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Abstract 
A word embedding is a low-dimensional, dense and real-
valued vector representation of a word. Word embeddings 
have been used in many NLP tasks. They are usually gener-
ated from a large text corpus. The embedding of a word cap-
tures both its syntactic and semantic aspects. Tweets are 
short, noisy and have unique lexical and semantic features 
that are different from other types of text.   Therefore, it is 
necessary to have word embeddings learned specifically 
from tweets. In this paper, we present ten word embedding 
data sets. In addition to the data sets learned from just tweet 
data, we also built embedding sets from the general data and 
the combination of tweets with the general data. The general 
data consist of news articles, Wikipedia data and other web 
data.  These ten embedding models were learned from about 
400 million tweets and 7 billion words from the general 
text. In this paper, we also present two experiments demon-
strating how to use the data sets in some NLP tasks, such as 
tweet sentiment analysis and tweet topic classification tasks. 

1. Introduction  
Distributed representations of words are also called word 
embeddings or word vectors. They help learning algo-
rithms achieve better performance in natural language pro-
cessing (NLP) related tasks by grouping similar words 
together, and have been used in lots of NLP applications, 
such as sentiment analysis (Socher et al. 2013; Mass et al.  
2014; Tang et al. 2014, Li et al. 2016c), text classification 
(Matt 2015; Li et al. 2016a), and recommendation (Li et al. 
2016b). 

Traditional bag-of-words and bag-of-n-grams hardly 
capture the semantics of words, or the distances between 
words. This means that words “walk,” “run” and “eat” are 
equally distant in spite of the fact that “walk” should be 
closer to “run” than “eat” semantically. Based on word 
embeddings, “walk” and “run” will be very close to each 
other. In this study, the word embedding representation 
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model is computed using a neural network, and generated 
from a large corpus – billions of words – without supervi-
sion. The learned vectors explicitly encode many linguistic 
regularities and patterns, and many of these patterns can be 
represented as linear translations. For example, the result 
of a vector calculation v(“Beijing”) – v(“China”) + 
v(“France”) is closer to v(“Paris”) than any other word 
vector. 

Tweets are noisy, short and have different features from 
other types of text. Because of the advantages of applying 
word embeddings in NLP tasks, and the uniqueness of 
tweet text, we think there is a need to have word embed-
dings learned specifically from tweets (TweetData).  
Tweets cover various topics, and spam is prevalent in tweet 
corpora.  In addition to spam, some tweets are semantically 
incoherent or nonsensical, contain nothing but profanity, 
and are focused on daily chitchat or advertisement, etc. We 
consider both spam and such tweets with no substantial 
content as “spam” (or “noise”).  Vector models built on 
these types of tweets will bring lots of noise to some appli-
cations. To build vector models without using spam tweets, 
we use a spam filter to remove the spam tweets. But on the 
other hand, some applications may need embeddings gen-
erated from all tweets, including the regular tweets and 
spam tweets. To build accurate embedding models, another 
question to address is whether to include phrases or not. 
Here a phrase means a multi-word term. An embedding 
model (or data set) for just words is much smaller than that 
for both words and phrases, and it will be more efficient 
for some applications that only need embeddings for 
words. In this study, we use a data-driven approach to 
identify phrases. To accommodate various applications and 
use cases, we generated four embedding sets using just 
TweetData, which are the four combinations of 
with/without spam tweets and with/without phrases 

In some cases, such as the applications that need to work 
with both tweets and regular text, we may need word em-
beddings that are trained on both TweetData and general 
text data (GeneralData). Therefore, we also built four em-
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bedding data sets that were learned from the training data 
that combine TweetData and GeneralData. These four em-
bedding sets are also from the combinations of 
with/without spam tweets and including phrases or not. In 
addition to these eight data sets, two data sets (with and 
without phrases) that are built from just GeneralData are 
also provided.  Overall, ten word embedding data sets are 
presented in this paper. 

The major contributions of this paper are: 
- We publish ten word embedding data sets learned from 

about 400 million tweets and 7 billion words from gen-
eral data. They can be used in tasks involving social me-
dia data, especially tweets, and other types of textual da-
ta. Users can choose different embedding sets based on 
their use cases; they can also easily try all of them to see 
which one provides the best performance for their appli-
cation. 

- We also use two experiments to demonstrate how to use 
these embeddings in practical applications. The second 
experiment also shows the performance difference of the 
tweet topic classification task on several data sets. 
In the following sections, we first describe the technolo-

gies used for generating the word embedding data sets, 
then we present the data collections and preprocessing 
steps for both TweetData and GeneralData, followed by 
the descriptions of the ten data sets, and finally we present 
the two experiments. 

