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Abstract

An active line of research has used on-line data to study the
ways in which discrete units of information—including mes-
sages, photos, product recommendations, group invitations—
spread through social networks. There is relatively little un-
derstanding, however, of how on-line data might help in
studying the diffusion of more complex practices—roughly,
routines or styles of work that are generally handed down
from one person to another through collaboration or mentor-
ship. In this work, we propose a framework together with a
novel type of data analysis that seeks to study the spread of
such practices by tracking their syntactic signatures in large
document collections. Central to this framework is the no-
tion of an inheritance graph that represents how people pass
the practice on to others through collaboration. Our analysis
of these inheritance graphs demonstrates that we can trace a
significant number of practices over long time-spans, and we
show that the structure of these graphs can help in predicting
the longevity of collaborations within a field, as well as the
fitness of the practices themselves.

Introduction

On-line domains have provided a rich collection of settings
in which to observe how new ideas and innovations spread
through social networks. A growing line of research has dis-
covered principles for both the local mechanisms and global
properties involved in the spread of pieces of information
such as messages, quotes, links, news stories, and photos
(Adar et al. 2004; Gruhl et al. 2004; Leskovec et al. 2007;
Liben-Nowell and Kleinberg 2008; Leskovec, Backstrom,
and Kleinberg 2009; Adamic, Lento, and Fiore 2012; Cheng
et al. 2014; Goel et al. 2016; Barbieri, Bonchi, and Manco
2013), the diffusion of new products through viral marketing
(Leskovec, Adamic, and Huberman 2007), and the cascad-
ing recruitment to on-line groups (Backstrom et al. 2006;
Anderson et al. 2015).

A common feature in these approaches has been to trace
some discrete “unit of transmission” that can be feasibly
tracked through the underlying system: a piece of text, a
link, a product, or membership in a group. This is natural:
the power of on-line data for analyzing diffusion comes in
part through the large scale and fine-grained resolution with
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which we can observe things flowing through a network;
therefore, to harness this power it is crucial for those things
to be algorithmically recognizable and trackable. As a result,
certain types of social diffusion have been particularly dif-
ficult to approach using on-line data—notably, a broad set
of cascading behaviors that we could refer to as practices,
which are a collection of styles or routines within a commu-
nity that are passed down between people over many years,
often through direct collaboration, mentorship or instruc-
tion. Particular stylistic elements involved in writing soft-
ware, or performing music, or playing football, might all be
examples of such practices in their respective fields. While
complex practices are one of the primary modes studied by
qualitative research in diffusion (Strang and Soule 1998), the
challenge for large-scale quantitative analysis has been both
to recognize when someone has begun to adopt a practice,
and also to identify how it was transmitted to them.

Tracking the Spread of Practices. A natural approach to
tracking the spread of a practice is to find a concretely rec-
ognizable “tag” that tends to travel with the practice as it
is handed down from one person to another, rendering its
use and transmission easily visible. A beautiful instance of
this strategy was carried out by David Kaiser in his analysis
of the use of Feynman diagrams in physics (Kaiser 2005).
Feynman diagrams were proposed by Richard Feynman as a
way to organize complex physics calculations, and due to
the technical sophistication involved in their use, the ini-
tial spread of Feynman diagrams within the physics com-
munity proceeded in much the style described above, with
young researchers adopting the practice through collabora-
tion with colleagues who had already used it. In contrast to
many comparable practices, Feynman diagrams had a dis-
tinctive syntactic format that made it easy to tell when they
were being used. As a result, their spread could be very ac-
curately tracked through the physics literature of the mid-
20th-century. The result, in Kaiser’s analysis, was a detailed
map of how an idea spread through the field via networks of
mentorship. As he writes:

