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Abstract

It is well-established that within crisis-related communica-
tions, rumors are likely to emerge. False rumors, i.e. misin-
formation, can be detrimental to crisis communication and
response; it is therefore important not only to be able to iden-
tify messages that propagate rumors, but also corrections or
denials of rumor content. In this work, we explore the task of
automatically classifying rumor stances expressed in crisis-
related content posted on social media. Utilizing a dataset of
over 4,300 manually coded tweets, we build a supervised ma-
chine learning model for this task, achieving an accuracy over
88% across a diverse set of rumors of different types.

Introduction
During crisis events, emergency responders, media, and
members of the public utilize social media to disseminate,
search for and curate crisis-related information, making
sense of occurring uncertain events (Vieweg et al. 2010;
Sutton et al. 2014). On social media, those behaviors re-
sult in a complex, dynamic event-related communication
environment contained within a larger stream of informal
communication on these platforms (Mendoza, Poblete, and
Castillo 2010). Such crisis-related communication environ-
ments often naturally lead to the emergence of rumors. Gen-
erally defined, a rumor is a statement of information unveri-
fied during the time of communication (Shibutani 1966). So-
cial media platforms have likely made it possible for rumors
to spread faster and reach a wider audience than previously
possible (Qazvinian et al. 2011; Spiro et al. 2012).

Detecting emerging misinformation and communicating
such cases to both the public and emergency responders
could alleviate concerns about the use of social media for
crisis and risk communication (Hiltz, Kushma, and Plotnick
2014). Prior work has focused on understanding the spread
of misinformation (Starbird et al. 2014), as well as intro-
duced preliminary methods to automatically identify misin-
formation within a larger social media context (Qazvinian et
al. 2011). While this later work is the closest to the study
presented herein, it was not specifically focused on rumors
during crisis, but rather rumors about high-profile, public
figures (a much different case). Prior research on detect-
ing misinformation has not yet been extended to a general
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framework that applies across rumors; current approaches
have focused almost exclusively on false rumors and misin-
formation.

Recent exploratory work indicates that comparing the
temporal and volume of affirmations and denials of rumor
content could provide signals for both true and false rumors
(Starbird et al. 2014), however more work is needed to quan-
tify these patterns across rumors and crisis events. In ad-
dition, prior work has been limited in its scope as it relies
on manually coded social media posts to determine whether
content affirms or denies rumor claims. In short, methods
are needed that allow scholars to automatically classify so-
cial media messages as rumor affirming or rumor denying.

We aim to fill this gap, building a classification model for
rumor stance. These methods will not only allow large-scale
investigations of rumoring behavior on social media because
they will deliver large sets of labeled data, but they will also
offer researchers the opportunity to gain a more nuanced
view of rumoring and collective sense-making by indicat-
ing which features of rumor-related content are indicative of
the posters stance towards rumor claims.

Data

Data for this project come from the microblogging platform
Twitter. Data consist a labeled set of rumor-related Twitter
posts (i.e. tweets) from a hostage crisis – termed the Syd-
ney Siege by media – that occurred in Sydney in Decem-
ber, 2014. Custom Python scripts are used to access tweets
via the Twitter Streaming API. Data collection relies on a
curated set of event-related keywords and hashtags. Our re-
search team used a mixed-methods approach to identify five
notable rumors (named as Flag, Airspace, Suicide, Hadley,
Lakemba, respectively) in the data. For each rumor, a set of
rumor-related tweets are extracted from the larger dataset us-
ing a rumor-specific, text-based query; queries are designed
to produce a comprehensive, low-noise sample of tweets re-
lated to a particular rumor story.

Data are labeled by human coders according to rumor
stance. Two trained coders manually code every distinct
tweet; 1 disagreements are arbitrated by a third coder. Un-

1We performed an inter-rater reliability analysis using the
Fleiss’ Kappa statistic (Fleiss 1971) to evaluate agreement among
raters and obtained the result of Kappa as 0.892 (p < 0.001).
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codable and rumor-unrelated tweets are removed. Remain-
ing tweets are classified as one of three mutually exclu-
sive categories: affirm, deny or neutral. Affirming tweets af-
firm the ongoing rumor story, serving to pass on or prop-
agate the rumor. Denial tweets attempt to deny the ru-
mor story, correcting misinformation. Neutral tweets do
not take a stance, and are ignored in the subsequent anal-
ysis where we focus on the affirm/deny distinction. De-
tailed elaboration of the dataset and data processing pro-
cesses can be found in our related work (Arif et al. 2016;
Zeng, Starbird, and Spiro 2016).

The resulting labeled dataset is described in Table 1. Inter-
estingly, Table 1 demonstrates that the proportions of rumor-
affirming tweets and rumor-denying tweets across these ru-
mors are unbalanced, with rumor-affirming tweets account-
ing for the large-majority of cases. Prior work suggests this
may result from the tendency for misinformation or “bad
news” to garner more attention.

