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Abstract

Social contagion is the mechanism by which ideas and behav-
iors spread across human social networks. Simple contagion
models approximate the likelihood of adoption as constant
with each exposure to an “infected” network neighbor. How-
ever, social theory postulates that when adopting an idea or
behavior carries personal or social risk, an individual’s adop-
tion likelihood also depends on the number of distinct neigh-
bors who have adopted. Such complex contagions are thought
to govern the spread of social movements and other impor-
tant social phenomena. Online sites, such as Twitter, expose
social interactions at a large scale and provide an opportu-
nity to observe the spread of social contagions “in the wild.”
Much of the effort in searching for complex phenomena in
real world contagions focuses on measuring user adoption
thresholds. In this work, we show an alternative method for
fitting probabilistic complex contagion models to empirical
data that avoids measuring thresholds directly, and our results
indicate bias in observed thresholds under both complex and
simple models. We also show 1) that probabilistic models of
simple and complex contagion are distinguishable when ap-
plied to an empirical social network with random user activ-
ity; and 2) the predictive power of these probabilistic adoption
models against observed adoptions of actual hashtags used on
Twitter. We use a set of tweets collected from Nigeria in 2014,
focusing on 20 popular hashtags, using the follow graphs of
the users adopting the tags during their initial peaks of activ-
ity.

Introduction

It is thought that ideas and behaviors spread through hu-
man populations in ways similar to the spread of biologi-
cal infections. By way of analogy, such processes are called
social contagions. When there is little or no cost associ-
ated with adopting an idea or behavior, only a single ex-
posure to an “infected” person is needed for another per-
son to adopt. Such simple contagions contrast with cases
where adoption carries a risk of losing social capital, or ex-
posing oneself to official sanction or physical harm. In such
cases, a person’s decision to adopt may require social re-
inforcement; his or her likelihood of adoption may greatly
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increase after knowing that some members of their social
network have already adopted. These threshold-based pro-
cesses are termed complex contagions and they are thought
to play a role in the outbreak of riots, mass protests, and
the spread of social and political change (Granovetter 1973;
Coleman, Katz, and Menzel 1966; Valente 1996). While col-
lective behaviors are directly observable, theories about the
underlying social processes at play have been difficult to
confirm outside of laboratory experiments and simulations.
Social networking sites, such as Twitter and Facebook, ex-
pose social interactions at a larger scale, giving us the ability
to test statistical models related to the spread of social con-
tagions. Given the assumptions about the role of complex
contagions in the spread of controversial information and the
formation of transformative social movements, identifying
their onset and modeling their spread is of direct applicabil-
ity for journalists, scholars, and policy makers.

In this paper, we present an approach for accomplishing
this goal. We use Twitter data collected from users geo-
graphically localized to Nigeria in 2014, including tweets
that used one or more of a set of popular hashtags. We col-
lected follow information on a set of 52,689 of these users,
comprising the first 1000 adopters of each of 82 popular
hashtags that were initially propagated in 2014. Using the
actual follow network for these individuals, we ran a set
of experiments where we simulated probabilistic models of
simple and complex contagion. We first show that by using
the true follow network over the same set of users, simple
and complex contagions predict statistically differing adop-
tion curves, suggesting these phenomena are distinguishable
in real world network contagions. We then investigate the
degree to which the probabilistic simple and complex conta-
gion models can predict the actual spread of a set of popular
hashtags, optimizing infection probability parameters to best
fit the empirical adoption curve1 for each model. We show
that for a sample hashtag that is likely to carry social risk,
the adoptions observed are better explained by the complex
contagion model than by the simple contagion model, lend-
ing evidence that social reinforcement models of contagion
spread may be at work.

1By “empirical adoption curve” we mean the cumulative num-
ber of adoptions versus time.
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Our work differs in a number of ways from previous ef-
forts. First, most other work looks at the spread of infor-
mation online without regard to geography. In our work, by
focusing on particular region we can observe online diffu-
sion events that are more likely to be relevant to important
offline events in that region. Secondly, our work differs from
prior investigations that use simulated rather than observed
network topologies: either randomly rewired lattice graphs
(Centola and Macy 2007; Barash, Cameron, and Macy 2012)
or preferential attachment graphs (Goel et al. 2015). Thirdly,
our simulations use an asynchronous model of user activity
rather than a global synchronous clock for all agents. This
more accurately models the way Twitter is actually used, and
enables us to model the timing of information spread more
realistically. Finally, some of the work comparing simple
and complex contagion uses deterministic rules for adoption
rather than modeling probabilistic adoption as a function of
exposures and sources of influence (Centola and Macy 2007;
Barash, Cameron, and Macy 2012). While we do not claim
that these statistical models accurately model choice for a
single individual, they allow us to model the population level
variability in adoption behavior. Another key feature of our
approach is that we do not rely on the calculation of empir-
ical adoption thresholds as in (Romero, Meeder, and Klein-
berg 2011; Barash 2011). In real world settings, due to inter-
mittent attention and activity, the observed numbers of ex-
posures and sources at the time of adoption are likely to be
much higher than the actual number that was needed for the
individual to adopt (Cameron 2016). Using our probabilis-
tic contagion models and random activity models we simu-
late these delayed adoptions and show the bias in observed
thresholds. Because of this large bias in estimated adoption
thresholds, we show that distributions of observed adoption
thresholds are not predictive of whether a complex or simple
contagion process is being observed.