The story of the spread of Feynman diagrams reveals the work
required to craft both research tools and the tool users who
will put them to work. The great majority of physicists who
used the diagrams during the decade after their introduction
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did so only after working closely with a member of the dia-
grammatic network. Postdocs circulated through the Institute
for Advanced Study, participating in intense study sessions
and collaborative calculations while there. Then they took
jobs throughout the United States (and elsewhere) and be-
gan to drill their own students in how to use the diagrams.
To an overwhelming degree, physicists who remained outside
this rapidly expanding network did not pick up the diagrams
for their research. Personal contact and individual mentor-
ing remained the diagrams’ predominant means of circula-
tion even years after explicit instructions for the diagrams’
use had been in print. (Kaiser 2005)

The Feynman diagram thus functions in two roles in this
analysis: as an important technical innovation, and as a
“tracking device” for mapping pathways of mentorship and
collaboration. If we want to bring this idea to a setting with
large-scale data, we must deal with the following question:
where can we find a rich collection of such tracking devices
with which to perform this type of analysis? We do not ex-
pect most objects in this collection to be technical advances
comparable to the Feynman diagram, but we need a large
supply of them, and we need to be able to mechanically rec-
ognize both their use and their spread.

The present work: Diffusion of practices in academic
writing. In this paper, we describe a framework for track-
ing the spread of practices as they are passed down through
networks of collaboration, and we demonstrate a number
of ways in which our analysis has predictive value for
the underlying system. We make use of a setting where
practices have the recognizability that we need—a novel
dataset of latex macros in the e-print arXiv recently devel-
oped by Rotabi et al (Rotabi, Danescu-Niculescu-Mizil, and
Kleinberg 2017). While the earlier work that developed this
dataset used macros for other purposes (specifically, treating
macros names as instances of naming conventions), macros
in our context have a number of the key properties we need.
First, a latex macro is something whose presence can be
tracked as it spreads through the papers in the arXiv collec-
tion; we can thus see when an author first uses it, and when
their co-authors use it. Second, while an arbitrary macro
clearly does not correspond in general to an important tech-
nical innovation, a sufficiently complex macro often does
encode some non-trivial technical shorthand within a con-
crete sub-field, and hence its use signifies the corresponding
use of some technical practice within the field. And finally,
there are several hundred thousand latex macros in papers
on the arXiv, and so we have the ability to track a huge num-
ber of such diffusion events, and to make comparative state-
ments about their properties.

If we want to use macros to trace the diffusion of practices
between collaborators, we first need to establish whether
macros indeed spread via “inheritance” from co-authors: as
with the Feynman diagram, can most of the initial set of uses
of a macro trace a path back to a single early use through a
chain of co-authorship? We find that this is true for a signif-
icant fraction of macros, by using an inheritance graph for
each macro that records how each author’s first use can be

imputed to a co-authorship with an earlier user of the macro.
Specifically, for each macro we can build a graph on the set
of authors who have used it, and we include a directed in-
heritance edge from author u to author v if (i) u used the
macro before v did, and (ii) v’s first use of the macro is in a
paper with u. We find that many of these inheritance graphs
contain giant directed subtrees rooted at a single early use of
the macro, indicating that a significant fraction of the users
of the macro can indeed trace a direct path back to a single
shared early ancestor under this inheritance relation.

These structures represent interesting instances of diffu-
sion for several reasons. First, they are “organic” in a way
that the spread of many on-line memes are not: when we
study on-line diffusion in settings where a user’s exposure
to content is governed by a recommendation system or rank-
ing algorithm, there is the added complexity that part of the
diffusion process is being guided by the internals of the algo-
rithms underlying the system. With macros in arXiv papers,
on the other hand, while authors may use automated tools
to format the source of their papers, there is relatively little
influence from automated recommendations or rankings in
the actual decisions to include specific macros. Second, we
are studying processes here that play out over years and even
decades; among other findings about the structure of our in-
heritance graphs, we observe that their diameters can take
multiple years to increase even by one hop. We are thus ob-
serving effects that are taking place over multiple academic
generations.

The present work: Estimating fitness. If these inheri-
tance graphs—by tracing simple syntactic signatures in the
source files of papers—are telling us something about the
spread of practices through the underlying community, then
their structural properties may contain latent signals about
the outcomes of authors, topics, and relationships. In the lat-
ter part of the paper, we show that this is the case, by identi-
fying such signals built from the inheritance structures, and
showing that they have predictive value.

