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Abstract

Social Media usually provide streaming data access that en-
able dynamic capture of the social activity of their users.
Leveraging such APIs for collecting social data that satisfy
a given pre-defined need may constitute a complex task, that
implies careful stream selections. With user-centered streams,
it indeed comes down to the problem of choosing which users
to follow in order to maximize the utility of the collected data
w.r.t. the need. On large social media, this represents a very
challenging task due to the huge number of potential targets
and restricted access to the data. Because of the intrinsic non-
stationarity of user’s behavior, a relevant target today might
be irrelevant tomorrow, which represents a major difficulty to
apprehend. In this paper, we propose a new approach that an-
ticipates which profiles are likely to publish relevant contents
- given a predefined need - in the future, and dynamically
selects a subset of accounts to follow at each iteration. Our
method has the advantage to take into account both API re-
strictions and the dynamics of users’ behaviors. We formalize
the task as a contextual bandit problem with multiple actions
selection. We finally conduct experiments on Twitter, which
demonstrate the empirical effectiveness of our approach in
real-world settings.

1 Introduction

In recent years, many social websites that allow users to pub-
lish and share content online have appeared. For example
Twitter, with 302 million active users and more than 500
millions posts every day, is one of the main actors of the
market. These social media have become a very important
source of data for many applications. Given a pre-defined
need, two solutions are usually available for collecting use-
ful data from such media: 1) getting access to huge reposi-
tories of historical data or 2) leveraging streaming services
that most media propose to enable real-time tracking of their
users’ activity. As the former solution usually implies very
important costs for retrieving relevant data from big data
warehouses, the latter may constitute a very relevant alterna-
tive that enables real-time access to focused data. However,
it implies to be able to efficiently target relevant streams of
data.

In this paper, we consider the case of user-centered
streams of social data, i.e. where each individual stream fur-
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nishes access to the data published by a particular user, under
restrictive constraints related to the number of streams that
can be simultaneously considered. On Twitter for instance,
data capture is limited to 5000 simultaneous streams1. Re-
garding the huge number of available users on this media, it
requires an incredibly important effort for targeting relevant
sources. Selecting relevant users to follow among the whole
set of accounts is very challenging. Imagine someone inter-
ested in politics wishing to keep track of people in relation
to this topic in order to capture the data they produce. One
solution is to manually select a bucket of accounts and fol-
low their activity along time. However, Twitter is known to
be extremely dynamic and for any reason some users might
start posting on this topic while others might stop at any
time. So if the interested user wants to be up to date, he
might change the subset of followed accounts dynamically,
his goal being to anticipate which users are the most likely
to produce relevant content in a close future. This task seems
hard to handle manually for two major reasons. First, the cri-
teria chosen to predict whether an account will potentially
be interesting might be hard to define. Secondly, even if one
would be able to manually define those criteria, the amount
of data to analyze would be too large.

Regarding these important issues, we propose a solution
that, at each iteration of the process, automatically selects a
subset of accounts that are likely to be relevant in the next
time window, depending on their current activity. Those ac-
counts are then followed during a certain time and the corre-
sponding published contents are evaluated to quantify their
relevance. The algorithm behind the system then learns a
policy to improve the selection at the next time step. We
tackle this task as a contextual bandit problem, in which at
each round, a learner chooses an action among a bigger set
of available ones, based on the observation of action features
- also called context - and then receives a reward that quanti-
fies the quality of the chosen action. In our case, considering
that following someone corresponds to an action, several ac-
tions have to be chosen at each time step, since we wish to
leverage the whole capture capacity allowed by the stream-
ing API and therefore collect data from several simultaneous
streams.

1In this paper we focus on Twitter, but the approach is valid for
many other social platforms.
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With the current activity of a certain user corresponding
to its context features, our task suits well the contextual ban-
dit framework. However, in its traditional instance, features
of every action are required to be observed at each itera-
tion to perform successive choices. For our specific task, we
are not able to observe the current activity of every potential
user. Consequently, we are not able to get everyone’s context
and directly use classical contextual bandit algorithms such
as LinUCB (Chu et al. 2011). On the other hand, it cannot
be treated as a traditional (non-contextual) bandit problem
since we would lose the useful information provided by ob-
served context features. To the best of our knowledge, such
an hybrid instance of bandit problem has not been studied
yet. To solve our problem, we propose a data capture algo-
rithm which, along with learning a selection policy of the
k best streams at each round, learns on the feature distribu-
tions themselves, so as to be able to make approximations
when features are hidden from the agent.

The paper is organized as follows: Section 2 presents
some related work. Section 3 formalizes the task and
presents our data capture system. Section 4 then describes
the model and the algorithm proposed to solve the task. Fi-
nally, section 5 reports various sets of experimental results.

2 Related Work
In this section we first present some literature related to ban-
dit learning problems, then we discuss about some data cap-
ture related tasks and finally present some applications of
bandits for social media tasks.