2. Technologies Used for Building Word 
Embedding Data Sets 

In this section we describe three technologies used in 
building our word vector models: distributed word repre-
sentation, phrase identification and tweet spam filtering  

2.1 Distributed Word Representation 
A distributed language representation X consists of an em-
bedding for every vocabulary word in space S with dimen-
sion D, where D is the dimension of the latent representa-
tion space. The embeddings are learned to optimize an ob-
jective function defined on the original text, such as likeli-
hood for word occurrences. Word embedding models have 
been researched in previous studies (Collobert et al. 2011; 
Mikolov et al. 2013b; Socher et al. 2014). Collobert et al. 
(2011) introduce the C&W model to learn word embed-
dings based on the syntactic contexts of words. Another 
implementation is the word2vec model from (Mikolov et 
al. 2013a, 2013b). This model has two training options, 
Continuous Bag of Words and the Skip-gram model. The 
Skip-gram model is an efficient method for learning high-
quality distributed vector representations that capture a 
large number of precise syntactic and semantic word rela-

tionships. Based on previous studies and the experiments 
we conducted in other tasks, the Skip-gram model produc-
es better results, and here we briefly introduce it. 

The training objective of the Skip-gram model is to find 
word representations that are useful for predicting the sur-
rounding words in a sentence or a document. Given a se-
quence of training words W1, W2, W3,. . . ,WN , the Skip-
gram model aims to maximize the average log probability. 

 
where m is the size of the training context. A larger m will 
result in more training data and can lead to a higher accu-
racy, at the expense of the training time.   
 Generating word embeddings from text corpus is an 
unsupervised process. To get high quality embedding vec-
tors, a large amount of training data is necessary. After 
training, each word, including all hashtags in the case of 
tweet text, is represented by a real-valued vector. Usually 
the dimension size ranges from tens to hundreds. 

2.2 Phrase Identification 
Phrases usually convey more specific meanings than sin-
gle-term words. In many phrases, each has a meaning that 
is not a simple composition of the meanings of its individ-
ual words. Therefore, it is important to also learn vector 
representation for phrases, which are very useful in many 
applications.  To identify phrases from TweetData and 
GeneralData, we use the approach described in (Mikolov et 
al. 2013b). We first find words that appear frequently to-
gether, and infrequently in other contexts. For example, 
“New York City” is replaced by a unique token in the 
training data, while a bigram “I am” will remain un-
touched. The good thing about this approach is that we can 
form many reasonable phrases without greatly increasing 
the vocabulary size. In contrast, if we train the Skip-gram 
model using all n-grams, it would be very memory inten-
sive.  To identify phrases, a simple data-driven approach is 
used, where phrases are formed based on the unigram and 
bigram counts, using this scoring function: 

 
Where C (wi, wj) is the frequency of word wi and wj appear-
ing together.  is a discounting coefficient to prevent too 
many phrases consisting of infrequent words to be generat-
ed.  The bigrams with score above the chosen threshold are 
then used as phrases. Then the process is repeated 2-4 
passes over the training data with decreasing threshold 
value, so we can identify longer phrases consisting of sev-
eral words. The maximum length of a phrase is limited to 4 
words in our data sets.  Other parameters are set as the de-
fault values used in (Mikolov et al. 2013b), and the code is 
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available at: (https://code.google.com/p/word2vec). 

2.3 Tweet Spam Filter 
We use the tweet "spam" filtering algorithm described in 
(Liu et al. 2016) to identify spam tweets (or noise tweets). 
It is more than just getting rid of standard spam. There are 
a lot of tweets that carry little semantic substance, such as 
profanity, chit-chat, advertisements, etc. The goal of this 
spam filter is to mark all of these categories as spam, and 
only preserve the informative tweets that contain infor-
mation of some interest. The spam filtering algorithm is a 
hybrid approach that combines both rule-based and learn-
ing-based methods. Inspired by studies of Yardi et al. 
(2009) and Song et al. (2011), this approach uses features 
of follower-to-friend relationship, tweet publication fre-
quency, and other indicators to detect standard spam. The 
profanity and advertisement can be largely removed using 
keyword lists. The chit-chat is identified by a language 
model trained with conversational SMS messages. These 
steps can help us chop off a significant amount of unsub-
stantial tweets. We are able to obtain a set of informative 
tweets after these filtering steps. We basically use the fol-
lowing two steps: 

Spam & Advertisement Filtering: The metadata of each 
tweet contains detailed information about the author's pro-
file and the tweet's content. Given that Twitter has already 
prevented spam with harmful URLs (Thomas et al. 2011), 
we only concentrate on signals from user profiles and 
tweet content. Since our spam and advertisement filtering 
algorithms share the same strategy, we combine their in-
troduction here. We followed the ideas from DataSift Inc. 
(http://dev.datasift.com/docs/platform/csdl) to design a set 
of practical filtering rules (see examples below). To avoid 
hard cut-offs, each filtering rule thresholds a tweet into 
three levels: ``noisy", ``suspicious" and ``normal". At least 
one ``noisy" or two-plus ``suspicious" rules can mark a 
tweet as ``noisy".  