Our approach, in summary, focuses on what we can ob-
serve - the empirical adoption curve for a hashtag - and de-
termines which contagion model best fits the data.

Related Work
Granovetter (Granovetter 1978) describes a class of aggre-
gate group behaviors that are dependent on people choos-
ing to engage in the behavior only after a certain number
of others have chosen to engage in that behavior. Slight
changes in the distribution of adoption thresholds across a
population can lead to quite different aggregate outcomes,
and some of this heterogeneity of thresholds depends on
local differences in network structure as well as temporal
and spatial factors. Riots, strikes, leaving a party that ap-
pears to be winding down, the spread of rumors, and the
diffusion of innovations are all given as examples of col-
lective behaviors that depend on adoption thresholds. Cen-
tola and Macy (Centola and Macy 2007) cast Granovetter’s
threshold model of collective behavior as describing com-
plex contagions, and investigate how they spread across net-
works. In responding to work by Granovetter (Granovetter
1973) about the importance of long range ties in a network
for the spread of ideas and behaviors, they use simulations
to demonstrate that while complex contagions will saturate

dense regions of a network with many redundant ties, their
spread to uninfected regions of a network are impeded un-
less there are a sufficient number of redundant long range
ties. Centola (Centola 2010) designed an experiment using
a constructed real-world online network and tested thresh-
old behavior on highly clustered lattice networks and ran-
domly rewired lattice networks. All nodes had the same de-
gree and the experiment was repeated for different node de-
grees and network sizes. He found that the contagions spread
faster and further on the clustered than on the random net-
works giving some credence to his results in (Centola and
Macy 2007) about the importance of redundant ties for the
spread of complex contagions. In related work, Barash, et
al. (Barash, Cameron, and Macy 2012) simulated complex
contagions on lattice and scale free networks and found that
complex contagions require a critical mass of adopters be-
fore there were sufficient redundant long ties for the conta-
gion to spread to remote regions of the network. The the-
oretical work on complex contagion demonstrates that, ex-
cept for highly connected dense networks, there are signifi-
cant barriers for the success of complex contagions, illustrat-
ing Granovetter’s original descriptions of these being fragile
processes.

Given the growth in user generated content on the Web
in recent years, researchers have turned to social media data
to look for empirical support for theories of complex con-
tagion. Barash (Barash 2011) looked at tags of photos on
Flickr, a photo sharing service, which allows users to com-
ment on and tag photographs. A few tags relating to offline
behavior that entailed some risk (“jailbreaking” iPhones was
one example) showed some evidence of complex contagion.
Romero, et al. (Romero, Meeder, and Kleinberg 2011) used
a set of eight million tweets from 2009-2010, selected the
top 500 hashtags in terms of user mentions, and categorized
the tags by topic categories (politics, celebrities, sports, mu-
sic, and Twitter idioms). From the tweets, they constructed a
network based on mentions of other users. For the initial use
of a hashtag by a user they calculated p(k): the percentage
of users with k or more exposures that adopted a tag with
exactly k exposures. They found that the p(k) curves (ef-
fectively, the range of probabilities of calculated threshold
values) were consistently different for political tags in that
p(k) was higher and remained high as k increased. They
also found that the initial adopters of political tags formed
denser networks, which they argue is consistent with com-
plex contagion and the need for social reinforcement for the
adoption of controversial ideas or behaviors. Using the cal-
culated p(k) values for users, they simulated cascades on the
constructed networks using the original seed sets of adopting
users, and also using random seeds. They found that the em-
pirical cascades of political and idiom tags grew at a faster
rate than cascades based on random seeds.

Goel et al. (Goel et al. 2015) looked at Twitter at a much
larger scale, using a collection of 1.2 billion tweets from
2011-2012, each tweet containing a URL pointing to one
of a set of specific Web sites. Their definition of adoption
was a user authoring a tweet containing one of the 622 mil-
lion unique URLs they identified. They defined a measure
of “structural virality” for a cascade of adoptions that bal-
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ances the width of the cascade due to broadcasts from a
single node, and the depth of the cascade. Most cascades
were small, so they focused on the 0.025% of cascades with
100 or more nodes. They found a diversity of cascade struc-
tures, including large broadcasts, deep tree structures, and
many hybrids of both. The URLs were categorized as links
to videos, news, or online petitions. They discovered that
25% of petitions had high structural virality compared to
small percentages for other categories, and that the struc-
tural virality of petitions was high across different cascade
sizes. This result is interesting and in line with the finding in
(Romero, Meeder, and Kleinberg 2011) that the initial den-
sity of adopters was higher for political hashtags. One in-
terpretation is that, similar to using a political hashtag, link-
ing to an online petitions requires social reinforcement, and
denser local network structure facilitates this reinforcement
through redundant ties. Finally, they ran simulations on a
simulated preferential attachment graph using a susceptible-
infected (SI) infection model and a constant infection rate.
The range of cascades generated showed many of the distri-
butional aspects of the empirical cascades; a small number
of large cascades, a similar average virality measure, and
invariance between size and structural virality. The results
of their simulations suggest that a simple contagion model
can explain the diversity of the real-world cascades found in
their Twitter data set.