Rumor Affirm Deny Prop. affirm
name tweets tweets tweets
Flag 1347 980 0.57
Airspace 636 356 0.64
Suicide 343 38 0.90
Hadley 516 25 0.95
Lakemba 64 70 0.47
Total 2906 1469 0.66

Table 1: Basic descriptive statistics for Sydney Siege data
(duplicate tweets removed).

Methods

Our task in classifying rumor stance from tweets is to auto-
matically apply rumor-affirming or rumor-denying labels to
tweets with reasonable accuracy. Following standard tech-
niques in statistical and machine learning, we construct a
training dataset to fit and tune our model. So as not to bias
our classification towards popular posts, we remove all ex-
act duplicates. Evaluation of the model then occurs on held-
out test data, allowing us to estimate out-of-sample perfor-
mance. In practice we do this using cross-validation.

Due to the unbalanced nature of the raw data – the fact that
we have far more tweets with an Affirm label than a Deny
label – we consider both a balancing sampling strategy and
proportional sampling strategy. For the balancing sampling
case, we construct both the training set and the testing set
with equal proportion of Affirm and Deny labels, whereas
for the proportional sampling (which is closer to the real-
world situation), both the training and testing sets have the
same proportions of the binary labels as in the whole dataset.
We take the majority-category label assignment as a baseline
against which we compare our model.

Feature Extraction and Generation

• Punctuation features: Punctuation may be indicative of
emotion and/or rumor stance. We extract the number of
exclamation marks, question marks and ’?!’.

• Twitter-element features: When people tend to confirm
or challenge a story, they often refer to external resources
(in the form of URLs), mention other users as evidence of
information sources and add hashtags to make their tweets
more easily seen by others.

• LIWC features: We extract other lexical features using
the Linguistic Inquiry and Word Count (LIWC) (Tausczik
and Pennebaker 2010) dictionaries for negation words,
swear words, negative emotion words, positive emotion
words, emoticons, personal pronouns, adverbs, etc.

• Tweet sentiment features: We use an external sentiment
classifier API provided by MetaMind2 to perform a three-
class sentiment classification on a tweet. The model re-
turns one of the three exclusive sentiment labels - positive,
neutral or negative for each tweet.

• N-grams: We do not include bag-of-words because the
LIWC dictionaries capture most of the essential single
words. We find that removing stopwords decreases accu-
racy. Therefore, we only apply word stemming. In addi-
tion, we apply reduction techniques to n-gram features by
setting a minimum frequency threshold and lowercasing.

• Part of speech features: We apply a part-of-speech
(POS) tagger using a Tweet NLP system (Owoputi et
al. 2013). The system is used for POS tagging for infor-
mal online messages. By doing so, we obtain the part of
speech for each word.

Classifier Training

For performing this classification task, we consider three dif-
ferent models - logistic regression, Gaussian Naı̈ve Bayes
and a random forest. For logistic regression, we experiment
with both Lasso and Ridge regularization – both options do
not seem to have substantial influence on performance and
so we adopt L2 regularization. We experiment tuning the
random forest to choose the proper number of trees; consid-
ering both accuracy and computational complexity, we use
30 trees in the model.

We trained models for two cases: (1) a classifier trained
on each of the five single rumor sets individually and (2) a
classifier trained on the pooled rumor set that is obtained by
aggregating all five rumors for the Sydney Siege event. Hy-
pothetically, in the first case, the classifier would be able to
pick up on rumor affirming and denying statements specific
to the given rumor. For the pooled classifier, context of spe-
cific rumors might become blurred as all rumors related to
a crisis event merge together. Therefore, in this later case,
classifying rumor stances might become more challenging,
because the classifier must be able to generalize across ru-
mor cases, however, the task is closer to more general real-
world, future applications of the model. For each model, we
use a 10-fold cross-validation procedure. All of the results
reported below are averaged across the 10-folds.

2Available at https://www.metamind.io; The claimed accuracy
of this sentiment classifier is 81.73%.
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Results

Rumor-Specific Prediction

We fit a classification model to predict whether tweets af-
firm or deny rumors in each specific rumor in the Syd-
ney data. The first five rows of Table 2 show the results
for each rumor-specific classification model. This model in-
cludes each of the features discussed previously. We show
only the proportional sampling case here, however even
sampling was also performed. Our results demonstrate that
except for the Hadley rumor, which has a extremely high
baseline, nearly all the rumor-specific classifiers are able to
beat the baseline. For all five cases, the random forest has the
best performance with strong precision, recall and accuracy.

Rumor Stance Prediction

Next, we use a pooled dataset – combining all tweets from
each of the five rumors – to train the model. Results are
shown in the last two rows of Table 2. We show the model
evaluation for the case of both even and proportional sam-
pling. The baseline in the case of an even sampling strategy
is 0.5 due to the balance proportion of Affirm and Deny
tweets in the data. All three models are able to beat the base-
line and achieve accuracies around or over 0.8. The random
forest classifier remains the most effective with the highest
recall, accuracy and F-score.