Conversation Filtering: Following the approach in (Bal-
asubramanyan and Kolcz 2013), a topic model was trained 
on two online conversation corpora with 20,584 messages. 
Chat topics were manually identified. When a new tweet 
arrives, its posterior topic distribution is inferred. If the 
probability mass concentrates on the chat topics is above a 
threshold, this tweet is recognized as a chat tweet. In addi-
tion, a few heuristics are applied to enhance the chit-chat 
detection such as if a tweet contains multiple first & se-
cond personal pronouns, emoticons and emojis. 

3. Word Embedding Data Sets 

In this section, we first introduce the two training data col-
lections, TweetData and GeneralData, used for generating 
the word embeddings, and the basic steps to preprocess 

them.  Then we introduce our ten word embedding data 
sets (models), listed in Table 1. Their names are self-
explanatory. Here with/without spam means whether or 
not the spam tweets are included in the training data. 
Word+Phrases means this embedding data set contains 
both words and phrases. TweetDataWith-
outSpam+GeneralData means we use both TweetData 
(without spam) and GeneralData for training this embed-
ding model. 

These ten data sets cover all the eight embedding sets 
involving TweetData, which are the combinations of using 
spam tweets or not, including phrases or not, and integrat-
ing with GeneralData or not.  In addition to these eight data 
sets, two embedding sets (Dataset 5 and 6) using only 
GeneralData are also generated. After the training data is 
preprocessed, the word2vec’s Skip-gram model (Mikolov 
et al. 2013b) is used to learn the word vector models. Each 
data set will be explained in Section 3.3. 
 

Table 1. The 10 word embedding data sets 

Dataset 
No Name 

1 TweetDataWithoutSpam_Word 

2 TweetDataWithoutSpam_Word+Phrase 

3 TweetDataWithSpam_Word 

4 TweetDataWithSpam_Word+Phrase 

5 GeneralData_Word 

6 GeneralData_Word+Phrase 

7 TweetDataWithoutSpam+GeneralData_Word 

8 TweetDataWithoutSpam+GeneralData_Word 
+Phrase 

9 TweetDataWithSpam+GeneralData_Word 

10 TweetDataWithSpam+GeneralData_Word 
+Phrase 

3.1 TweetData and the Preprocessing Steps 
The tweets used for building our embedding models date 
from October 2014 to October 2016. They were acquired 
through Twitter’s public 1% streaming API and the Deca-
hose data (10% of Twitter’s streaming data) obtained from 
Twitter.  We randomly selected tweets from this period, to 
make them more representative.  Only English tweets are 
used to build word embeddings. Totally, there are 390 mil-
lion English tweets. Based on our spam filter, there are 
about 198 million non-spam tweets and 192 million spam 
tweets. The training data size will affect the quality of 
word vectors. Our experiments based on tweet topic classi-
fication and words similarity computation tasks show  that 
after the number of training tweets exceeds 100 million, 
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the performance changes little. But from 5,000 to 1 million 
tweets, the boost is very significant. Detailed information 
for each embedding data set is presented in Table 2, 3 & 4.  

Each tweet used in the training process is preprocessed 
as below, and the resulting data is then processed by each 
of the eight model building processes involving Tweet-
Data. The preprocess steps are as follows:  

- Tweet text is converted to lowercase.  
- All URLs are removed. Most URLs are short URLs and 

located at the end of a tweet.   
- All mentions are removed. This includes the mentions 

appearing in a regular tweet and the user handles at the 
beginning of a retweet, e.g. ``RT: @realTrump’’.  

- Dates and years, such as ``2017’’, are converted to two 
symbols representing date and year, respectively.  

- All ratios, such as ``3/23’’, are replaced by a special 
symbol. 

- Integers and decimals are normalized to two special 
symbols.  

- All special characters, except hashtags symbol #, are 
removed. 

These preprocessing steps are necessary, since most of the 
tokens removed or normalized are not useful, such as men-
tions and URLs. Keeping them will increase the vector 
space size and computing cost. Stop words are not re-
moved, since they provide important context in which oth-
er words are used. Stemming is not applied to words, since 
some applications of these data sets may want to use the 
original forms of the words. For applications that require 
the same embedding for all the variations of a word, they 
can combine their embeddings to generate a unified one, 
e.g. using the average of all their embeddings. 