State and Adamic (State and Adamic 2015) looked for
evidence for complex contagion on Facebook in the con-
text of people registering support for same-sex marriage by
overlaying their profile pictures with the equal sign sym-
bol associated with that social movement. Working from
anonymized data from three million Facebook profiles, they
used the volunteered demographic information associated
with the profiles to investigate the link between these fac-
tors and the number of friends that had to change their photo
before a user made the decision to change their own photo.
They found, for example, that users with larger numbers
of friends who indicated same-sex attraction in their profile
were more likely to adopt (i.e. change their profile pictures)
than those with few or no friends who indicated same-sex
attraction. Adoptions increased with the number of friends
adopting, and this was even more apparent in cases where
a user registered an interest in their friend’s adoption ei-
ther by clicking on a posted link or “liking” a post relating
to same sex marriage. They looked at adoption thresholds
across other content an found for “cut-and-paste memes,”
in cases where a user may be exposing themselves to ques-
tions or ridicule, a higher adoption threshold was required.
Finally, simulations were run on an empirical network of 800
thousand users. They modeled contagion based on user sus-
ceptibility (drawn at random from an exponential distribu-
tion), and an infection probability that decreases logarithmi-
cally with the number of adopting friends. For higher prob-
abilities of infection, adoption thresholds increased with the
number of friends adopting, as was seen in the empirical
data.

As we mentioned in the introduction, measuring the em-
pirical adoption threshold for a user (i.e. k) is problem-
atic because users check their timelines asynchronously, ob-

scuring our ability to observe an individual’s true adoption
threshold. The problem also exists in simulations with syn-
chronous user activity when multiple neighbors adopt in the
same time-step. Of the four studies cited, only State (State
and Adamic 2015) addresses this confound by restricting
adoption behaviors to cases where there is evidence that the
adopting user was paying attention to the source by look-
ing at click-throughs on posted links and users clicking the
“like” button. In this work, we demonstrate the bias in ob-
served k for both simple and complex adoption models us-
ing randomized asynchronous activity. We seek to infer that
a contagion is complex, as opposed to simple, based on its
potential to be explained by complex versus simple models,
rather than by direct estimation of users’ k thresholds. Our
work is also similar to State and Adamic in that we carry out
case studies on the diffusion of specific hashtags, similar to
their focus on adoption of the equal sign overlay of profile
pictures. Both Goel (Goel et al. 2015) and Romero (Romero,
Meeder, and Kleinberg 2011) instead focused on categories
of content and gross statistics on the number of adoptions.

Data
In this paper, we focus on Twitter data from Nigeria. Nigeria,
with over 170 million people, is the most populous country
in Africa and its largest economy. Internet penetration in the
country is in line with other major countries in Africa (Inter-
national Telecommunications Union 2015) with most people
connecting to the Web via mobile devices (Odufuwa 2012).
English and Nigerian Pidgin English are the languages pri-
marily used online in Nigeria, with some representation of
local languages such as Hausa, Igbo, and Yoruba. Code
switching between English, Pidgin English, and the local
languages is common as well.

We collected tweets using the public Twitter API, which
allows for geographic queries based on a pair of geographic
coordinates and a radius. The queries return tweets that the
API determines are from within the defined area based on
either the user’s stated location or, if their tweets are geo-
tagged, their latitude and longitude. We also collected tweets
from the timelines of users whose tweets were in the results
of the geographic queries in order to collect as complete a
sample as possible from the region. We ran persistent crawls
of tweets from around 45 Nigerian cities with populations of
100,000 or more using a radius varying from 25 to 40 miles.
Data collection began in 2010. In this work, we focus on
data collected from January 2014 through November 2014,
resulting in a data set containing 147 million tweets from 1.9
million users.

We extracted hashtags from the 2014 tweets that had not
occurred in the complete collection prior to January 15,
2014. This was to ensure that we were only looking at new
hashtags that were not part of previous diffusion events. We
then selected tags that had 1,000 or more adopters. Of these
82 tags, 42 tags had 1,000 or more adopters in the first three
weeks of their lifespan. For this paper, we focus on 20 of
these 42 as a case study, restricting our attention to adop-
tions during the first 24 hours of hashtag usage. These 20
hashtags analyzed were the tags in which more than 50 non-
seed adoptions were observed in that first 24 hour period.
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Hashtag Users Description

AmericaWillKnow 4390 Reference to quote by Pres. Jonathan about missing US funds
BRAvsGER 2791 World cup game
BringBackOurDaughters 6963 Kidnapping of schoolgirls by Boko Haram in April 2014
BringBackOurGirls 94513 Kidnapping of schoolgirls by Boko Haram in April 2014
BringBackOurGirlsAlive 3622 Kidnapping of schoolgirls by Boko Haram in April 2014
BringBackOurSisters 1600 Kidnapping of schoolgirls by Boko Haram in April 2014
Ebolafacts 4375 Campaign for awareness about Ebola
Makeuptransformation 1609 Viral trend showing steps to applying makeup
MH17 5308 Malaysian airliner shot down over Ukraine
MH370 8127 Malaysian airliner lost over Indian Ocean
MTNTcheleteGoodLife 3590 Promotion by MTN using the song ”Tchelete”
Nyanyablast 2340 Boko Haram bombing in Abuja
RIPRobinWilliams 2122 Related to passing of actor Robin Williams
SaveYakubuYusuf 1885 Raising money for Nigerian student’s cancer treatment
TheChibokGirls 1971 Kidnapping of schoolgirls by Boko Haram in April 2014
WeAreAllMonkeys 2435 Campaign against racist hooligans at soccer games
WelcomeDiMaria 1603 Player for Manchester United
WetinBeLove 1968 Pidgin for ”what is love?”
WhatJayZSaidToSolange 2129 Jay Z attacked by Solange
YesAllWomen 1615 Related to Santa Barbara shooting in June 2014

Table 1: The 20 hashtags for use in this case study with total number of adopting users in our Nigerian data set and a description.

