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Abstract

Information spreading on social media contributes to the for-
mation of collective opinions. Millions of social media users
are exposed every day to popular memes — some generated
organically by grassroots activity, others sustained by adver-
tising, information campaigns or more or less transparent co-
ordinated efforts. While most information campaigns are be-
nign, some may have nefarious purposes, including terrorist
propaganda, political astroturf, and financial market manipu-
lation. This poses a crucial technological challenge with deep
social implications: can we detect whether the spreading of
a viral meme is being sustained by a promotional campaign?
Here we study trending memes that attract attention either or-
ganically, or by means of advertisement. We designed a ma-
chine learning framework capable to detect promoted cam-
paigns and separate them from organic ones in their early
stages. Using a dataset of millions of posts associated with
trending Twitter hashtags, we prove that remarkably accurate
early detection is possible, achieving 95% AUC score. Fea-
ture selection analysis reveals that network diffusion patterns
and content cues are powerful early detection signals.

Introduction

An increasing number of people rely, at least in part, on in-
formation shared on social media (SM) to form opinions
and make choices on issues related to lifestyle, politics,
health, and product purchases (Bakshy et al. 2011). This re-
liance provides motivation for a variety of parties (corpo-
rations, governments, etc.) to promote information and in-
fluence collective opinions through active participation in
online conversations. Such a participation may be charac-
terized by opaque methods to enhance both perceived and
actual popularity of promoted information. Recent exam-
ples of abuse abound and include: (i) astroturf in political
campaigns, or attempts to spread fake news under the pre-
tense of grassroots conversations (Ratkiewicz et al. 2011);
(ii) orchestrated boosting of perceived consensus on rele-
vant social issues performed by some governments (Shear-
law 2015); (iii) propaganda and recruitment by terrorist or-
ganizations like ISIS (Berger and Morgan 2015); and (iv) ac-
tions involving SM and stock market manipulation (U.S. Se-
curities and Exchange Commission 2015).
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There are at least three important dimensions across
which information campaigns deserve investigation. The
first concerns the subtle notion of trustworthiness of in-
formation being spread, which may range from verified
facts (Ciampaglia et al. 2015), to rumors and exaggerated,
biased, unverified or fabricated news. The second concerns
the strategies employed for the propaganda: from a known
brand that openly promotes its products targeting users that
have shown interest for the product, to the adoption of social
bots, trolls and fake or manipulated accounts that pose as hu-
mans (Ferrara et al. 2014). The third dimension relates to the
(possibly concealed) entities behind the promotion efforts
and the transparency of their goals. Progress in any of these
dimensions requires the availability of tools to automatically
identify coordinated information campaigns in SM. But dis-
criminating such campaigns from grassroots conversations
poses both theoretical and practical challenges. Even the
definition of “campaign” is challenging, as it may depend
on determining strategies of dissemination, dynamics of user
engagement, motivations, and more.

This paper takes a first step toward the establishment of
reliable computational tools for the detection of promoted
information campaigns. We focus on viral memes and on
the task of discriminating between organic and promoted
content. Advertisement is a type of campaign that is easy
to define formally. Future efforts will aim at extending this
framework to other types of information campaign.

The challenge of identifying promoted content

It is common to observe hashtags that enjoy a sudden burst in
activity volume on Twitter. Such hashtags are labeled trend-
ing and highlighted. Hashtags may also be exposed promi-
nently on Twitter for a fee. Such hashtags are called pro-
moted and often enjoy bursts of popularity similar to those
of trending hashtags. They are listed among trending topics,
even tough their popularity may be due to the promotional
effort. Discriminating between promoted and organically
trending topics is not trivial, as Table 1 shows: promoted and
organic trending hashtags have similar characteristics. They
may also exhibit similar volume patterns (Fig. 1). Promoted
hashtags may preexist the moment they are given such status
and may have originated in an entirely grassroots fashion,
therefore displaying features largely indistinguishable from
those of other grassroots hashtags on the same topic.
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Table 1: Summary statistics of collected data about pro-
moted and trending topics (hashtags) on Twitter.