3.2 GeneralData and the Preprocessing Steps 
A pre-built word embedding model is provided by Mikolov 
et al. (2013b), and it was trained on part of Google News 
dataset (https://code.google.com/p/word2vec/). This model 
contains 300-dimensional vectors for about 3 million 
unique words and phrases. The phrases were obtained us-
ing the same data-driven approach described in Section 
2.2. Although this model was trained on a large set of da-
ta, it has some limitations: (1) it was trained on only news 
articles, the words and phrases in this mode are case-
sensitive; and (2) the texts were not cleaned before they 
were fed to the training algorithm. Therefore, there are lots 
of junk tokens in this model and they may affect the per-
formance of applications using it. We discuss this problem 
in our second experiment.  Another reason for constructing 
our own GeneralDatacollection is that we wanted to com-
bine TweetData and GeneralData together as training data 
to learn word embeddings, which will be more appropriate 
for use cases that deal with both tweet data and other gen-
eral text data. The news articles used for training the 
Google News word2vec vector model are not available to 

public. To build our own GeneralData collection and make 
it more representative, but not biased toward only one type 
of text, such as news articles, we collected data from five 
different sources, which have different types of text.  The 
five data sources are: 

- Reuters’ news articles: 10 billion bytes of news data 
from year 2007 to 2015 were collected from Reuters’ 
news archive.    

- First billion characters from Wikipedia 
(http://mattmahoney.net/dc/enwik9.zip) 

- The latest Wikipedia dump. There are about 3 billion 
words. 
(http://dumps.wikimedia.org/enwiki/latest/enwiki-
latest-pages-articles.xml.bz2).  

- The UMBC web-base corpus. There are around 3 bil-
lion words. 
(http://ebiquity.umbc.edu/blogger/2013/05/01/umbc-
webbase-corpus-of-3b-english-words/) 

- The "One Billion Word Language Modeling Bench-
mark" data set. It contains almost 1 billion words. 
(http://www.statmt.org/lm-benchmark/1-billion-word-
language-modeling-benchmark-r13output.tar.gz) 

The preprocessing steps are as following:  
- All data is converted to plain text and lowercased. 
- All URLs are removed from the text.  
- Dates and years are converted to two symbols repre-

senting date and year, respectively.  
- All ratios are replaced by a special symbol. 
- Integers and decimals are normalized to two special 

symbols.  
- All special characters are removed. 

These preprocesses make sure that the general data is 
compatible with the tweet data, since we need to combine 
these two types of data for learning  four of the ten embed-
ding models. Changing all characters to lowercase will 
incorrectly merge some terms together, such as an entity 
name and a regular word which happen to have the same 
spelling, but this only affects a very small portion of the 
terms. Without case folding, most words will have two 
entries with different embeddings in the vector model, 
which will affect the vector quality, and the term space will 
increase greatly. However, it is possible that in some spe-
cial use cases, such as identifying named entities from text, 
keeping the character cases may be a better strategy. 

3.3 Word Embedding Data Sets and Metadata 
3.3.1 Dataset1: TweetDataWithoutSpam_Word 
For this vector model, the training tweets do not contain 
spam tweets, and the GeneralData collection is not used. 
We only consider single-term words and no multi-word 
phrases are included.  The basic statistics for the training 
data set and the metadata of the embedding vector model 
are shown in Table 2. About 200 million tweets are used 
for building this model. Totally, 2.8 billion words are pro-
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cessed.  With a term frequency threshold of 5 (tokens less 
than 5 occurrences in the training data set are discarded), 

the total number of unique tokens (hashtags and words) in 
this model is 1.9 million.  

 

Table 2. Metadata of embedding data sets using only TweetData 

Metadata 

Dataset 

Dataset1:  
TweetDataWith-
outSpam_Word 

Dataset2:  
TweetDataWitoutSpam 
_Word+Phrase 

Dataset3:  
TweetDataWithSpam 
_Word 

Dataset4:  
TweetDataWithSpam 
_Word+Phrase 

Number of Tweets 198 million 198 million 390 million 390 million 

Number of words in training data 2.8 billion 2.8 billion 4.9 billion 4.9 billion 

Number of unique words or 
(words+phrases) in the trained em-
bedding model 

1.9 million 2.9 million 2.7 million 4 million 

Vector dimension size 300 300 300 300 

Word and phrase frequency threshold 5 10 5 10 

Learning context windows size 8 8 8 
 

Table 3. Metadata of embedding data sets using only GeneralData 

Metadata 
Dataset 

Dataset5:  
GeneralData_Word 

Dataset6:  
GeneralData_Word+Phrase 

Number of words in training data 6.7 billion 6.7 billion 

Number of unique words or  (words+phrases) in 
the trained embedding model 1.4 million 3.1 million 