The remaining popular hashtags will require either longer
simulation periods or alternative methods for selecting the
time period to begin simulation analysis, and so we leave
these to future work. The 20 tags are listed in Table 1. Five of
the 20 tags are related to the kidnapping of over 200 school-
girls in April 2014 by the Islamist group, Boko Haram, an
event that eventually gained worldwide visibility.

The follow graphs of the 52,689 users that were in the first
1,000 adopters of any of the 42 tags were then crawled using
the public Twitter API. These crawls were carried out in the
Spring of 2015, so the extracted social network ties were not
guaranteed to be the same as those present during the diffu-
sion events analyzed. A follow relationship exists if a user
decides to click the follow button for another user, result-
ing in that user’s tweets being posted to the following user’s
timeline.2 The set of users a person follows gives us an esti-
mate of the number of potential sources of information that
the user will be exposed to on Twitter via their timeline. In
cases where a followed user retweets a third user that the
following user does not follow, the follow graph does not in-
clude that user as a potential source. Thus, the follow graph
may underestimate the total number of potential sources.
The follow graph used for analysis is a closed-world net-
work and restricted to only the 52,689 users for which we
retrieved follow graph information, defining a network with
3.8 million edges, in which the average degree is approxi-
mately 114, representing about 30% of the follow ties from
the full non-closed network.

To ensure that we were primarily analyzing the activity of
Nigerians, we matched the geographic metadata returned by
the API with each tweet against a gazetteer. We were able to
geo-locate 58% of these users to Nigeria; 13% of the 52,689
users had no location information. To detect the presence of

2Note that the follow relationship is not reciprocal.

automated Twitter accounts, we used heuristics inspired by
Lee, et al. (Lee, Eoff, and Caverlee 2011). These measures
identified 427 suspect accounts, less than 1% of the total
52,689 users. By inspection, many of the more active ac-
counts were for news sources or news aggregators. We retain
these accounts in our set of analysis users, however, since
such accounts are a common part of the Twitter ecosystem
and may play an important role in actual diffusion events.

Methods

The aim of our work is to test for statistical separability
of adoption curves generated by simple and complex mod-
els using actual Twitter networks and contagion events. We
model random adoptions according to probabilistic simple
or complex models. In addition, we account for random
Twitter login activity by using a Poisson model for user lo-
gins. We do not model the creation of seed adopters in our
network. Seeds include users whose adoptions appear to pre-
cede any influence from neighbors in the follow graph. In
our dataset, seeds could be observed either due to a totally
novel adoption or to influence external to our subgraph.3 In
our tests, the true schedule of seed adoptions and uses of the
hashtag is replayed during the simulated contagion. In ad-
dition, we do not model a user’s decision to repeat the use
of the hashtag. Rather than characterize that process with
another statistical model for behavior, since it is outside the
scope of our investigation, we use the actual schedule of sub-
sequent hashtag use for each user. In the simulation, once
that user adopts, he or she re-exposes his or her followers in
the network according to this fixed time-delay schedule.

3External influence could be from other online networks or of-
fline channels, as well as missing data in our user or follow data.
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Random Timeline Checking

The distribution of logins is modeled as Poisson. Despite
the fact that activity rates vary from individual to individ-
ual, for simplicity, we model a single average rate parame-
ter, λ, for the entire population. The rate of timeline check-
ing governed by the parameter was assumed to be uniform
across the population. We use the full set of tweets collected
for our analyzed users - excluding the accounts we flagged
as automated - to calculate the frequency of login activity.
Rather than counting each tweet as a separate login, since
some users can tweet very rapidly, we employ a refractory
period of 15 minutes, during which subsequent tweets do not
count as additional logins. Using this method of counting lo-
gins, we then compute the average λ per user for the entire
11 month period, resulting in the average λ of 0.3846 logins
per hour.

For all of our contagion simulations, we first pick a ran-
dom schedule for logins of every user, using a stationary
Poisson model and the rate parameter above. We note that
assuming that login activity is uniform across users and sta-
tionary with time is unrealistic. Existing research suggests
that the inter-arrival times of online human activity are bet-
ter modeled by a power-law distribution (Barabasi 2005) or
as a non-stationary Poisson process (Malmgren et al. 2008).
Assuming a stationary model ignores diurnal activity and
the intermittent - and sometimes long - hiatus people may
take from using social media. We use these assumptions of
uniform and stationary login activity for the purpose of sim-
plicity, acknowledging that since we are looking at only the
first 24 hours of diffusion events, the inaccuracy in the model
is limited to whatever diurnal effects exist over the modeled
time period.