The multi-armed bandit learning problem, originally stud-
ied in (Lai and Robbins 1985) in its stationary form has been
widely investigated in the literature. In this first instance,
the agent has no access to side information on actions and
assume stationary reward distributions. A huge variety of
methods have been proposed to design efficient selection
policies, with corresponding theoretical guarantees. The fa-
mous Upper Confidence Bound (UCB) algorithm proposed
in (Auer, Cesa-Bianchi, and Fischer 2002) and other UCB-
based algorithms ((Audibert, Munos, and Szepesvari 2007;
Audibert and Bubeck 2009)) have already proven to solve
the so-called stochastic bandit problem. This type of strate-
gies keeps an estimate of the confidence interval related to
each reward distribution and plays the action with highest
upper confidence bound at each time step. In (Auer, Cesa-
Bianchi, and Fischer 2002), the authors introduce the con-
textual bandit problem, where the learner observes some
features for every action before choosing the one to play,
and propose the LinRel algorithm. Those features are used
to better predict the expected rewards related to each ac-
tion. More recently, the LinUCB algorithm, which improves
the performance of LinRel has been formalized (Chu et
al. 2011). Those two algorithms assume the expected re-
ward of an action to be linear with respect to some un-
known parameters of the problem to be estimated. In (Kauf-
mann, Cappe, and Garivier 2012), the authors propose the
Bayes-UCB algorithm which unifies several variants of UCB
algorithms. For both the stochastic and contextual bandit
case, Thompson sampling algorithms, which introduce ran-
domness on the exploration by sampling action parameters

from their posterior distributions, have been designed (Kauf-
mann, Korda, and Munos 2012; Agrawal and Goyal 2012a;
Chapelle and Li 2011; Agrawal and Goyal 2012b). More re-
cently, the case where the learner can play several actions
simultaneously has been formalized respectively in (Chen,
Wang, and Yuan 2013) (CUCB algorithm) and (Qin, Chen,
and Zhu 2014) (C2UCB algorithm) for the non contextual
and the contextual case. Finally in (Gisselbrecht et al. 2015)
the authors propose the CUCBV algorithm which extends
the original UCBV of (Audibert, Munos, and Szepesvari
2007) to the multiple plays case. To the best of our knowl-
edge, no algorithm exists for our case, i.e. when feature vec-
tors are only observable with some given probability.

Regarding social media, several existing tasks present
similarities with ours. In (Li, Wang, and Chang 2013), the
authors build a platform called ATM that is aimed at auto-
matically monitoring target tweets from the Twitter Sample
stream for any given topic. In their work, they develop a key-
word selection algorithm that efficiently selects keywords to
cover target tweets. In our case, we do not focus on key-
words but on user profiles by modeling their past activity on
the social media. In (Colbaugh and Glass 2011) the authors
model the blogosphere as a network in which every node is
considered as a stream that can be followed. Their goal is to
identify blogs that contain relevant contents in order to track
emerging topics. However, their approach is static and their
model is trained on previously collected data. Consequently,
this approach could not be applied to our task: first we can-
not have access to the whole network due to APIs restric-
tions and secondly, the static aspect of their methods is not
suitable to model the dynamics of users’ behaviors that can
change very quickly. In (Hannon, Bennett, and Smyth 2010)
and (Gupta et al. 2013), the authors build recommendation
systems, respectively called Twittomender and Who to Fol-
low. In the former collaborative filtering methods are used to
find twitter accounts that are likely to interest a target user. In
the latter, a circle of trust (which is the result of an egocen-
tric random walk similar to personalized PageRank (Fogaras
et al. 2005)) approach is adopted. In both cases, authors as-
sume the knowledge of the whole followers/followees Twit-
ter graph, which is not feasible for large scale applications
due to Twitter restriction policies. Moreover, the task is quite
different from ours. While these two models are concerned
about the precision of the messages collected from the se-
lected followees (in order to avoid relevant information to
be drown in a too large amount of data), we rather seek at
maximizing the amount of relevant data collected in a per-
spective of automatic data capture.

Bandit algorithms have already been applied to various
tasks related to social networks. For example in (Kohli,
Salek, and Stoddard 2013), the authors handle abandonment
minimization tasks in recommendation systems with ban-
dits. In (Buccapatnam, Eryilmaz, and Shroff 2014), bandits
are used for online advertising while in (Lage et al. 2013),
the authors use contextual bandit for an audience maximiza-
tion task. In (Gisselbrecht et al. 2015), a data capture task
is tackled via non-contextual bandit algorithms. In that case,
each user is assumed to own a stationary distribution and the
process is supposed to find users with best means by trading
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off between the exploitation of already known good users
to follow and the exploration of unknown ones. The pro-
posed approach mainly differs from this work for the non-
stationnarity assumptions it relies on. This work is consid-
ered in the experiments to highlight the performances of the
proposed dynamic approach.

3 Data Streams Selection

3.1 Context

As we described in the introduction, our goal is to propose a
system aimed at capturing some relevant data from stream-
ing APIs proposed by most of social media. Face to such
APIs, two different types of data sources, users or keywords
(or a mixture of both kinds), can be investigated. In this pa-
per, we focus on users-centered streams. Users being the
producers of the data, following them enables more targeted
data capture than keywords. Following keywords to obtain
data about a given topic for example would be likely to lead
to the collection of a greatly too huge amount of data2, which
would imply very important post-filtering costs. Moreover,
considering user-centered streams allows a larger variety of
applications, with author-related aspects, and more com-
plex topical models, than focusing on keywords-centered
streams.