Promoted Organic
Dates 1 Jan– 31 Apr 2013 1–15 Mar 2013
No. campaigns 75 852

mean st. dev. mean st. dev.
Avg. no. of tweets 2,385 6,138 3,692 9,720
Avg. no. uniq. users 2,090 5,050 2,828 8,240
Avg. retweet ratio 42% 13.8% 33% 18.6%
Avg. reply ratio 7.5% 7.8% 20% 21.8%
Avg. no. urls 0.25 0.176 0.15 0.149
Avg. no. hashtags 1.7 0.33 1.7 0.78
Avg. no. mentions 0.8 0.28 0.9 0.35
Avg. no. words 13.5 2.21 12.2 2.74

Figure 1: Time series of trending campaigns: volume
(tweets/hour) relative to promoted (left) and organic (right)
campaigns with similar temporal dynamics.

Data and methods

The dataset adopted in this study consists of Twitter posts.
We collected in real time all trending hashtags (keywords
identified by a ‘#’ prefix) relative to United States traffic that
appeared from January to April 2013, labeling them as either
promoted or organic, according to the information provided
by Twitter itself. While Twitter allows at most one promoted
hashtag per day, dozens of organic trends appear in the same
period. Therefore we extracted organic trends observed dur-
ing the first two weeks of March 2013 in our analysis. As a
result, our dataset is highly imbalanced, with the promoted
class more than ten times smaller than the the organic one
(cf. Table 1). Such an imbalance, however, reflects the actual
data: we expect to observe a minority of engineered conver-
sation blended in a majority of organic content. Thus, we did
not balance the two classes by means of artificial resampling
of the data: we studied the campaign prediction and detec-
tion problems under realistic class imbalance conditions.

For each of the campaigns, we retrieved all tweets con-
taining the trending hashtag from an archive containing a
10% random sample of the public Twitter stream. The use
of this large sample allows us to sidestep known issues of
the Twitter’s streaming API (Morstatter et al. 2013). The
collection period was hashtag-specific: for each hashtag we
obtained all tweets produced in a four-day interval, starting
two days before its trending point and extending to two days
after that. This procedure provides an extensive coverage of
the temporal history of each trending hashtag and its related
tweets in our dataset, allowing us to study the characteristics
of each campaign before, during and after the trending point.

Given that each trending campaign is described by a col-
lection of tweets over time, we can aggregate data in sliding
time windows [t, t + �) of duration � and compute features

on the subsets of tweets produced in these windows. A win-
dow can slide by time intervals of duration δ. To obtain the
next window [t + δ, t + � + δ), we capture new tweets pro-
duced in the interval [t + �, t + � + δ) and “forget” older
tweets produced in the interval [t, t + δ). We experimented
with various time window lengths and sliding parameters,
and the optimal performance is often obtained with windows
of duration � = 6 hours sliding by δ = 20 minutes.

Features. Our framework computes features from a col-
lection of tweets. The system generates a broad number of
features (423) in the following five different classes:

(1) Network and diffusion features. We reconstruct
three types of networks: (i) retweet, (ii) mention, and (iii)
hashtag co-occurrence networks. Retweet and mention net-
works have users as nodes, with a directed link between a
pair of users that follows the direction of information spread-
ing — toward the user retweeting or being mentioned. Hash-
tag co-occurrence networks have undirected links between
hashtag nodes when two hashtags occur together in a tweet.
All networks are weighted according to the frequency of in-
teractions and co-occurrences. For each network a set of fea-
tures is computed, including in- and out-strength (weighted
degree) distribution, density, shortest-path distribution, etc.

(2) User account features. We extract user-based features
from the details provided by the Twitter API about the author
of each tweet and the originator of each retweet. Such fea-
tures include the distribution of follower and followee num-
bers, the number of tweets produced by the users, etc.

(3) Timing features. The most basic time-related feature
we considered is the number of tweets produced in a given
time interval. Other timing features describe the distribu-
tions of the intervals between two consecutive events, like
two tweets or retweets.

(4) Content and language features. Our system extracts
language features by applying a Part-of-Speech (POS) tag-
ging technique, which identifies different types of natural
language components, or POS tags. Phrases or tweets can
be therefore analyzed to study how such POS tags are dis-
tributed. Other content features include statistics such as the
length and entropy of the tweet content.

