cascade, we can predict whether the image goes viral based
on its meta information and initial propagation pattern. It is
worth to note that ‘META’ information is commonly useful
for predicting both popular and viral image cascades.

Conclusion

This paper studied the prediction of popular or viral image
cascades in Pinterest. To predict popular or viral image cas-
cades, we considered the following feature sets: (i) image
features, (ii) image meta and poster’s information, and (iii)
initial propagation patterns. We summarize three main con-
tributions as follows. First, we found that image meta and
poster’s information are strong predictors for predicting pop-
ular image cascades, which implies that image popularity is
predictable using the image meta and pinner information at
the moment when the image is posted. Second, initial prop-
agation pattern of a cascade and image meta information are
useful for predicting whether the cascade will go viral in
the future. Third, we revealed that using deep image fea-
tures alone is not as effective in predicting popular or viral
cascades, which suggests that a more effective image repre-
sentation is needed to capture subtle visual traits exhibited
in popular or viral images. We believe this work can provide
an important insight for content providers, OSN operators,
and marketers.
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Figure 13: Prediction results on viral cascades using initial
propagation pattern.
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