Vector dimension size 300 300 

Word and phrase frequency threshold 5 8 

Learning context windows size 8 8 
 

Table 4. Metadata of embedding data sets using both TweetData and GeneralData 

Metadata 

Dataset 
Dataset7:  
TweetDataWithoutSpam 
+GeneralData_Word 

Dataset8:  
TweetDataWithoutSpam 
+GeneralData_ 
Word+Phrase 

Dataset9:  
TweetDataWith-
Spam+General 
Data_Word 

Dataset10:  
TweetDataWithSpam 
+GeneralData_Word
+Phrase 

Number of Tweets 198 million 198 million 390 million 390 million 
Number of words from 
GeneralData 6.7 billion 6.7 billion 6.7 billion 6.7 billion 

Number of words in the 
whole training data 9.5 billion 9.5 billion 11.6 billion 11.6 billion 

Number of unique words or 
(words+phrases) in the 
trained embedding model 

1.7 million 3.7 million 2.2 million 4.4 million 

Vector dimension size 300 300 300 300 
Word and phrase frequency 
threshold 10 15 10 15 

Learning context windows 
size 8 8 8 
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The word embedding dimension size is set to 300. The 
dimension size will affect the quality of a vector. General-
ly, larger dimension size will give better quality. We con-
ducted experiments to see how the performance changes 
with different sizes of word vector, for tweet topic classifi-
cation and word similarity computation tasks. Our experi-
ments show that after the vector size reaches 300, the per-
formance does not change significantly when the size in-
creases. But from sizes 10 to 100, the performance im-
provement is very noticeable. The learning window size 
(sliding context window for a word) is set to 8. As men-
tioned before, a larger window size will result in more 
training data and can lead to a higher accuracy, at the ex-
pense of training time. Usually, a windows size of 5 to 8 is 
a good choice.  
3.3.2 Dataset2: TweetDataWith-
outSpam_Word+Phrase  
As explained earlier in this paper, phrases are needed in 
some NLP related tasks, and embeddings for phrases may 
help those applications. Section 2.2 describes an approach 
we use to identify phrases from training data. The same 
training data set from previous section is used for building 
this embedding model. The only difference is that, for this 
model, we first identify and mark phrases from the training 
data, and then the tweets with detected phrases are fed into 
the training process to generate embeddings for both words 
and phrases. 

Table 2 presents the related metadata of this model. 
There are 2.9 million unique words and phrases in this vec-
tor model. The frequency threshold for words and phrases 
is set to 10 in this model, greater than 5 used in Dataset1. 
This setting reduces the size of the model, since it has both 
words and phrases.    

In the final embedding file, the words in a phrase are 
connected by “_” instead of a space. For example, “new 
york” will be “new_york.” When looking up a phrase in 
the embedding model, users need to first convert the space 
between the phrase’s words to “_”. 
3.3.3 Dataset3: TweetDataWithSpam_Word 
Some applications may need embeddings generated from 
all type of tweets, including spam tweets, and our spam 
filter may not be appropriate for some applications. There-
fore, we also provide embedding data sets that are built 
from all the tweets in the TweetData collection. Related 
metadata for this model can be found from Table 2. A total 
of 390 million tweets are used in this model. The number 
of words in the training data set is 4.9 billion, and the 
number of unique words and phrases in the final embed-
ding model is 2.7 million.  
3.3.4 Dataset4: TweetDataWithSpam_Word+Phrase 
Similar to Dataset3, this data set is also learned from both 
spam and non-spam tweets, but it includes phrases.  The 
total number of unique terms in this model is 4 million. 
Compared to the last model, the number of unique terms 

increases significantly, due to the phrases identified.  
3.3.5 Dataset5: GeneralData_Word 
This data set is learned from the GeneralData collection, 
which consists of text types other than tweets.  As men-
tioned before, we provide this set in case some users need 
embeddings from non-tweet data, or want to do some com-
parison between embeddings from tweet data and non-
tweet data. This data set contains only words and its related 
metadata are presented in Table 3. 
3.3.6 Dataset6: GeneralData_Word+Phrase 
Similar to Dataset5, this one is also learned from just Gen-
eralData, but it includes both words and phrases. Table 3 
has the metadata for this model. 
3.3.7 Dataset7: TweetDataWith-
outSpam+GeneralData_Word 
Some applications or NLP tasks may need to deal with 
both tweet data and general-domain data, and a word em-
bedding data set combining these two types of data may 
provide better performance than the one learned from just 
one of them.  This is the motivation behind this dataset, as 
well as also datasets 8, 9, and 10.  From Table 4, we can 
see that there are 1.7 millions unique words in this data set. 
Compared to using just TweetData as the training data, we 
have 6.7 billion more words from GeneralData included in 
the training data. With a word frequency threshold 10, the 
unique number of words in the final embedding data set is 
1.7 million.  
3.3.8 Dataset8: TweetDataWith-
outSpam+GeneralData_Word+Phrase 
The only difference between this data set and Dataset7 is 
that this one includes both words and phrases. Consequent-
ly, the total number of unique terms in this set is much 
larger, 3.7 million, than that in Dataset7, which is 1.7 mil-
lion, even though this model has a larger term frequency 
threshold, 15. Table 4 contains the related metadata for this 
model. 
3.3.9 Dataset9: TweetDataWith-
Spam+GeneralData_Word 
This set uses both spam and non-spam tweets from 
TweetdData, together with GeneralData for training. It 
contains embeddings for only words. Related metadata are 
also presented in Table 4. 
3.3.10 Dataset10:  TweetDataWith-
Spam+GeneralData_Word+Phrase 
Compared to Dataset9, this one includes both words and 
phrases. Table 4 shows that this data set has the most 
unique terms, 4.4 million.  