Probabilistic Adoption Models

We distinguish between two types of adoption models: sim-
ple and complex. We model user adoptions as a Bernoulli
process where the likelihood of adoption after each expo-
sure to a neighbor’s use of the hashtag is a function of the
number of distinct adopting neighbors. In the simple model,
the adoption likelihood is constant with number of adopt-
ing neighbors (also called sources). The complex model
approximates threshold behavior by using a sigmoid curve
of single-exposure adoption likelihood as a function of the
number of sources. We take each use of a hashtag by a fol-
lowed user as an exposure event, so 10 uses of the hashtag by
one neighbor translates to the same number of exposures as
single uses by 10 different adopting neighbors. After each
exposure, the user has a probability of transitioning to an
adopted state. Once a user has adopted, they cannot revert
to being a non-adopter, so this could be thought of as an SI
model.

In simulation, we draw the random login schedule for all
users as a first step to simulating the contagion event. Then
we step through the sorted full set of login events, check-
ing for activity that occurred since that user’s last login and
drawing from the probabilistic adoption model to decide if
the user will adopt or not. If the user adopts, their deter-
ministic schedule for reuses of the hashtag is added to the

exposure schedule (which already contains the schedule of
seed exposures). The simulations are run for a fixed period
of time; 24 hours from the first adoption time.

Simple Contagion Model Each exposure is treated as
an independent Bernoulli trial. After each exposure, the
user has a probability p of becoming an adopter (infected).
Hence, the likelihood of having adopted after exactly x ex-
posures follows a geometric distribution, shown in (1). The
probability of being infected when a node has been exposed
x times is then given by the negative binomial distribution.

p(A) = (1− p)x−1p (1)

The probability of being adopting at some point in a se-
quence of x exposures is given by,

psimple(A;x) = 1− (1− p)f(x) (2)

where f(x) is a function of the number of exposures seen by
the user. In this work, we use the function f(x) = x, but one
could envision using a function where the user becomes im-
mune to additional exposure after x becomes large enough.
In simulation, the above model is accomplished by draw-
ing independent Bernoulli trials with constant, p, after each
exposure. At each point when the user logs in, we simply
count the number of exposures that occurred between last
login and the current time, flipping a biased coin for each
exposure.

Complex Contagion Model In the complex contagion
model, the user requires (or benefits from) multiple sources
of influence. That is, subsequent exposures, when they are
from new adopting neighbors, have increased likelihoods of
influencing the user to adopt. Traditionally, complex conta-
gion has been modeled as a deterministic threshold model.
The user has a fixed threshold, kth or γth, which is the number
or fraction, respectively, of adopting neighbors required to
trigger a user’s adoption. We translated this threshold model
to a probabilistic adoption model where the likelihood of
adoption increases with the number of distinct adopting
neighbors. In this work, we focus on the contagion model
as a function of the absolute number of adopting neighbors.
These models could also be adapted to depend on the frac-
tion of adopting neighbors.

The probabilistic complex contagion adoption model that
we propose is also Bernoulli for each trial, but where the suc-
cess probability is nonstationary. In essence, the likelihood
of adoption at each exposure is modulated by the number
of adopting neighbors. We note that each exposure is eval-
uated in sequence, regardless of when the user last logged
in (so that waiting to check one’s timeline doesn’t increase
one’s likelihood of adoption for the exact same sequence of
neighbor actions). This is akin to modeling a user who logs
in and scrolls through all past history in order of least to
most recent.

The model needs to be aware of more than just the total
number of times a user’s neighbors engaged in the behav-
ior. We also need to know how many of the neighbors were
adopters at the time of each new exposure. We denote this
sequence of exposures for user i at time t as a sequence of
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ordered pairs,

Xt
i = [(t1, 1) , (t2, 1) , (t3, 2) , . . . , (tn, k)]

for t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn < t (3)

where t1, t2, t3, . . . , tn are n nondecreasing (i.e., ordered)
timestamps. The second value of each pair is an integer rep-
resenting the number of adopting neighbors. They are also
nondecreasing in the sequence and constrained to be be-
tween 1 and the total number of neighbors, F . The sequence
can then be summarized by a list of length k, where k is the
number of distinct adopting neighbors at the end of the se-
quence. This summary list, Lt

i, with length k, contains the
number of exposures that occurred while the user had each
number of adopting neighbors, from to 1 to k. In the exam-
ple, the summary list for user i at time t could be,

Lt
i = (2, 1, . . . , 1) (4)

indicating that there were 2 exposures when the user had 1
adopting neighbor, 1 exposure while there was 2 adopting
neighbors, and 1 exposure when the user had the total length
of Lt

i, equal to k, adopting neighbors. Note that each value
in Lt

i must be at least 1, since there must be at least one
exposure when the number of sources increases. The sum of
the values of Lt

i equals the total number of exposures and is
also equal to the length of the sequence Xt

i .
The probability of adopting at exactly the last exposure in

the sequence Lt
i is given by,

p(A;Li) = · · ·⎛
⎝
|Li|−1∏
k=1

(1− pk)
Li(k)

⎞
⎠ (1− p|Li|)

Li(|Li|)−1p|Li| (5)

where |Li| denotes the length of the sequence Li and we
have omitted the t for brevity.