(5) Sentiment features. Our framework leverages sev-
eral sentiment extraction techniques to generate various sen-
timent features, including happiness score (Kloumann et
al. 2012), arousal, valence and dominance scores (War-
riner, Kuperman, and Brysbaert 2013), polarization and
strength (Wilson, Wiebe, and Hoffmann 2005), and emotion
score (Agarwal et al. 2011).

Learning algorithms. We built upon a method called k-
nearest neighbor with dynamic time warping (KNN-DTW)
capable of dealing with multi-dimensional signal classifi-
cation. Random forests, used as a baseline for comparison,
treats each value of a time series as an independent feature.

KNN-DTW classifier. Dynamic time warping (DTW) is a
method designed to measure the similarity between time se-
ries (Berndt and Clifford 1994). For classification purposes,
our system calculates the similarity between two time series
(for each feature) using DTW and then feeds these scores
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into a k-nearest neighbor (KNN) algorithm (Cover and Hart
1967). KNN-DTW combines the ability of DTW to measure
time series similarity and that of KNN to predict labels from
training data. We explored various other strategies to com-
pute the time series similarity in combination with KNN,
and DTW greatly outperformed the alternatives. Unfortu-
nately, the computation of similarity between time series us-
ing DTM is a computationally expensive task which requires
O(L2) operations, where L is the length of the time series.
Therefore, we propose the adoption of a piece-wise aggrega-
tion strategy to re-sample the original time series and reduce
their length to increase efficiency with marginal classifica-
tion accuracy deterioration. We split the original time series
into p equally long parts and average the values in each part
to represent the elements of the new time series. In our ex-
periments, we split the L elements of a time series into p = 5
equal bins, and consider k = 5 nearest neighbors in KNN.
The diagram in Fig. 2 summarizes the steps of KNN-DTW.

Baseline. We use an off-the-shelf implementation of Ran-
dom Forests (Breiman 2001). This naive approach does not
take time into consideration: each time step is considered
as independent; therefore, we expect its performance to be
poor. Nevertheless, it serves an illustrative purpose to under-
score the complexity of the tasks, justify the more sophisti-
cated approach outlined above, and gauge its benefit. Other
traditional models we tried (SVM, SGD, Decision Trees,
Naive Bayes, etc.) did not perform better.

Feature selection. Our system generates a set I of 423
features. We implemented a greedy forward feature selection
method. This simple algorithm is summarized as follows:
(i) initialize the set of selected features S = ∅; (ii) for each
feature i ∈ I−S, consider the union set U = S∪i; (iii) train
the classifier using the feature set U ; (iv) test the average
performance of the classifier trained on this set; (v) add to
the set of selected features S the feature whose addition to S
provides the best performance; (vi) repeat the feature selec-
tion process as long as a significant increase in performance
is obtained. Other methods (simulated annealing, genetic al-
gorithms) yielded inferior performance.

Results

Our framework takes multi-dimensional time series as in-
put, which represent the longitudinal evolution of the set of
features describing the campaigns.We consider a time pe-
riod of four days worth of data that extends from two days
before each campaign’s trending point to two days after. For
all experiments, the system generated real-valued time series
for each feature i represented by a feature vector �f i consist-
ing of 120 data points equally divided before and after the
trending point. Time series are therefore encoded using the
settings described above (windows of length � = 6 hours
sliding every δ = 20 minutes). Accuracy is evaluated by
measuring the Area Under the ROC Curve (AUC) (Fawcett
2006) with 10-fold cross validation, and obtaining an aver-
age AUC score across the folds. We adopt AUC to measure
accuracy because it is not biased by our class imbalance,
discussed earlier (75 promoted vs. 852 organic hashtags).

Figure 2: Diagram of KNN-DTW detection algorithm.

Figure 3: ROC curves showing our system’s performance.
KNN-DTW obtains an AUC scores of 95% by using all fea-
tures, and scores are provided for individuals feature classes
as well. Random Forests scores only slightly above chance.

Method comparison. We carried out an extensive bench-
mark of several configurations of our system for campaign
detection. The performance of the algorithms is plotted in
Fig. 3. The average detection accuracy (measured by AUC)
of KNN-DTW is above 95%: we deem it an exceptional re-
sult given the complexity of the task. The random forests
baseline performs only slightly better than chance.