Given that APIs usually limit the ability to simultaneously
follow users’ activity to a restricted number of accounts, the
aim is to dynamically select users that are likely to publish
relevant content with regard to a predefined need. Note that
the proposed approach would also be useful in the absence
of such restriction, due to the tremendous amount of data
that users publish on main social media. The major difficulty
is then to efficiently select user accounts to follow given the
huge amount of users that post content and that at the be-
ginning of the process, no prior information is known about
potential sources of data. Moreover, even if some specific
accounts to follow could be found manually, adapting the
capture to the dynamics of the media appears intractable by
hand. For all these reasons, building an automatic solution
to orient the user’s choices appears more than useful.

To make things concrete, in the rest of the paper we set
up in the case of Twitter. However, the proposed generic
approach remains available for any social media providing
real-time access to its users’ activity.

3.2 A Constrained Decision Process

As described above, our problem comes down to select, at
each iteration t of the process, a subset Kt of k user accounts
to follow, among the whole set of possible users K (Kt ⊆
K), according to their likelihood of posting relevant tweets
for the formulated information need. Given a relevance score
ra,t assigned to the content posted by user a ∈ Kt during
iteration t of the process (the set of tweets he posted during
iteration t), the aim is then to select at each iteration t over T

2Note that on some social media such as Twitter, a limitation
of 1% of the total amount of produced messages on the network
is set. Considering streams centered on popular keywords usually
leads to exceed this limitation and then, to ignore some important
messages.

the set of user accounts that maximizes the sum of collected
relevance scores:

max
(Kt)t=1..T

T∑
t=1

∑
a∈Kt

ra,t (1)

Note that, in our task, we are thus only focused on getting
the maximal amount of relevant data, the precision of the
retrieved data is not of our matter here. This greatly differs
from usual tasks in information retrieval and followees rec-
ommendation for instances.

Relevance scores considered in our data capture process
depend on the information need of the user of the system.
The data need in question can take various forms. For exam-
ple, one might want to follow the activity of users that are
active on a predefined topic or influent in the sense that their
messages are reposted a lot. They can depend on a prede-
fined function that automatically assigns a score according
to the matching of the content to some requirements (see
section 5 for details).

Whereas (Gisselbrecht et al. 2015) relies on stationarity
assumptions on the relevance score distributions of users for
their task of focused data capture (i.e., relevance scores of
each user account are assumed to be distributed around a
given stationary mean along the whole process), we claim
that this is a few realistic setting in the case of large social
networks and that it is possible to better predict future rele-
vance scores of users according to their current activity. In
other words, with the activity of a user a ∈ K at iteration
t − 1 represented by a d-dimensional real vector za,t, there
exists a function h : Rd → R that explains from za,t the
relevance score ra,t that a user a would obtain if it was fol-
lowed during iteration t. This correlation function needs to
be learned conjointly with the iterative selection process.

However, in our case, maximizing the relevance scores as
defined in formula 1 is constrained in some different ways:
• Relevance scores ra,t are only defined for followed ac-

counts during iteration t (i.e. for every a ∈ Kt), others are
unknown;

• Context vectors za,t are only observed for a subset of
users Ot (i.e., it is not possible to observe the whole ac-
tivity of the social network).

Constraints on context vectors are due to API restrictions.
Two streaming APIs of Twitter are used to collect data:
• On the one hand, a Sample streaming API furnishes real-

time access to 1% of all public tweets. We leverage this
API to discover unknown users and to get an important
amount of contexts vectors for some active users;

• On the other hand, a Follow streaming API provides real-
time data published by a subset of the whole set of Twitter
users. This API allows the system to specify a maximal
number of 5000 users to follow. We leverage this API to
capture focused data from selected users.
For users in Ot, their relevance score at next iteration can

be estimated via the correlation function h, which allows
to capture variations of users’ usefulness. For others how-
ever, we propose to consider the stationary case, by assum-
ing some general tendency on users’ usefulness. Therefore,
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we get an hybrid problem, where observed contexts can be
used to explain variations from estimated utility means.

3.3 System Description

Iteration t+1Iteration t-1
Sample Streaming API

za1,t

za2,t

za3,t

Potential users

Relevance
Feedback

Feeds / mean updates

za4,t

Iteration t

za5,t+1

za4,t+1

za7,t+1

Ot Ot+1

Kt

Relevance
Feedback

Feeds / mean updates

Relevance
Feedback

Learner

Selection 
policy

Kt+1
Learner

Selection 
policy

Kt-1

Selection 
policy

Follow APIFollow API Follow API

Tweets Tweets Tweets

za5,t

za3,t+1

za1,t+1

Figure 1: System illustration.

Figure 1 depicts our system of focused data capture from
social media. The process follows the same steps at each it-
eration, three time steps are represented on the figure. At the
beginning of each iteration, the selection policy selects a set
of users to follow (Kt) among the pool of known users K,
according to observations and some knowledge provided by
a learner module. Then, the messages posted by the k se-
lected users are collected via the Follow streaming API. As
we can see in the central part of the illustration, after hav-
ing followed users in Kt during the current iteration t, the
collected messages are analyzed (by a human or an auto-
matic classifier) to give feedbacks (i.e., relevance scores) to
the learner.