As one instance, suppose we wish to estimate the future
longevity of a collaboration between two authors u and v—
that is, controlling for the number of papers they have writ-
ten thus far, we ask how many papers they will write in the
future. If (u, v) is an edge of the inheritance graph for some
macro, does this help in performing such an estimate? One
might posit that since this edge represents something con-
crete that u passed on to v in their collaboration, we should
increase our estimate of the strength of the relationship and
hence its future longevity. This intuition turns out not to be
correct on its own: the existence of a (u, v) edge by itself
doesn’t significantly modify the estimate. However, we find
that something close to this intuition does apply. First, we
note that since a (u, v) edge only means that a macro used by
u showed up subsequently in a paper that u co-authored with
v, it is providing only very weak information about v’s role
in the interaction. We would have a stronger signal if (u, v)
were an internal edge of some inheritance graph, meaning
that v has at least one outgoing edge; in this case, v was part
of a paper that subsequently passed the macro on to a third
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Figure 1: Sample subsets of BFS trees for three different macros. At each depth we show the date that the highlighted node uses
the macro for the first time; the highlighted edge is where the macro is passed on to a node at the next level of the tree.

party w. We find that if (u, v) is an internal edge of an inheri-
tance graph, this does in fact provide a non-trivial predictive
signal for increased longevity of the u-v collaboration; in-
formally, it is not enough that u passed something on to v,
but that v subsequently was part of the process of passing it
on to a third party w. In fact, we find something more: when
(u, v) is an edge that is not internal (so that u’s passing on
of the macro “ends” at v), it in fact provides a weak predic-
tive signal that the collaboration will actually have slightly
lower longevity than an arbitrary collaboration between two
co-authors (again controlling for the number of joint papers
up to the point of observation).

In what follows, we formalize this analysis and its conclu-
sion. We also develop analyses through which macro inher-
itance can be used to help estimate the future longevity of
an author—how many papers will they write in the future?
—and the fitness of an individual macro itself—how many
authors will use it in the future?

The remainder of the paper is organized into three main
sections. We first briefly describe the structure of the data
and how it is used in our analyses. We then formally define
the inheritance graphs and survey some of their basic prop-
erties. Finally, we analyze the relation between these inheri-
tance structures and the longevity of co-authorships, authors,
and macros.

Data Description

The dataset we study contains the macros used in over 1
million papers submitted to the e-print arXiv from its in-
ception in 1991 through November 2015. The arXiv is a
repository of scientific pre-prints in different formats, pri-
marily in LATEX. Macros have two major components, the
name and the body. Whenever the author uses \name the
LATEXcompiler replaces it with the body and compiles the
text. In our study the body serves as the “tracking device”
discussed in the introduction, for studying how a macro is
passed between collaborators over time. In general, when we
refer to a “macro,” we mean a macro body unless specified
otherwise. For our study we use macro bodies that have
length greater than 20 characters, and which have been used
by at least 30 different authors. We apply the length filter
so that we can focus on macros that are distinctive enough
that we expect them to move primarily through copying
and transmission, rather than independent invention. Further
information can be found in (Rotabi, Danescu-Niculescu-
Mizil, and Kleinberg 2017), which introduces this dataset.

Method

Inheritance Graphs

Defining inheritance graphs. We begin by formally
defining the inheritance graphs described in the introduc-
tion. For each macro m we create a graph (Vm, Em) where
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Figure 2: (a) The CDF for the ratio of the largest reachable set to the number of nodes in the graph. (b) The average number of
months that pass from the date of appearance of the root paper to the date of appearance of nodes at a given depth, grouped by
the maximum depth of the tree. (c) The average number of nodes in each depth, for the largest reachable set for each macro.