3.4 How to Retrieve the Embeddings 
Each published embedding data set includes a binary file, 
which contains the words (and phrases, for data sets in-
cluding phrases) and their embeddings. It also contains a 
text file, which contains a list of all the words (and 
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phrases) in this data set and their frequencies. The text file 
is just for reference purposes users can just use the binary 
embedding file without the text file.  

There are several options to retrieve the embeddings 
from the binary model files. Here we just list some: 

- Use Python’s gensim package, which has the im-
plementation of word2vec, available at:  
http://radimrehurek.com/gensim/. 

- Use a Java implementation of word2vec, available 
at: http://deeplearning4j.org/word2vec.html.  

- Use a C++ version  of word2vec, available at:  
https://code.google.com/archive/p/word2vec/ 

- Use the Python script we provide with the published 
data sets. 

The basic steps of looking up words or phrases from the-
se models (data sets) are very simple. (1) Load the model 
into memory through one of the above methods. (2) The 
model will be stored as a map with words or phrases as the 
keys, and their embeddings (each represented as a list of 
300 real numbers), as the map values. Then one can re-
trieve the embedding of a term by looking up the map.  If a 
term does not exist in this data set, the lookup will return a 
null value. One simple solution for the non-existing terms 
is to set their embedding to zero. 

In addition to storing the embedding model as binary 
file, we can also store them as plain text file, but the file 
size would be very big ( at least several gigabytes). If any 
user needs the plain text format of data, we can also pro-
vide it to them. 

4. Experiments 

We conducted two experiments: the first one uses a tweet 
sentiment analysis task to show how to use the word em-
bedding data set, and the second one tests four embedding 
data sets on tweet a topic classification task to show their 
performance difference. 

4.1 Experiment on Tweet Sentiment Analysis 
In this experiment, we show how the word embeddings can 
be used in a real NLP task, which is tweet sentiment analy-
sis. We are not going to compare our approach to other 
methods, since that is out of the scope of this paper.  In this 
experiment, we just use one vector model, Dataset1: 
TweetDataWithoutSpam_Word, to demonstrate how to use 
it. The other embedding sets can be used in the same way.   

For tweet sentiment analysis, we evaluate precision, re-
call, F measure and accuracy. It is a two-way classification 
task, i.e. we have two polarities: positive and negative.  
4.1.1 Sentiment Analysis Data Set 
The experiment is conducted on a benchmark data set, 
which is from task 9 of SemEval 2014 (Sara et al. 2014). 
Its training set is the same as that of task 2 in SemEval 

2013 (Nakov et al. 2013). The test set includes the test data 
from 2013 and some new added tweets. The development 
set is used for model development, and fine-tuning model 
parameters. The actual tweet texts are not provided in these 
data sets, due to privacy concerns. So we downloaded the-
se tweets from Twitter’s REST API for this experiment. 
Table 5 shows the distributions of the downloaded tweets. 
 

Table 5. Sentiment Analysis Dataset Statistics 

Dataset Positive Negative Total 
Train 2,294 853 3,147 
Development 969 322 1,291 
Test 1,588 439 2,027 

 
4.1.2 Word Embeddings for Tweet Representation  
Given a tweet, we process it by the following steps: 

- First, use the same steps in Section 3.1 to prepro-
cess the tweet, and get its cleaned text. 

- Second, for each word, we look up its embedding 
from the vector model. The result is a 300-
dimension vector of real values.  If a token is not 
contained in the model, we can either ignore that 
token, use a vector whose values are all 0 to rep-
resent this token, or use the average of the em-
beddings from words having the lowest frequency 
in the model. In this experiment, we just ignore 
the token if it does not exist in the model file. 
Usually they are misspelled words. 

- Now, for each word of this tweet, we have a real-
value vector. Because tweets have different 
lengths, we need to use a fixed-length vector to 
represent a tweet, so that we can use it in any 
learning algorithm or application. The following 
paragraph describes how we produce a tweet rep-
resentation from the embeddings of its words.        