Meanwhile, as a parallel task during each iteration, cur-
rent activity features are captured from the Sample stream-
ing API. This allows us to feed the pool of potential users
to follow K and to build the set Ot of users with observed
contexts. Context vectors for iteration t are built by consid-
ering all messages that the system collected from the Follow
streaming and the Sample streaming APIs for each user dur-
ing this iteration. Therefore, every user whose at least one
message was included in these collected messages at itera-
tion t is included in Ot+1 (messages from a same author are
concatenated to form za,t+1, see section 5 for an example of
context construction from messages). Contexts vectors col-
lected during iteration t serve as input for the selection strat-
egy at iteration t+ 1.

4 Model and Algorithm
This section first introduces some settings and backgrounds
for our contextual bandit approach for targeted data capture,
details the policy proposed to efficiently select useful users
to follow, and then describes the general algorithm of our
system.

4.1 Problem setting

As defined above, we denote by K the set of K known users
that can be follow at each iteration of the data capture pro-

cess. At each round t ∈ {1, .., T} of the process, feature
vectors za,t ∈ R

d can be associated with users a ∈ K. The
set of k users selected to be followed during iteration t is de-
noted by Kt. The reward obtained by following a given user
a during iteration t of the process is denoted by ra,t. Note
that only rewards ra,t from users a ∈ Kt are known, others
cannot be observed.

In the field of contextual bandit problems, the usual lin-
ear hypothesis assumes the existence of an unknown vector
β ∈ R

d such that ∀t ∈ {1, .., T} , ∀a ∈ K : E[ra,t|za,t] =
zTa,tβ (see (Agrawal and Goyal 2012b)). Here, in order to
model the intrinsic quality of every available action (where
an action corresponds in our case to the selection of a user
to follow during the current iteration), we also suppose the
existence of a bias term θa ∈ R for all actions a, such that
finally:

∀t ∈ {1, .., T} , ∀a ∈ K : E[ra,t|za,t] = zTa,tβ + θa (2)

This formulation corresponds to a particular case of the Lin-
UCB algorithm with the hybrid linear reward proposed in (Li
et al. 2010) by taking a constant arm specific feature equal to
1 at every round. Note that individual parameters could have
also been considered in our case but this is not well suited
for the types of problems of our concern in this paper, where
the number of available actions at each round is usually high
(which would imply a difficult learning of individual param-
eters). For the sake of simplicity, we therefore restrict this
individual modeling to this bias term.

In our case, a major difference with existing works on
contextual bandit problems is that every context is not ac-
cessible to the selection policy before it chooses users to
follow. Here, we rather assume that every user a from the
social media owns a probability pa (0 < pa < 1) to reveal
its context3. The set of users for which the process observes
the features at time t is denoted Ot, whose complement is
denoted Ōt. Then, since Kt ⊂ K and K = Ot∪Ōt, selected
users can then belong to the set of users without observed
context Ōt.

Finally, as told above, while our approach would remain
valid in a classical bandit setting where only one action is
chosen at each step, our task requires to consider the case
where multiple users can be selected to be followed at each
iteration (since we wish to exploit the whole capture capac-
ity allowed by the API). At each round, the agent has then
to choose k (k < K) users among the K available ones,
according to observed features and individual knowledge
about them. The reward obtained after a period of capture
then corresponds to the sum of individual rewards collected
from the k users followed during this period.

4.2 Distribution assumptions

To derive our algorithm, we first perform a maximum a pos-
teriori estimate for the case where every context are avail-
able, based on the following assumptions:
• Likelihood: reward scores are identically and inde-

pendently distributed w.r.t. observed contexts: ra,t ∼
3The case pa = 1 ∀a ∈ K corresponds to the traditional

contextual bandit.
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N (zTa,tβ + θa, λa), with λa the variance of the differ-
ence between the reward ra,t and the linear application
zTa,tβ + θa;

• Prior: the unknown parameters are normally distributed:
β ∼ N (0, bId) and θa ∼ N (0, ρa), where b and ρa are
two values allowing to control the variance of the param-
eters and Id is the identity matrix of size d (the size of the
features vectors).

For the sake of clarity, we set b, ρa and λa equal to 1 for all
a in the following. Note that every results can be extended
to more complex cases.