As an example, if the list of exposures were (2, 1, 3, 1),
then the probability of adopting at exactly the last exposure
would be

(1− p1)
2
(1− p2)

1
(1− p3)

3
p4 (6)

Similarly, the probability of adopting at some point in the
sequence, Lt

i, of exposures is given by,

pcomplex(A;Li) = 1−
⎡
⎣
|Li|∏
k=1

(1− pk)
Li(k)

⎤
⎦ (7)

We have not yet defined the likelihood of adoption pk, which
is an increasing function of k (the number of sources). To
approximate threshold-like behavior, we use a modified ver-
sion of the logistic sigmoid function,

pk = εlo +
εhi − εlo

1 + e−g(k−k0)
(8)

for k > 0. We do not model the process of adoption when
k = 0, instead using the true schedule of seed adoptions
and hashtag uses. The 4 parameters of the sigmoid model
are εlo, εhi, g, and k0. The ε parameters are simply set to
0.001 and 0.25, and represent the minimum and maximum

Figure 1: Comparison of simple versus complex model for
per-exposure adoption likelihood as a function of the num-
ber of adopting neighbors. The simple model has a constant
likelihood, 0.006; the complex model is a sigmoid described
in (8) with k0 = 18, εlo = 0.001, εhi = 0.25, and g = 1.0.

single exposure probability of adoption for all k ≥ 1. The
shape parameter g, set to 1, governs the rate of change of the
sigmoid; i.e., how sharp the threshold in likelihood is. The
parameter k0, shifts the location of the threshold in the sig-
moid function, approximating the effect of the deterministic
threshold in non-probabilistic complex contagion models.

Figure 1 shows the comparison of the per exposure likeli-
hood of adoption as a function of the number of sources for
the simple and complex models we are using. The simple
model is constant with the number of sources while the com-
plex model rapidly increases the adoption likelihood when
the number of source approaches k0, here shown at 18. For
the simulations in this study, we fix all parameters of the
probabilistic complex contagion model to those shown in
Figure 1 except for the threshold location, k0.

Simulation of this complex contagion model involves
looking at the new exposures that have occurred since the
user’s last login, recording the previous number of adopting
neighbors at the time of each new hashtag usage, and in-
crementing the number of adopting neighbors when the new
usage is due to a new source. From this information, the se-
quence Li is constructed and the probability of adoption is
simulated by drawing from a sequence of Bernoulli trials
(potentially with changing probability, pk).

Similar to the simple model with saturation, when the
number of exposures becomes large enough, we could adapt
this complex contagion model such that pk falls to 0 when
k gets large enough or when the total number of exposures
exceeds some threshold. We do not test models of immunity
in this study, leaving that to future work.

Experiments and Results

We tested the probabilistic contagion models against the real
world adoption events of 20 hashtags that were popular in
Nigerian Twitter users in 2014. Our approach was to opti-
mize the unknown parameters of the complex and simple
contagion models, picking values that minimize the mean
squared error of predicted adoption curves. For each of a set
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Hashtag Best-Fit Param.’s Mean Relative �2 Err. Log χ2 Probability
k0 p Complex Simple Complex Simple

AmericaWillKnow 18.00 0.0064 33.9% 39.2% -31.4 -Inf
BRAvsGER 8.00 0.0159 38.6% 25.7% -Inf -Inf
BringBackOurDaughters 5.33 0.0119 208.5% 49.1% -0.28 -0.30
BringBackOurGirls 5.67 0.0105 221.1% 67.3% -16.4 -Inf
BringBackOurGirlsAlive 4.33 0.0168 67.1% 54.9% -Inf -Inf
BringBackOurSisters 4.67 0.0186 43.5% 19.4% -4.7 -29.2
Ebolafacts 20.00 0.0012 14.5% 12.0% -16.92 -16.85
Makeuptransformation 11.33 0.0127 20.1% 17.6% -Inf -23.1
MH17 16.00 0.0067 23.8% 32.0% -Inf -Inf
MH370 8.67 0.0076 17.9% 20.2% -22.8 -11.7
MTNTcheleteGoodLife 7.00 0.0110 77.5% 28.6% -Inf -4.7
Nyanyablast 5.67 0.0105 33.0% 28.1% -8.0 -7.5
RIPRobinWilliams 5.00 0.0132 15.4% 8.9% -18.4 -17.3
SaveYakubuYusuf 23.00 0.0304 106.2% 16.8% -15.3 -2.3
TheChibokGirls 15.33 0.0062 18.0% 18.1% -Inf -Inf
WeAreAllMonkeys 7.00 0.0089 31.2% 27.3% -Inf -30.1
WelcomeDiMaria 7.67 0.0105 37.3% 29.6% -Inf -Inf
WetinBeLove 12.33 0.0087 12.4% 19.4% -35.6 -5.1
WhatJayZSaidToSolange 12.33 0.0119 24.7% 16.9% -Inf -4.6
YesAllWomen 12.00 0.0055 28.6% 19.2% -20.0 -3.1

Table 2: Best-fit (in �2 error) model parameters and average relative �2 fit error for each hashtag over 100 simulations with the
best fitting complex and simple model parameters. All errors are computed for 10 evenly spaced time samples from 2.18 to 24
hours. The log probability of the chi-squared (χ2) residual is based on the mean and full covariance estimated from simulation
values at the 10 sample times; where -Inf represents a probability too small to be represented in MATLAB.

of 10 random simulations, we compute the predicted adop-
tion curve, denoted â, for 24 hours after the first seed adop-
tion and compare it to the actual adoption curve, a. We com-
pute the average squared error at 10 evenly spaced times be-
tween 2.18 and 24 hours since the time of the first adoption.
Table 2 shows the average �2 fit error, normalized by the �2
norm of the true adoption curve. This average relative �2 fit
error is given by E[‖â−a‖�2 ]/‖a‖�2 .