Vm is the set of authors who have used macro m in at least
one of their papers. We add a directed edge (u, v) to the
edge set Em if there is a paper that uses m with u and v as
co-authors, such that (i) this is v’s first use of m, but (ii) u
has used m in at least one previous paper. This is the formal
sense in which m is being passed from u to v: v’s first use
of m occurs in collaboration with u, a prior user of m. Note
that there can be multiple edges leading into a single node.
For instance take a paper with authors u, v and z that uses
macro m. Assume that u and v have used m before but z
is using it for the first time. Then both the edges (u, z) and
(v, z) are in the graph.

Now, if all authors of a paper p are using m for the first
time, then the nodes corresponding to these authors will not
have any incoming edges. (Nodes of this form are the only
ones with no incoming edges.) For each such paper p, we
replace the nodes corresponding to the authors of p with a
single supernode corresponding to p. We will refer to this
as a source node, and to the authors of p as source authors.
The resulting graph, with supernodes for papers where no
author has used the macro before, and with author nodes
for all others, is the inheritance graph Gm for the macro m.
Now that because the process of inheritance as defined goes
forward in time, Gm is necessarily a directed acyclic graph
(DAG).

Using these graphs we should be able to trace back a
macro’s life to its inception and to the authors who first
used it. Note that there might be multiple source papers,
and hence several groups of co-authors who independently
serve as “origins” for the macro. For portions of the analysis
where we are interested in looking at the number of authors
who all follow from a single source paper, we will identify
the source paper that has directed paths to the largest num-
ber of nodes in the graph Gm. We will refer to this as the
seed paper, and to the set of authors of this paper as the seed
authors. (Note that the seed paper might not be the chrono-
logically earliest paper to use the macro m; it is simply the
one that can reach the most other nodes.)

Analyzing the inheritance graphs. Our dataset contains
several hundred thousand different macros, and as a first

step we analyze the properties of the graphs Gm that
they produce. In Figure 1 we take three sample macros
and show subsets of the breadth-first search (BFS) trees
that are obtained starting from the seed paper. For ex-
ample in Figure 1(a) the graph is created on the macro,
\hbox{$\rm\thinspace L {\odot}$} and the seed
node is the paper astroph/9405052 with authors Xavier Bar-
cons and Maria Teresa Ceballos. The seed paper used this
macro in 1994, and some of the nodes at depth 6 in the BFS
tree are from 2014—a 20-year time span to reach a depth
of 6 in the cascading adoption of the macro. This reinforces
the sense in which we are studying cascades that play out on
a multi-generational time scale of decades, rather than the
time scale of minutes or hours that characterizes many on-
line cascades. The seed node of Figure 1(b) is the paper hep-
th/0106008 with authors Selena Ng and Malcolm Perry, and
the seed node of Figure 1(c) is the paper hep-ph/9302234
with authors Jose R Lopez et al. Since all other nodes in
these BFS trees have incoming edges, they all correspond to
individual authors who enter the graph at their first adoption
of the macro, whereas the root node corresponds to a single
paper and to the contracted set of authors of this paper.

We now consider some of the basic properties of these in-
heritance graphs. First, each source paper has a reachable set
in Gm—the set of nodes it can reach by directed paths—and
recall that we defined the seed paper to be the source paper
with the largest reachable set. In Figure 2(a) we observe that
a non-trivial fraction of the macros have a seed paper whose
reachable set is a large fraction of all the authors who even-
tually adopt the macro. This provides a first concrete sense
in which the inheritance patterns contained in Gm represent
a global structure that spans much of the use of the macro
m.

In Figure 2(b) and 2(c) we show the properties of the
graphs and nodes grouped based on the maximum depth of
the BFS tree and the depth of the individual nodes. Figure
2(b) shows the average time it takes for the macro to get
from the root to the nodes in each depth grouped by the
maximum depth of the tree. This figure shows how these cas-
cades can take multiple years to add a single level of depth
to the three, and a decade or more to reach their eventual
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maximum depth. In Figure 2(c) we show the median width
(number of nodes) of trees at each depth, again grouped by
the maximum depth of the tree. Based on this plot we see
that most of these trees have are narrow in their top and bot-
tom layers, with fewer nodes, and are wider in the middle.