Proposition 1 Denoting Ta the set of steps when user a
has been chosen in the first n time steps of the process
(Ta = {t ≤ n, a ∈ Kt}, |Ta| = τa), ca the vector contain-
ing rewards obtained by a at iterations it has been followed
(ca = (ra,t)t∈Ta

) and Da the context matrix related to user
a (Da = (zTa,t)t∈Ta

), the posterior distribution of the un-
known parameters after n time steps, when all contexts are
available, follows:

β ∼ N (
β̄, A−1

0

)
(3)

θa + z̄Ta β ∼ N
(
μ̄a,

1

τa + 1

)
(4)

With:

A0 = Id +
K∑

a=1

(τa + 1)Σ̄a bT0 =
K∑

a=1

(τa + 1)ξ̄a

Σ̄a =
DT

a Da

τa + 1
− z̄az̄

T
a ξ̄a =

cTaDa

τa + 1
− μ̄az̄

T
a

β̄ = A−1
0 bT0 μ̄a =

∑
t∈Ta

ra,t

τa + 1
z̄a =

∑
t∈Ta

za,t

τa + 1

Proof 1 The full derivation is available at 4. It proceeds as fol-
lows: denoting D = ((ra1,1, za1,1), ...(ran,n, zan,n)) and using
Bayes’s rule we have:

p(β, θ1...θK |D)

∝ p(D|β, θ1...θK)p(β)
∏K

a=1 p(θa)

∝ e
− 1

2

(
n∑

t=1

(rat,t
−zTat,t

β−θa)2

λa
+ βT β

b
+

K∑
a=1

θ2a
ρa

)
.

Rearranging the terms and using matrix notations leads to:
p(β, θ1...θK |D)

∝ e
− 1

2

(
βTA0β−2bT0 β+

K∑
a=1

(τa+1)(θa+z̄Ta β−μ̄a)
2

)
.

The two distributions are directely derived from this formula.

All the parameters above do not have to be stored and can
be updated efficiently as new learning example comes (see
algorithm 1).

4http://www-connex.lip6.fr/∼lampriers/ICWSM2016-
supplementaryMaterial.pdf

Theorem 1 For any 0 < δ < 1 and za,t ∈ R
d, denoting

α =
√
2erf−1(1− δ) 5, for every action a after t iterations:

P
(
|E[ra,t|za,t]−μ̄a−(za,t−z̄a)

T β̄| ≤ α σa

)
≥ (1−δ)

with σa =

√
1

τa + 1
+ (za,t − z̄a)TA

−1
0 (za,t − z̄a)

(5)

Proof 2 E[ra,t|za,t] = (za,t − z̄a)
Tβ + θa + z̄Ta β.

By combining equations 2, 3 and 4: E[ra,t|za,t] ∼
N

(
μ̄a + (za,t − z̄a)

T β̄, 1
τa+1

+ (za,t − z̄a)
TA−1

0 (za,t − z̄a)
)

.
The announced result comes from the confidence interval of a
Gaussian.

This formula is directly used to find the so-called Upper
Confidence Bound, which leads to choose the k users having
the highest score values sa,t at round t, with:

sa,t = μ̄a + (za,t − z̄a)
T β̄ + α σa (6)

We recall that this formula can be used in the traditional
contextual bandit problem, where every context is available.
In the next section, we propose a method to adapt it to our
specific setting of data capture, where most of contexts are
usually hidden from the agent.

4.3 Dealing with Hidden Contexts

Selection scores derived in the previous section are defined
for cases where all context vectors are available for the agent
at each round. However, in our case, only users belonging
to the subset Ot show their context. This particular setting
requires to decide how judging users whose context is un-
known. Moreover, it also implies questions about knowledge
updates when some users are selected without having been
(contextually meaning) observed.

Even though it is tempting to think that the common pa-
rameter β and the user specific ones θa can be learned in-
dependently, in reality they are complexly correlated as for-
mula 3 and 4 highlight it. It is important to emphasize that
to keep probabilistic guarantees, parameters should only be
updated when a chosen user was also observed, i.e. when it
belongs to Kt∩Ot. So, replacing the previous Ta by T both

a =
{t ≤ n, a ∈ Kt ∩ Ot} (we keep the notation |T both

a | = τa)
allows us to re-use the updates formula of Proposition 1.

However, computing the selection score for a user whose
context is hidden from the agent cannot be done via equation
6 since za,t is unknown. To deal with such a case we propose
to use an estimate of the mean distribution of feature vectors
of each user. The assumption is that, while non-stationarity
can be captured when contexts are available, different users
own different mean reward distributions, and that it can be
useful to identify globally useful users.

New notations:

• We denote the set of steps when user a revealed its con-
text vector after n steps by T obs

a = {t ≤ n, a ∈ Ot} with
|T obs

a | = na.
5erf−1 is the inverse error function, erf(x) =

2/π
∫ x

0
e−t2 dx.
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• The empirical mean of the feature vector for user a is de-

noted ẑa, with ẑa =
1

na

∑
t∈T obs

a

za,t. Note that ẑa is dif-

ferent from z̄a since the first is updated every time the
context za,t is observed while the second is only updated
when user a is observed and played in the same iteration.

Main assumptions:

• Without loss of generality, assume that β is bounded by
M ∈ R

+∗, i.e. ||β|| ≤ M , where || || stands for the L2

norm on R
d.

• For any user a, at any time t the context vectors za,t ∈
Rd are iid sampled from an unknown distribution with
finite mean vector E[za] and covariance matrix Σa (both
unknown).

Note that the requirement ||β|| ≤ M can be satisfied
through proper rescaling on β.