Table 3 shows the confusion matrix for the best-
performing classifier trained on the pooled data using pro-
portional sampling strategy. The number of false negative
(tweets predicted as denials, but actually are affirmations)
is small, which indicates this model performs well in iden-
tifying denials. This result could be useful for our larger
problem of interest - using crowd corrections as signal of
misinformation - because rumor-denying tweets tend to be
in a fewer number than rumor-affirming tweets in empirical
cases suggesting they may get “lost” within the larger social
media stream produced during the crisis.

Overall, the pooled model performs much better than the
corresponding baselines, indicating the classification model
is able to achieve around 83%-88% accuracy when predict-
ing expressed rumor stances in crisis-related tweets. Com-
pared to other classifiers, the random forest model tends to
be more robust in both rumor-specific and pooled contexts
using different sampling strategies.

Feature Importance

We examine feature importance in the trained random forest
model to better understand which of the model features have
higher importance in this classification task. Overall, fea-
tures of note span a variety of feature categories, including
n-grams, basic textual features, sentiment, part of speech,
and lexical LIWC features, etc. Figure 1 presents the top 10
features for random forest model on the pooled data. Recall,
this represents average results across 10-fold cross valida-
tion. Negation words seem to play an large role in classi-
fication in this case. This includes words and phrases such
as not, is not (bi-gram), not an (bi-gram). We found
that some combinations of part-of-speech are more signifi-
cant, such as adverb, verb + adverb, adverb + proper noun,

adverb + determiner, indicating particular “speech” patterns
that users might use for expressing their stances toward a ru-
mor. We also looked at the top 10 features for each rumor-
specific model. We found out that there are differences in
the top features for the classifier trained on different individ-
ual rumors, indicating different contexts for rumors within
the same event. However, negation words and part-of-speech
features remain significant for classifying rumor stances to-
wards each rumor.

Figure 1: Feature importance for the trained random forest
model using pooled data and proportional strategy

Discussion

This study was motivated by the recognition that manual
coding of social media content can be very expensive, po-
tentially prohibiting researchers from examining complete
data about a particular social phenomena. As we build a
large corpus of diverse rumors across multiple events, the
trained classifier will improve in its generalizability and be
extremely valuable for scaling analysis in future studies.

Building models to learn rumor stance from text allows
for exploratory work that highlights particular features of
expression online that might be indicative of the authors’
stance towards the story discussed within. In the case pre-
sented here, we find that negation words and phrases such
as not are strong indicators of rumor denying tweets. Not-
ing such features could inform tools and systems designed
to flag potential misinformation.

The work presented herein provides a foundation for fu-
ture studies of rumoring behavior on social media during
crisis events. In particular, we hope researchers will be able
to use these methods to augment manually coded data with
machine labeled data to curate large-scale datasets of rumor-
ing online.
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Rumor Baseline Training Sample Model Precision Recall Accuracy F-Score

Flag
Logistic Reg. 0.875 0.895 0.836 0.871

0.5789 Proportional Naı̈ve Bayes 0.890 0.872 0.843 0.881
Random Forest 0.870 0.962 0.879 0.913

Hadley
Logistic Reg. 0.955 0.995 0.951 0.975

0.9538 Proportional Naı̈ve Bayes 0.955 0.999 0.955 0.977
Random Forest 0.958 1.0 0.958 0.979

Suicide
Logistic Reg. 0.906 1.0 0.907 0.950

0.9003 Proportional Naı̈ve Bayes 0.911 0.981 0.897 0.945
Random Forest 0.911 0.999 0.911 0.953

Airspace
Logistic Reg. 0.890 0.898 0.860 0.890

0.6411 Proportional Naı̈ve Bayes 0.890 0.889 0.858 0.889
Random Forest 0.874 0.967 0.889 0.918

Lakemba
Logistic Reg. 0.861 0.931 0.889 0.890

0.5224 Proportional Naı̈ve Bayes 0.892 0.808 0.860 0.845
Random Forest 0.858 0.939 0.893 0.894

Pooled
Logistic Reg. 0.818 0.885 0.839 0.845

0.50 Even Naı̈ve Bayes 0.872 0.775 0.830 0.820
Random Forest 0.851 0.870 0.860 0.860

Pooled
Logistic Reg. 0.856 0.950 0.857 0.898

0.6642 Proportional Naı̈ve Bayes 0.898 0.875 0.851 0.886
Random Forest 0.871 0.969 0.884 0.917

Table 2: Results of classification models rumor stance. Models for each rumor and pooled data are shown, along with model
accuracy and F-scores.

Predicted
Affirm Deny

Observed Affirm 563.4 17.6
Deny 83.2 210.6

Table 3: Confusion matrix for the trained random forest
model using the pooled data and proportional sampling strat-
egy (average value for 10 runs).
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