The plots thus far have been concerned with the global
structure of the inheritance graph and its shortest paths as
represented by breadth-first search trees. Now we take a
deeper look at the properties of individual edges in the
graph. For this we will first define the notions of local and
global experience, and we will use these two terms through-
out the paper. At time t the global experience of an author
is the number of papers that author has written. At time t
the local experience of an author is defined with respect to a
macro m and is the number of papers up to time t in which
the author has used m. This is a version of the notion of local
experience relative to an arbitrary term, as used in (Rotabi
and Kleinberg 2016).

Figure 3: The Cumulative Distribution Function of the
global experience difference between the source and desti-
nation of an edge.

Now, consider an edge (u, v) in the inheritance graph for
a macro m. At the moment when the macro is passed from
u to v, the local experience of v with respect to m is 0 by
definition, and the local experience of u with respect to m
is greater than 0. What do we expect about the global expe-
rience of these two nodes? To the extent that passing on a
macro is a form of “teaching” from one person to another,
we may expect the global experience of u (the “teacher”)
to be higher than the global experience of v (the “learner”).
On the other hand, there is a history of sociological work
in the diffusion of innovations suggesting that innovations
often originate with outsiders who come from the periph-
ery of the system (Danescu-Niculescu-Mizil et al. 2013;
McLaughlin 1990; Simmel 1908; Valente 2012), which
would be consistent with v having higher global experi-
ence than u. Figure 3 addresses this question by showing
the cumulative distribution of the global experience differ-
ence between u and v. The median experience difference is

clearly shifted in the positive direction, consistent with the
“teacher” node u having the higher global experience in gen-
eral.

Fitness

Now that we have some insight into how the information
diffusion process unfolds in our data, we will see if these
inheritance structures can provide predictive signal for the
outcomes of co-authorships, authors, and the macros them-
selves. In all cases we will think in terms of the fitness of the
object in question—the extent to which it survives for a long
period of time and/or produces many descendants.

Fitness of collaborations

We start by considering the fitness of collaborations—given
two authors u and v who have written a certain number of
papers up to a given point in time, or perhaps who have
not yet collaborated, can we use anything in the structure
of macro inheritance to help predict how many more papers
they will write in the future?

A natural hypothesis is that if v inherits macros from u,
then this indicates a certain strength to the relationship (fol-
lowing the teacher-learner intuition above), and this may be
predictive of a longer future history of collaboration. To ex-
amine this hypothesis, we perform the following computa-
tional test as a controlled paired comparison. We find pairs
of co-authorships u-v and u′-v′ with properties that (i) nei-
ther pair has collaborated before, (ii) their first co-authorship
happens in the same month, (iii) (u, v) is an edge in an in-
heritance graph, and (iv) (u′, v′) is not. (Note that since we
are looking at pairs of co-authorships, we are looking at four
authors in total for each instance: u, v, u′, and v′.) Now we
can ask, aggregating over many such pairs of co-authorships,
whether there is a significant difference in the future number
of papers that these pairs of authors write together. (Since
their initial co-authorships took place in the same month,
they have a comparable future time span in which to write
further papers.)

In fact, we find that there isn’t a significant difference,
at odds with our initial hypothesis about macro inheritance.
However, there is more going on in the inheritance struc-
ture that we can take advantage of. We divide the edges of
the inheritance graphs into two sets: internal edges (u, v),
where the node v has at least one outgoing edge, and ter-
minal edges (u, v), where the node v has no outgoing edge.
Internal edges add extra structural information, since they
indicate that not only u passed the macro m to v, but that v
was then part of the process of passing m in a collaboration
subsequent to the one in which they originally inherited it.

We find that the fitness of u-v co-authorships is signif-
icantly higher when (u, v) forms an internal edge, in con-
trast to the lack of effect when (u, v) is an arbitrary edge.
We evaluate this using an extension of our previous paired
comparison: in conditions (i)-(iv) above for forming pairs of
co-authorships, we replace conditions (iii) and (iv) with the
following:

• Internal edge vs. arbitrary co-authorship: (iii) (u, v) is an
internal edge and (iv) (u′, v′) is not an edge.
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Figure 4: Comparison of three different co-authorship set-
tings through different years in the data. The histograms
show the win percentage of the first of the two listed cat-
egories; e.g., the red bar indicates the percentage of all com-
parisons between co-authors with internal edges and co-
authors with terminal edges in which the former end up writ-
ing more papers. The horizontal red line indicates the 50%
baseline.