Proposition 2 The excepted value of the mean reward of
user a with respect to its features distribution, denoted E[ra]
satisfies after t iterations of the process:

E[ra] = E[zTa,tβ + θa] (7)

= E[za]
Tβ + θa

= (ẑa − z̄a)
Tβ + θa + z̄a

Tβ + (E[za]− ẑa)
Tβ

Theorem 2 Given 0 < δ < 1 and 0 < γ < 1
2 , denoting

α =
√
2erf−1(1 − δ), for every user a after t iterations of

the process:

P

(
|E[ra]− μ̄a − (ẑa − z̄a)

T β̄| ≤ α σ̂a +
1

nγ
a

)
≥

(1− δ)

(
1− Ca

n1−2γ
a

)

with σ̂a =

√
1

τa + 1
+ (ẑa − z̄a)TA

−1
0 (ẑa − z̄a) (8)

Where Ca is a positive constant specific to each user.

Proof 3 The full proof is available at URL4, we only give the main
steps here. Denoting m̂a = (ẑa− z̄a)

T β̄+μ̄a, σ̂2
a = 1

τa+1
+(ẑa−

z̄a)
TA−1

0 (ẑa−z̄a), Xa the random variable such that Xa = (ẑa−
z̄a)

Tβ+θa+z̄a
Tβ and using Cauchy Schwarz inequality, we have:

|E[ra]−m̂a|
σa

≤ |Xa−m̂a|
σa

+ ||E[za]−ẑa||M
σa

Then, using the Gaussian

property of Xa, we show that: P
(
|Xa−m̂a|

σa
≤ α

)
= 1 − δ, with

α =
√
2erf−1(1 − δ). On the other hand, with Chebyshev in-

equality, we prove that:
P
(
||E[za]−ẑa||M

σ̂a
≤ 1

σ̂an
γ
a

)
≥

(
1− M2d

n
1−2γ
a

Trace(Σa)
)

Finally, combining the two previous results proves the theorem.

For γ < 1
2 , the previous probability tends to 1 − δ as the

number of observations of user a increases (as in equation
5). Then, the inequality above gives a reasonably tight UCB
for the expected payoff of user a, from which a UCB-type
user-selection strategy can be derived. At each trial t, if the
context of user a has not been observed (i.e. a /∈ Ot), set:

sa,t = μ̄a + (ẑa − z̄a)
T β̄ + α σ̂a +

1

nγ
a

(9)

Given that γ > 0, and that each user a has a probability
0 < pa < 1 to reveal its context at each time step t, the
extra-exploration term 1/nγ

a tends to 0 as the number of ob-
servations of user a gets larger. The above score then tends
to a classical LinUCB score (as in equation 6) in which the
context vector za,t is replaced by its empirical mean ẑa, as t
increases.

4.4 Contextual Data Capture Algorithm

The pseudo-code of our contextual data capture algorithm
from social streams is detailled in algorithm 1.

The algorithm starts by initializing the set of observed
users Ot from the Sample API during a time period of L.
Then, for each iteration t over T , it proceeds as follows:

1. Lines 10 to 15: every user from Ot that does not belong
to the pool of potential users to follow is added to K, in
the limit of newMax new arms at each iteration to cope
with cases where too many new arms are discovered each
iteration (in that case only the newMax first new ones
are considered, others are simply ignored). This allows to
avoid over-exploration for such cases;

2. Lines 16 to 20: updates of empirical context means ẑa
(according to data collected from user a at the previous
iteration) and observation counts na for every observed
user a in Ot;

3. Line 22: parameters β̄ of the estimation model are updated
according to current counts;

4. Lines 23 to 37: selection scores are computed for every
user in the pool K. As detailed in the previous section,
selection scores are computed differently depending on
the availability of the current context of the correspond-
ing user. Note also that the selection scores of new users
added to the pool during the current iteration are set to
+∞ in order to enforce the system to choose them at least
once and initialize their empirical mean reward;

5. Line 38: selection of the k users with the best selection
scores;

6. Lines 39 to 43: simultaneous capture of data from the
Sample and Follow Apis during a time period of L. The
Follow API is focused on the subset of k selected users
Kt;

7. Lines 44 to 55: computation of the rewards of users in
Kt according to the data collected from the Follow API.
Then, using users in Kt ∩ Ot, both the global model pa-
rameters (A0 and b0) and arm specific ones (τa, μ̄a and
z̄a) are updated;

8. Line 57: Update of the set of observed users by gathering
all users whose at least one post has been collected from
both APIs during the current iteration.
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Algorithm 1: Contextual Data Capture Algorithm
Input: k, T , α, γ, L, maxNew