We use a two stage parameter search to find model param-
eters for both the complex and simple models. In the first
stage, a binary search is conducted where each tested pa-
rameter value is evaluated over 10 simulations. The linearly
interpolated number of simulated adoptions is compared to
the true number of adoptions at 4, 8, 12, 16, and 20 hours
from the first adoption time. If the majority of simulation
values for all 10 simulations and sample times are above the
true adoption curve, then the parameter k0 is increased for
the complex model or the parameter p is lowered for the sim-
ple model. During the binary search phase, 31 evenly spaced
samples of k0 are considered between 2 and 62, starting ini-
tially with the middle value, k0 = 32. For the binary search
phase when fitting the simple model, 31 evenly spaced sam-
ples of p between 0.0005 and 0.015 are searched, starting
with the middle value, p = 0.00775. After upper and lower
bounding the parameter in the binary search phase, a refined
search is conducted over 5 additional evenly spaced sam-
ples of the model parameter that are between the lower and
upper estimates of k0 or p. The final estimate of the model
parameter is chosen among these refined samples, including
the upper and lower bounds found in the binary search, to
be the parameter that minimizes average mean squared er-

ror over the 10 simulations at 10 time samples between 2.18
and 24 hours. After choosing best fitting model parameters,
we generate 100 random simulations, where a new timeline
checking schedule is sampled after every 10 simulations, us-
ing the best complex and simple parameters. The results of
these simulations are shown in Table 2 and Figure 2.

Simulations in Python of 10 samples per model parame-
ter, performing the two stages of search over the 24 hour pe-
riod with timeline checking rates of 0.3846 logins per hour
per each of the 52,689 users, currently take approximately
1 hour per model on a computer with a 2.8 GHz Intel Core
i7 processor. This binary search method allows us to cover a
wide range of parameter values in 5 or fewer simulation iter-
ations, narrowing down the space before performing a local
grid search over 5 additional values. While we are currently
searching over exclusively the threshold parameter in sim-
ulated complex contagions, the predicted adoption curves
are also highly sensitive to the other parameters, especially
those governing the minimum and maximum per-exposure
adoption likelihoods. We leave optimization of those param-
eters jointly with the threshold value to future work as this
high dimensional search is challenging to efficiently per-
form.

Aside from the relative �2 fit error, we report the log
of the probability of observing a chi-squared (χ2) resid-
ual between the true and simulated adoption curves. The
mean, μ, and full covariance matrix, Σ, of the 10 interpo-
lated time sample values at 2.18 to 24 hours are computed
over 100 simulations. Then the χ2 value is computed as
(a− μ)

T
Σ−1 (a− μ). We use MATLAB’s chi2cdf func-

tion to compute the likelihood that the residuals should be
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(a) Complex (k0 = 18) (b) Simple (p = 0.0064)

(c) Complex (k0 = 7.00) (d) Simple (p = 0.0110)

(e) Complex (k0 = 5.67) (f) Simple (p = 0.0105)

Figure 2: 100 simulated cumulative adoption curves (shown in color) using the best �2-error fit parameters to each model versus
the true adoption curve (shown in black) for #AmericaWillKnow, #MTNTcheleteGoodLife, and #BringBackOurGirls.

less than the observed value. The log of the probability of
observing a residual at least as large as the one measured
is shown in Table 2 for comparison between the models.
The highest likelihood of any model observed was the sim-
ple model on the tag BringBackOurDaughters. However, for
some hashtags, large variations in predicted adoption curves
lead to the high reported chi-squared fit probabilities, as in-
dicated by large mean relative �2 errors.

The results of Table 2 are mostly in line with expecta-
tions that the first hashtag, AmericaWillKnow, may repre-
sent a complex contagion, while many of the other tags are
well-explained by simple exposure models. AmericaWill-
Know has lower normalized average fit error under the com-
plex model, while MH370 and MTNTcheleteGoodlife have
lower fit error under the simple contagion model. In addi-
tion, we see the best fitting values of k0 are higher for Amer-
icaWillKnow than for most of the other hashtags. There are
also examples of hashtags where neither of the probabilistic
adoption models generated adoption curves whose variation

could explain the observed adoption curve. The tags BRAvs-
GER and WelcomeDiMaria were examples where the adop-
tions were so concentrated in time that they were likely not
due to a contagion phenomenon, but rather due to influ-
ence from an external event, a soccer game, which correlates
neighboring user behavior. The tag MH17 had low relative
�2 fit error, but adoption curves that were consistently under-
estimating the initial growth in adoptions. This could be re-
lated to not optimizing over the parameters εlo and εhi, or due
to external influence from news sources causing adoptions
that were again not the result of influence between neigh-
bors.

Also shown in Table 2, are fit results for the important set
of hashtags regarding the April 2014 kidnapping of Nige-
rian schoolgirls by Boko Haram: BringBackOurGirls and
its variants. The models fit very poorly in an �2 error sense
when the full set of 100 simulations were run. This was due
to a tendency of both models, but especially the complex
models, to predict a take-off event where the rate of adop-
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(a) Complex Contagion (b) Simple Contagion

Figure 3: Comparison of the distributions of observed adoption thresholds, k, in the true #AmericaWillKnow contagion (top
series) versus single-simulation measured k values for complex and simple models with varying model parameters. For complex
contagion simulations, the centering parameter, k0 was varied between 13 and 25, with other parameters fixed (εlo = 0.001,
εhi = 0.25, g = 1.0). For the simple contagion, the single parameter p was varied between 0.006429 and 0.011857.