• Internal edge vs. terminal edge: (iii) (u, v) is an internal
edge and (iv) (u′, v′) is a terminal edge.

• Terminal edge vs. arbitrary co-authorship: (iii) (u, v) is a
terminal edge and (iv) (u′, v′) is not an edge.

In each of these three settings, we look at the fraction of
times that one of the categories produced the co-authorship
with more future papers. If we were to draw two co-
authorships uniformly at random over all possible co-
authorships (without regard to the type of the edge), there is
a 50% chance that the first would produce the higher number
of future papers. Thus, in each of the three comparisons in
the list above, it is natural to compare the fraction of times
that one of the categories wins the comparison to this 50%
baseline. Figure 4 shows these results, grouped into two-
year bins: we find that internal edges win a large fraction
of the comparisons against each of the other two categories,
whereas there is little difference between terminal edges and
arbitrary co-authorships.

Fitness of authors

We now consider the fitness of the authors themselves; we
will show that the way authors use macros can provide a
weak but non-trivial signal about how many papers they will
eventually write, a quantity that we refer to as the fitness of
the author.

The particular property we consider is a type of “stabil-
ity” in the usage of the macro. For a given macro body, there
are many possible names that can be used for it, and au-
thors differ in the extent to which their papers preserve a
relatively stable choice of name for the same macro body:
some almost always use the same name, while for other

authors the name changes frequently. (For example, an au-
thor who almost always uses the name \vbar for the macro
body $\overline{v}$, versus an author whose papers al-
ternate between using \vbar, \barv, \vb, \vbarsymb,
and others, all for this same macro body.) We could think
of the first type of author as exerting more control over the
source of the paper than the second type of author, and this
distinction between the two types of authors — based on
their behavior with respect to macros — naturally raises the
question whether the stability of macro names could provide
predictive value for author fitness.

Here is how we formally define this measure. For a par-
ticular author a, we say they change the name of macro m
on paper p if the previous time they used m’s macro body,
the name was different. Then, for a set of authors A and a
set of macros M , we define f(A,M, x) to be the probabil-
ity of an author in A changing the name of a macro in M
the xth time they use it. We plot f(A,M, x) for x ∈ [0, 40]
and different groups of authors and macros. In particular we
look at groups of authors that have more than θ papers in
the entire corpus. We set θ to be 40, 50, . . . , 130 and we let
M range over three possible sets: the set of all macros; the
set of wide-spread macros (more than 250 authors use the
macro body); and the set of narrow-spread macros (at least
20 authors used it and at most 250).

One source of variability in this analysis is that even once
we fix the minimum number of papers θ written by an au-
thor a, as well as the occurrence x of the macro m that we
are considering, it is still possible that author a’s xth use of
the macro might come toward the end of their professional
lifetime or early in their professional lifetime. (It must come
at the xth paper they write or later, since they need time to
have used the macro m a total of x times, but this is all we
know.) It is easy to believe that authors who use a macro
in their early life stages might exhibit different phenomena
from those who use it in a later life stage. Therefore, in ad-
dition to the measures defined so far, we also consider anal-
yses involving only the set of macro uses that come early in
the authors’ professional lifetime — specifically only macro
uses that happen in the first 40 papers.

The results for all these settings are shown in Figure 5:
the three possible sets of macros (all macros, wide-spread
macros, and narrow-spread macros); and for each of these
sets, we consider both the authors’ full lifetimes and just
their early life stages. In each case, the x-axis shows the
number of macro uses (i.e. the authors’ local experience with
respect to the macro), and the different curves represent au-
thors grouped by different values of the minimum number
of papers θ.