A0 ← Id×d (identity matrix of dimension d);1

b0 ← 0d (zero vector of dimension d);2

K ← ∅;3

Ω1 ← Data collected from Sample API4

during a period of L;5

O1 ← Authors of at least one post in Ω1;6

for t ← 1 to T do7

nbNew ← 0;8

for a ∈ Ot do9

if a /∈ K and nbNew < maxNew then10

nbNew ← nbNew + 1;11

K ← K ∪ {a};12

τa ← 0; na ← 0; sa ← 0; ba ← 0d;13

μ̄a ← 0; z̄a ← 0d; ẑa ← 0d;14

end15

if a ∈ K then16

Observe context za,t from Ωt ∪ Ψt;17

Update ẑa w.r.t. za,t;18

na ← na + 1;19

end20

end21

β̄ ← A−1
0 b0;22

for a ∈ K do23

if τa > 0 then24

if a ∈ Ot then25

σa ←
√

1
τa+1 + (za,t − z̄a)TA−1

0 (za,t − z̄a);26

sa,t ← μ̄a + (za,t − z̄a)
T β̄ + α σa;27

end28

else29

σ̂a ←
√

1
τa+1 + (ẑa − z̄a)TA−1

0 (ẑa − z̄a);30

sa,t ← μ̄a + (ẑa − z̄a)
T β̄ + α σ̂a + 1

n
γ
a

;31

end32

end33

else34

sa,t ← ∞;35

end36

end37

Kt ← argmax
K̂⊆K,|K̂|=k

∑
a∈K̂

sa,t ;
38

during a time interval of L do39

Ωt ← Collect data from the Sample API;40

Ψt ← Collect data from the Follow API41

focused on the users in Kt ;42

end43

for a ∈ Kt do44

Compute ra,t from Ψt;45

if a ∈ Ot then46

A0 ← A0 + bab
T
a /(τa + 1);47

b0 ← b0 + basa/(τa + 1);48

τa ← τa + 1;49

sa ← sa + ra,t; μ̄a ← sa/(τa + 1);50

ba ← ba + za,t; z̄a ← ba/(τa + 1);51

A0 ← A0 + za,tz
T
a,t − bab

T
a /(τa + 1);52

b0 ← b0 + ra,tza,t − basa/(τa + 1)53

end54

end55

Ωt+1 ← Ωt; Ψt+1 ← Ψt ;56

Ot+1 ← Authors of at least one post in Ωt+1 ∪ Ψt+1;57

end58

5 Experiments

Classical bandit algorithms usually come with an upper
bound of the regret, which corresponds to the difference be-
tween the cumulative reward obtained with an optimal pol-
icy and the bandit policy in question. In our case, an optimal
strategy corresponds to a policy for which the agent would
have a perfect knowledge of the parameters β and θa (for
all a) plus an access to all the features at each step. How-
ever, in our case, in the absence of an asymptotically exact
estimate of zTa,tβ + θa, due to the fact that some contexts
za,t are hidden from the process, it is unfortunately not pos-
sible to show a sub-linear upper-bound of the regret. Nev-
ertheless, we claim that the algorithm we proposed to solve
our problem of contextual data capture from social media
streams well behaves on average. To demonstrate this good
behavior, we present various offline and online experiments
in real-world scenarios. Our algorithm is the first to tackle
the case of bandits with partially hidden contexts, the aim
is to demonstrate its feasibility for constrained tasks such as
data capture from social media streams.

5.1 Experimental Setup

Beyond a random policy that randomly selects the set of
users Kt at each iteration, we compare our algorithm to
two bandit policies well fitted for being applied for the
task of data capture: CUCB and CUCBV respectively pro-
posed in (Qin, Chen, and Zhu 2014) and (Gisselbrecht et al.
2015). These algorithms do not take features into account
and perform stationary assumptions on reward distributions
of users. Compared to CUCB, CUCBV adds the variance
of reward distributions of users in the definition of the confi-
dence intervals. This has been shown to behave well in cases
such as our task of data capture, where a great variability can
be observed due to the possible inactivity of users when they
are selected by the process. At last, we consider a naive ver-
sion of our contextual algorithm that preferably selects users
with an observed context (it only considers users in Ot when
this set contains enough users), rather than getting the ability
of choosing users in Ōt as it is the case in our proposal.

For all of the reported experiments we set: 1) The explo-
ration parameter to α = 1.96, which corresponds to a 95 per-
cent confidence interval on the estimate of the expected re-
ward when contexts are observed; 2) The reduction parame-
ter of confidence interval for unknown contexts to γ = 0.25,
which allows a good trade-off between the confidence inter-
val reduction rate and the probability of this interval; 3) The
number of new users that can be added to the pool at each
iteration to newMax = 500, to avoid over-exploration, es-
pecially for online experiments, when many new users can
be discovered from the Sample API;

5.2 Offline experiments

Datasets In order to be able to test different policies and
simulate a real time decision process several times, we first
propose a set of experiments on offline datasets:

• USElections: dataset containing a total of 2148651 mes-
sages produced by 5000 users during the ten days preced-
ing the US presidential elections in 2012. The 5000 cho-
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sen accounts are the first ones who used either “Obama”,
“Romney” or “#USElections”.

• Libya: dataset containing 1211475 messages from 17341
users. It is the result of a three-months capture from the
Follow API using the keyword “Libya”.

In the next paragraph, we describe both how we transform
messages in feature vectors and which reward function we
use to evaluate the quality of a message.

Model definition

Context model The content obtained by capturing data
from a given user a at time step t is denoted ωa,t (if we
get several messages for a given author, these messages are
concatenated). Given a dictionary of size m, messages can
be represented as m dimensional bag of word vectors. How-
ever the size m might cause the algorithm to be computa-
tionally inefficient since it requires the inversion of a matrix
of size m at each iteration. In order to reduce the dimen-
sion of those features, we used a Latent Dirichlet Allocation
method (Blei, Ng, and Jordan 2003), which aims at mod-
eling each message as a mixture of topics. However, due
to the short size of messages, that standard LDA may not
work well on Twitter (Weng et al. 2010). To overcome this
difficulty, we choose the approach proposed in (Hong and
Davison 2010), which aggregates tweets of a same user in
one document. We choose a number of d = 30 topics and
learn the model on the whole corpus. Then, if we denote by
F : Rm −→ R

d the function that, given a message returns
its representation in the topic space, the features of user a at
time t is za,t = F (ωa,t−1).