Tweet Representation: There are different ways to obtain 
tweet representation from word embeddings. The most 
common methods use the maximum (max), minimum 
(min), or average (ave) of the embeddings of all words (or 
just the important words) in a tweet (Socher et al. 2014; 
Tang et al. 2014).  Take the max as an example, to produce 
the max vector, for each of the 300 dimensions, we use the 
maximum value of all the word embeddings of this tweet 
on this dimension.   In this study, we try all these three 
methods, and also the concatenation convolutional layer 
(con), which concatenates max, min and ave together.  The 
concatenation layer is expressed as follow: 
 

     Z(t) = [Zmax(t), Zmin(t), Zave(t)] 
 

where Z(t) is the representation of tweet t. 
For max, min and ave approaches, the dimension of a 

tweet vector is 300.  For the con approach, the dimension 
size for a tweet is 900, since we concatenate three 300-
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dimension vectors together. 
A study from (Mitchell and Lapata 2008) shows that us-

ing multiplication of embeddings can also give good per-
formance. Users can try this approach in their own applica-
tions. 
4.1.3 Result 
In this experiment, we applied several classification algo-
rithms to find out which one performs the best, such as 
LibLinear, SMO (Keerthi et al. 2011; Platt 1998), Random 
Forest and Logistic Regression. Their performance was 
comparable, with the LibLinear model (Fan et al. 2008) 
performing slightly better. Here we present the results from 
LibLinear. Table 6 shows the sentiment analysis result 
using the four different convolution layer approaches. We 
can see that ave and con perform better than the max and 
min approaches. This result does not mean that they will 
perform the same way in other use cases.   

Table 6.  Tweet sentiment analysis performance  
using word embedding 

Method Precision Recall F measure Accuracy 

Max 78.6 80.4 79.1 80.4 

Min 79.9 81.7 80.1 81.7 

Ave 83.1 84.2 82.6 84.1 

Con 82.6 83.4 82.8 83.4 

 
Figure 1. Comparing embedding data sets on tweet topic classifi-

cation performance 

4.2 Experiment on Tweet Topic Classification 
This experiment is to show how some of the embedding 
data sets perform differently on the tweet topic classifica-
tion task. We are not going to test all the ten models in this 

experiment. These data sets may perform differently in 
different applications. Users can try them in their use cases 
to see which one performs the best. In this experiment, we 
used embedding models learned from the following four 
data sets: Dataset1, Dataset2, Dataset6, and Dataset8. The 
reason for choosing these four is that from the results of 
these four data sets, we can perform the following compar-
isons: Word vs. Word+Phrase (Dataset 1 vs. Dataset 2), 
TweetData vs. GeneralData (Dataset2 vs. Dataset6), 
TweetData vs. TweetData+GeneralData (Dataset2 vs. Da-
taset8), and GeneralData vs. TweetData+GeneralData (Da-
taset6 vs. Dataset8). We use the GoogleNews word2vec 
data set as the baseline. 

The task is to classify the test tweets into one of 11 topic 
categories, such as Sports, Politics, and Business. The la-
beled data set are from (Li et al. 2016).  Totally, there are 
25,964 labeled tweets, each of which belongs to one of the 
11 topic categories. These tweets were split into training, 
validation and test sets. We use the same tweet representa-
tion method described in experiment 1, Section 4.1.2, to 
generate tweet embedding from its word embeddings. The 
tweet embeddings are the features used by classification 
algorithms. 

We tried different classifiers, such as LibLiner and 
SMO, and SMO performed the best. SMO is a sequential 
minimal optimization algorithm for training a support vec-
tor classifier (Keerthi et al. 2011; Platt 1998). The results 
shown in Figure 1 are based on the SMO algorithm. From 
Figure 1, we can see that all of our four data sets perform 
better than the GoogleNews word2vec set.  Dataset1, 2 and 
8 perform better than Dataset6, which means, on tweet 
related tasks, the word embeddings learned from tweet data 
are better than the embedding models learned from other 
types of data. Dataset2 has a better result than Dataset1, 
which shows that including phrases in the vector model 
improves the classification performance. Dataset8 is the 
best performer; this demonstrates that combining both 
TweetData and GeneralData together does improve the 
embedding quality, and consequently, the topic classifica-
tion performance.   

5. Conclusion 

Distributed word representations can benefit many NLP 
related tasks. This paper presents ten word embedding da-
ta sets learned from about 400 million tweets and billions 
of words from general textual data. These word embed-
ding data sets can be used in Twitter related NLP tasks. 
Our experiments also demonstrated how to use these em-
beddings. Experimental results show that context is im-
portant when a classification task is at hand. For example, 
vectors trained on tweet data are more useful as features 
for a tweet classification task, than vectors trained on long 
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form content. In addition, our experiments show that 
phrase detection (even though it comes at the cost of pro-
cessing time) can generate more useful vectors. Lastly, 
noise-filtering and spam detection can be helpful pre-
processing steps, especially when the task is concerned 
with detecting the semantic topic of tweets. 