We note two things that are consistent across these plots.
First, the probability of a macro name change increases in
the number of times the author has used the macro; this is
consistent with findings about macro names as conventions
in the paper of Rotabi et al that introduced the arXiv macro
dataset (Rotabi, Danescu-Niculescu-Mizil, and Kleinberg
2017).

But we also find something else: that for groups of authors
with a larger number of minimum papers θ, the probability
of changing the macro name at usage x is smaller for ev-
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Figure 5: Each panel shows the probability an author
changes the name of a macro on their xth use of it. A sin-
gle curve in each plot shows the set of all authors with at
least θ papers, for θ equal to 40, 50, . . . , 130. Each row of
panels corresponds to a different set of macros: the first row
shows results for the set of all macros; the second for the
set of narrow-spread macros; and the third for the set of
wide-spread macros (as defined in the text). The left col-
umn of panels shows the analysis for each of these three
sets over the authors’ full professional lifetimes. The right
column of panels shows the analysis for each of these three
sets restricted to the authors’ early life stages (first 40 pa-
pers only). Thus, the panels are (a) full lifetimes, all macros;
(b) early life stages, all macros; (c) full lifetimes, narrow-
spread macros; (d) early life stages, narrow-spread macros;
(e) full lifetimes, wide-spread macros; (f) early life stages,
wide-spread macros.

ery x. This suggests that the macro name change probabil-
ity might be a signal with predictive value for author fitness
(which, again, we define as the number of papers the author
will eventually write).

To test this idea, we set up a prediction task as follows.
We take authors that have at least θ papers and among these
authors we take the ones whose fitness is either below the
20th percentile or above the 80th percentile. Table 1 shows
the values of these two percentiles for different values of θ.
We then see whether simply using the frequency with which
an author changes macro names can serve as a predictor for
this two-class problem: whether an author’s fitness is below

Papers revealed 20’th Percentile 80’th Percentile

10 13 38
20 25 58
30 36 73
40 47 87
50 58 99

Table 1: Global experience thresholds used in the author fit-
ness prediction tasks.

the 20th percentile or above the 80th percentile.
By using the frequency of macro name changes, we are

able to predict which of these two classes an author belongs
to with a performance that exceeds the random baseline of
50% by a small but significant amount. Figure 6 shows the
performance for different values of θ. We emphasize that
predicting an author’s fitness is a challenging task for which
one doesn’t expect strong performance even from rich fea-
ture sets; this makes it all the more striking that one can
obtain non-trivial performance from the frequency of macro
name changes, a very low-level property about the produc-
tion of the papers themselves. Moreover, the frequency of
macro name changes in fact produces better prediction per-
formance as θ increases than a number of more intuitively
natural structural features. In Figure 6, for example, we com-
pare its prediction performance to the feature consisting of
the author’s total number of co-authors. Similar results also
hold for other macro properties, including the total number
of macros used and the total number of distinct macro bodies
used.

Figure 6: The accuracy of predicting the number of publica-
tions of an author given the first few papers, as a function of
the number of initial papers analyzed. One curve performs
the prediction using the probability of macro name changes,
and for comparison the other performs the prediction using
the total number of co-authors.

Fitness of macros

Finally, we consider the fitness of the macros themselves.
We define the fitness of a macro to be the total number of
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authors who eventually use the macro body, and we investi-
gate which features provide predictive signal for the fitness
of a macro.

We set up a prediction task as follows. We first find all
macros that get adopted by at least k authors. Each of these
macros has a fitness (of size at least k), and we define σ(k)
to be the median of this multiset of fitnesses: of all macros
that reach at least k authors, half of them have a fitness of at
most σ(k), and half of them have a fitness of at least σ(k).
In table 2 we report σ(k) and the number of macro instances
for a subset of k.

k σ(k) Instances

40 98 49,415
80 156 30,107
120 242 20,119
160 340 14,662
200 437 11,794

Table 2: Summary of the macro fitness prediction dataset

We can thus use σ(k) to construct a balanced prediction
task, in the style of the cascade prediction analyses from
(Cheng et al. 2014). For a given macro that reaches at least
k authors, we observe all the information on the papers and
authors up to the point at which the kth author adopts the
macro, and the task is then to predict if this macro has fit-
ness at least σ(k). We learn a logistic regression model for
different values of k and report the accuracy in Figure 7 on
an 80-20 split.1

Figure 7: The accuracy of predicting how widely a macro
spreads, using different subsets of features.