Figure 4: Comparison of simple (blue) and complex (red)
simulations with the observed (black) CDF of the number of
adopting friends at time of adoption, k, for #AmericaWill-
Know. Axes are CDF (k = 2) and 1−CDF (k = 5). Three
random simulations per parameter are shown.

tions jumps drastically and the contagion quickly spreads
widely in the network of users. This caused wide variation
among our simulated curves making analysis of the statisti-
cal chi-squared goodness-of-fit a potentially unreliable met-
ric. Figure 2 shows the simulated adoption curves for Bring-
BackOurGirls, zoomed in on the true curve. We see approx-
imate 30 simulations where early take-off is predicted with
the complex model and about 6 simulations where the sim-
ple model also predicts early take-off. We are investigating

the reasons behind these predictions and believe that more
realistic models for fatigue or nonhomogeneous login activ-
ity may mitigate the large variability observed.

Figure 2 shows comparisons of the simulated and true
adoption curves for three hashtags under each model with
the best-fitting parameters. The left panels show the complex
contagion simulations while the right panels show simula-
tions using the simple model. We see, in panel (a), the com-
plex contagion model is most capable of modeling the level-
ing off of adoptions observed in the AmericaWillKnow con-
tagion, while, in panel (b), we see that the simple model pre-
dicts steady growth for this event and in this social network.
In contrast, an adoption curve with steady growth does a
good job of fitting MTNTcheleteGoodLife, panel (d), which
is a tag related to a sales promotion. The bottom panels show
fits for the tag, BringBackOurGirls, which was related to a
social movement surrounding the kidnapping of the school-
girls. These curves are zoomed in on the true adoption curve.
There are simulations that predict drastic increases in adop-
tion rates that are not seen in the empirical data. We are in-
vestigating the reasons behind this variability in simulation
predictions, but note that in cases where early take-off did
not occur, the complex model did a better job than the simple
model of predicting the increase in adoptions that occurred
at approximately 18 hours.

Next we examined the relationship of observed adoption
threshold values, k, for just the AmericaWillKnow tag. Fig-
ure 3 shows the measured probability densities of each k
threshold, from 1 to 20, compared to the uppermost dis-
tribution, which was the empirical k distribution. Each of
these distributions is derived from a single random simula-
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tion. Under the complex contagion models, in panel (a), we
show the changes in measured k distributions with the model
parameter, k0. We see that as k0 increases, we actually see a
drop in the average observed k threshold. We note that when
k0 increases, there are fewer adopters in general, so the like-
lihood that any individual will have a large number of adopt-
ing neighbors falls. Even so, for the very small values of k0,
we hypothesize that the large upward bias in observed adop-
tion thresholds is due to the rapid spread. Since random user
logins have a constant average rate, users are more likely
to get behind in checking their neighbor’s activity in these
cases. In panel (b) of Figure 3, we see a similar trend with
increasing simple parameter, p. As p increases, the distribu-
tion of k thresholds moves further from 1, also likely to be
due to the rapid spread of the contagion. This indicates that
traditional methods measuring adoption thresholds to assess
whether complex or simple contagion is at work would not
lead to reliable detectors of complex phenomena.

Figure 4 shows the scatter plot of the cumulative density
function (CDF) of users with observed thresholds 2 or lower
versus users with observed thresholds greater than 5. Values
are shown for 3 random simulations per complex or simple
contagion parameter. The red markers for complex conta-
gions with varying k0 are spread throughout the entire range
of blue markers associated with simple contagion. As a re-
sult, we expect there to be little hope of inferring whether
an empirical contagion is complex or simple based on ob-
served adoption thresholds. This difficulty is part of our mo-
tivation for testing observability of model type by directly
fitting simulations to the adoption curve.

Conclusions and Future Work
We have proposed probabilistic contagion models for both
simple and complex contagion phenomena, as well as a
Poisson model for random delays in user activity. We tested
these models on 20 contagion events in a 2014 Nigerian
Twitter data set of over 50,000 users. By optimizing over un-
known parameters of the contagion models; i.e., the thresh-
old for the complex model and the single probability of
adoption for the simple model, we compute the fit error
of the empirical adoption curve to 100 random simulations
under optimized model parameters. We show that for the
hashtag #AmericaWillKnow, which is politically themed,
the complex contagion model produces a superior fit than
the simple contagion model. In contrast, for the majority of
hashtags, such as #MTNTcheleteGoodLife, the simple con-
tagion model produces lower average fit error, matching our
expectations about many of those contagions.

We also investigated the empirical as well as simulation-
based observations of the number of adopting friends at the
time of user adoption (i.e., the complex threshold k). We
found that the distribution of user thresholds over k is uncor-
related with the threshold parameter of the complex model.
In addition, for wide ranges of unknown simple and com-
plex parameters, the cumulative distributions of thresholds
do not distinguish between complex and simple contagions.

This initial case study of 20 popular hashtags demon-
strates the potential of these generative models for explain-
ing the time evolution of contagion, as well as distinguishing

complex from simple phenomena. In future work, we plan to
study the cause of early take-offs observed in some simula-
tions, model varying login rates as well as nonstationarity in
user activity, and test the impact of modeling immunity af-
ter a large number of exposures, as it may be necessary to
reduce variability in predicted adoption curves.
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