References 

R. Balasubramanyan and A. Kolcz. “w00t! feeling great today!" 
chatter in twitter: Identification and prevalence.  The internation-
al conference on Advances in Social Network Analysis and Min-
ing (ASONAM  2013), pages 306 -310. IEEE, 2013. 
Collobert, Ronan,  Jason Weston, Leon Bottou, Michael Karlen, 
Koray Kavukcuoglu, and Pavel Kuksa. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning Re-
search, 12:2493–2537, 2011. 
Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 
LIBLINEAR: A Library for Large Linear Classification, Journal 
of Machine Learning Research 9(2008), 1871-1874. 
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, 
2001. Improvements to Platt's SMO Algorithm for SVM Classifi-
er Design. Neural Computation. 13(3):637-649. 
Maas, A.; Daly, R.;  Pham, P.; Huang, D.;  Ng, A. and Potts, C., 
2012. Learning word vectors for sentiment analysis, In Proceed-
ings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies 
Matt, T., Document Classification by Inversion of Distributed 
Language Representations, 2015.  The 53th ACL conference, page 
45-49, July 26-31, Beijing, 
Mikolov, T.; Chen, K.;  Corrado, G.  and Dean J., 2013a.  Effi-
cient Estimation of Word Representations in Vector Space. In 
Proceedings of Workshop at ICLR. 
Mikolov, T.;  Sutskever, I.; Chen, K.; Corrado, G. and Dean J., 
2013b. Distributed Representations of Words and Phrases and 
their Compositionality. In Proceedings of NIPS. 
Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh Nourbakhsh, 
Rui Fang, 2016a, TweetSift: Tweet Topic Classification Based on 
Entity Knowledge Base and Topic Enhanced Word Embedding, 
the 25th ACM International Conference on Information and 
Knowledge Management (CIKM 2016). 
Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu, 
Rui Fang, 2016b, Hashtag Recommendation Based on Topic 
Enhanced Embedding, Tweet Entity Data and Learning to Rank, 
the 25th ACM International Conference on Information and 
Knowledge Management (CIKM 2016). 
Quanzhi Li, Sameena. Shah, Rui Fang, Armineh Nourbakhsh, 
Xiaomo Liu, 2016c, Tweet Sentiment Analysis by Incorporating 
Sentiment-Specific Word Embedding and Weighted Text Fea-
tures, 2016 IEEE/ACM International Conference on Web Intelli-
gence (WI16) 
Xiaomo Liu, Quanzhi Li, A. Nourbakhsh, Rui Fung,  et al., 2016, 
Reuters Tracer: A Large Scale System of Detecting & Verifying 
Real-Time News Events from Twitter, CIKM16 
J. Platt: Fast Training of Support Vector Machines using Sequen-
tial Minimal Optimization. Advances in Kernel Methods - Sup-
port Vector Learning, 1998. 

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin 
Stoyanov, Alan Ritter, and Theresa Wilson. 2013. Semeval-2013 
task 2: Sentiment analysis in twitter. In Proceedings of the 7th 
International Workshop on Semantic Evaluation (SemEval 2013), 
volume 13. 
Rosenthal, Sara  and  Ritter, Alan  and  Nakov, Preslav  and  
Stoyanov, Veselin. SemEval-2014 Task 9: Sentiment Analysis in 
Twitter. . In Proceedings of the 8th International Workshop on 
Semantic Evaluation (SemEval 2014), Dublin, Ireland. 
Jeff Mitchell and Mirella Lapata, Vector-based Models of Seman-
tic Composition, in Proceedings of ACL 2008.  
Socher, R.;  Perelygin, A.;  Wu, J.;  Chuang, J.;  Manning, C.; Ng, 
A. and Potts, C., 2014,.  Recursive Deep Models for Semantic 
Compositionality Over a Sentiment Treebank, EMNLP 2014. 
Song, J.,  Lee, S.; and Kim, J. 2011. Spam filtering in twitter 
using sender-receiver relationship. In Recent Advances in Intru-
sion Detection, 301–317. Springer.  
Tang, D.;  Wei, F.;  Yang, Y.;  Zhou, M.;  Liu, T. and  Qin, B. 
2014. Learning Sentiment-Specific Word Embedding for Twitter 
Sentiment Classification, the 52th ACL conference, Baltimore, 
Maryland. 
K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended ac-
counts in retrospect: An analysis of twitter spam. The ACM Inter-
net Measurement Conference (IMC 2011), pages 243- 258. ACM, 
2011. 
Yardi, S., Romero, D.; Schoenebeck, G.et al. 2009. Detecting 
spam in a twitter network. First Monday 15(1). 
 

436