We use the following features.
• Features related to the speed of the macro: the number

of papers that the macro needs in order to reach k
2 and k

distinct authors; and the number of months that the macro
needs in order to reach k

2 and k distinct authors.
1We can achieve a 1% to 4% better accuracy by using a non-

linear classifier such as decision trees, but we opt to use the more
interpretable model.

• Experience of the macro users: the average usage experi-
ence of the authors who adopted it.

• Structural features of the macro users: the local and global
clustering coefficients of the co-authorship graph on the
first k authors to use the macro.

• Structural features of the macro body: the length of the
macro body, the number of dollar signs in the macro
(generally used for mathematical notation), the number of
non-alphanumerical characters, and the maximum depth
of nested curly brackets.

In Figure 7 we show the prediction performance for dif-
ferent subsets of these features, as a function of k; note
that performance increases with increasing k. As observed
above, predicting macro fitness is a problem whose syntac-
tic form is closely analogous to the prediction of cascade
size for memes in social media (Cheng et al. 2014); given
this, and the fact that the spread of macros plays out over
so much longer time scales, and without the role of ranking
or recommendation algorithms, it is interesting to note the
similarities and contrasts in the prediction results. One of the
most intriguing contrasts is in the role of features relates to
speed: for cascade prediction in social media, the speed fea-
tures alone yielded performance almost matching that of the
full feature set, and significantly outperforming the set of all
non-speed features (Cheng et al. 2014). For our domain, on
the other hand, the speed features perform 5-10% worse than
the full feature set; they also perform worse for most values
of k than the set of all non-speed features. This suggests that
for macro fitness, the speed features are considerably less
powerful than they are in the social media context, indicat-
ing that there may be more to be gained from the synthesis
of a much broader set of features.

Conclusions

The spread of practices between collaborators is a challeng-
ing form of diffusion to track, since one needs to be able
to recognize when someone has begun using a practice, and
how it was conveyed to them. Motivated by work that used
the Feynman diagram as an easily recognizable “tracer” of
a complex practice (Kaiser 2005), we track the spread of
several hundred thousand macros through the papers of the
e-print arXiv over a 25-year period. Long macros often serve
as technical shorthand within a defined sub-field, and their
syntactic precision makes it easy to follow their flow through
the collaboration network. We construct inheritance graphs
showing how the macro spread between collaborators, and
we find that many macros have a clear “seed set” of au-
thors with the property that a large fraction of the subsequent
users of the macro can trace a direct inheritance path back to
this seed set. The resulting diffusion patterns are intriguing,
in that they span multiple academic generations and several
decades, and unlike cascades in social media, the spread of
these macros takes place with very little influence from rank-
ing or recommendation algorithms.

We also find that properties of macro inheritance provide
signals that are predictive for larger-scale properties that
have nothing to do with macros. These include predictions

208



about the longevity of collaborations and the number of pa-
pers that an author will write over their professional lifetime
on the arXiv.

Our work suggests a number of directions for future re-
search. First, it would be interesting to develop a compara-
tive analysis between the structure of our inheritance graphs
and the corresponding structures for the diffusion of on-line
memes. Are there recurring ways in which the two types
of diffusion patterns differ, and can these be connected to
differences in the underlying mechanisms? Second, we be-
lieve that there may well be additional links between inheri-
tance structures and prediction problems for the trajectory of
the overall system; for example, can we evaluate the future
course of larger sub-areas based on the inheritance patterns
that exhibit? And finally, identifying “tracers” for complex
practices is a style of analysis that can applied in other do-
mains as well; as we broaden the set of contexts in which we
can perform this type of analysis, we may better understand
the ways in which the flow of practices helps reinforce and
illuminate our understanding of large collaborative commu-
nities.
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