Our experiments suggest that time series encoding is a
crucial ingredient for successful campaign classification.
Encoding reduces the dimensionality of the signal by av-
eraging time series. More importantly, encoding preserves
(most) information about temporal trends. Accounting for
temporal ordering is also critical. Random forests ignore
long-term temporal ordering: data-points are treated as in-
dependent rather than as temporal sequences. KNN-DTW,
on the other hand, computes similarities using a time series
representation that preserves the long-term temporal order,
even as time warping may alter short-term trends. This turns
out to be a crucial advantage in the classification task.

Feature analysis. We use the greedy selection algorithm
to identify the significant features, and group them by the
five classes (user meta-data, content, network, sentiment,
and timing) previously defined. Network structure and in-
formation diffusion patterns (AUC=92.7%), along with con-
tent features (AUC=92%), exhibit significant discriminating
power and are most valuable to separate organic from pro-
moted campaigns (cf. Fig. 3). Combining all feature classes
boosts the system’s performance to AUC=95%.

Analysis of false negative and false positive cases. We
conclude our analysis by discussing when our system fails.
We are especially interested in false negatives, namely pro-
moted campaigns that are mistakenly classified as organic.
These types of mistakes are the most costly for a detection
system: in the presence of class imbalance (that is, observing
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significantly more organic than promoted campaigns), false
positives (namely, organic campaigns mistakenly labeled as
promoted) can be manually filtered out in post-processing.
Otherwise, a promoted campaign mistakenly labeled as or-
ganic would easily go unchecked along with the many other
correctly labeled organic ones.

Focusing our attention on a few specific instances of false
negatives generated by our system, we gained some insights
into the factors triggering the mistakes. First of all, it is con-
ceivable that promoted campaigns are sustained by organic
activity before promotion and therefore they are essentially
indistinguishable from organic ones until the promotion trig-
gers the trending behavior. It is also reasonable to expect a
decline in performance for long delays: as more users join
the conversation, promoted campaigns become harder to dis-
tinguish from organic ones.

The analysis of false positives provided us with some un-
foreseen insights as well. Some campaigns in our dataset,
such as #AmericanIdol or #MorningJoe, were promoted via
alternative communication channels (e.g., television, radio,
etc.), rather than via Twitter. This has become a common
practice in recent years, as more and more Twitter cam-
paigns are mentioned or advertised externally to trigger
organic-looking responses in the audience. Our system rec-
ognized such instances as promoted, whereas their ground-
truth labels did not: this peculiarity distorted the evaluation
to our detriment (in fact, those campaigns were unjustly
counted as false positives by the AUC scores). However, we
deem it remarkable that our system is capable of learning the
signature of promoted campaigns irrespective of the mean(s)
used for promotion (i.e., within the social media itself, or via
external media promotion).

Conclusions

In this paper, we posed the problem of campaign detection
and discussed the challenges it presents. We also proposed
a solution based on supervised learning. Our system lever-
ages time series representing the evolution of different fea-
tures characterizing trending campaigns discussed on Twit-
ter. These include network structure and diffusion patterns,
sentiment, language and content features, timing, and user
meta-data. We demonstrated the crucial advantages of en-
coding temporal sequences.

We achieved very high accuracy in campaign detection
(AUC=95%), a remarkable feat if one considers the chal-
lenging nature of the problem and the high volume of data
to analyze. One of the advantages of our framework is that
of providing interpretable features and feature classes. We
explored how the use of the various features affects detec-
tion performance. Feature analysis revealed that signatures
of campaigns can be detected accurately, especially by lever-
aging information diffusion and content features.

Future research will unveil the characteristics (i.e., spe-
cific feature patterns) exhibited by promoted content and
help understand how campaigns spread in SM. Further work
is also needed to study whether different classes of cam-
paigns (say, legitimate advertising vs. terrorist propaganda)

may exhibit distinct characteristics: classifying such cam-
paigns after the trending point could be hard, due to the fact
that the potential signature of artificial inception might get
diluted after the campaign acquires the attention of the gen-
eral audience. Therefore our final goal will be that of pre-
dicting the nature of a campaign before its trending point.
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