Reward model We trained a SVM topic classifier on the
20 Newsgroups dataset in order to rate each content. For our
experiments, we focus on 4 classes to test: politics, religion,
sport, science. We propose to consider the reward associ-
ated to some content as the number of times it has been re-
tweeted (re-posted on Tweeter) by other users if it belongs to
the specified class according to our classifier, or 0 otherwise.
Finally, if a user posted several messages during an iteration,
his reward ra,t corresponds to the sum of the individual re-
wards obtained by the messages he posted during iteration
t. This instance of reward function corresponds to a task of
seeking to collect messages, related to some desired topic,
that will have a strong impact on the network (note that we
cannot directly get high-degree nodes in the user graph due
to API restrictions).

Experimental Settings In order to obtain generalizable
results, we test different values for parameters p, the prob-
ability for every context to be observed, k, the num-
ber of users that can be followed simultaneously, and L,
which stands for the duration of an iteration. More pre-
cisely, we experienced every possible combination with
p ∈ {0.1, 0, 5, 1.0}, k ∈ {50, 100, 150} and L ∈
{2min, 3min, 6min, 10min}.

Results For space reasons and brevity, we only report re-
sults for k = 100, L = 2min (which means that every 2
minutes the algorithms select 100 users to follow) for the
USElections dataset and the four rewards defined above. For
the Libya dataset, we only show the results for the politics
reward. Similar tendencies were observed for different val-
ues of k and L.

Figures 2 and 3 represent the evolution of cumulative
reward for different policies and rewards, respectively for
the USElections and the Libya dataset. For contextual al-
gorithms, their naive versions that select observed users in
priority are given with same symbols without solid line.

First, it should be noticed that every policy performs bet-
ter than the Random one, which is a first element to assert the
relevance of bandit algorithms for the task in concern. Sec-
ond, we notice that CUCBV performs better than CUCB,
which confirms the results obtained in (Gisselbrecht et al.
2015) on a similar task of focused data capture.

More interesting is the fact that when every context is ob-
servable, our contextual algorithm performs better than sta-
tionary approaches CUCB and CUCBV. This result shows
that we are able to better anticipate which user is going to
be the more relevant at the next time step, for a particu-
lar information need, given what he said right before. This
also confirms the usual non-stationarity behavior of users.
For instance, users can talk about science during the day at
work while being more focused on sports when they come
back home. Considering contexts also allows one to con-
verge faster towards interesting users since every user ac-
count share the same β parameter.

Results show that even for low probabilities of context ob-
servation p, our contextual policy behaves greatly better than
non-contextual approaches, which empirically validates our
approach: it is possible to leverage contextual information
even if a large part of this information is hidden from the
system. In particular, for the Libya dataset where no signif-
icant difference between the two non-contextual CUCB and
CUCBV is noteworthy, our algorithm seems much more ap-
propriate. Moreover, for a fixed probability p, the naive ver-
sions of the contextual algorithm offer lower performances
than the original ones. By giving the ability of selecting
users even if their context is unknown, we allow the algo-
rithm to complete its selection by choosing users whose av-
erage context corresponds to a learned profile. If no user in
Ot seems currently relevant, the algorithm can then rely on
users with good averaged intrinsic quality. For k = 100, the
average number of selected users for which the context was
observed at each time step is 43 for p = 0.1 and 58 for
p = 0.5, which confirms that the algorithm does not always
select users in Ot.

5.3 Online experiments

Experimental Settings We propose to consider an appli-
cation of our approach on a real-world online Twitter sce-
nario, which considers both the whole social network and
the API constraints. For these experiments, we use the full
potential of Twitter APIs, namely 1% of all public tweets for
the Sample API that runs in background, and 5000 users si-
multaneously followed (i.e., k = 5000) for the Follow API.
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Figure 2: Cumulative Reward w.r.t time step for different policies on the USElections dataset. From left to right, the considered
topics for reward computations are respectively: politics, religion, science and sport.
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Figure 3: Cumulative Reward w.r.t time step for different
policies on the Libya dataset and the politics reward.

At each iteration, the selected users are followed during
L = 15minutes. The messages posted by these users dur-
ing this interval are evaluated with the same relevance func-
tion as in the offline experiments, using the politics topic.
We also use an LDA transformation to compute the context
vectors.

Given Twitter policy, every experiment requires one Twit-
ter Developer account, which limits the number of strategies
we can experiment. We chose to test the four following ones:
our contextual approach, CUCBV, Random and a another
one called Static. This Static policy follows the same 5000
accounts at each round of the process. Those 5000 accounts
have been chosen by collecting all tweets provided during
24 hours by the Sample streaming API, evaluating them and
finally taking the 5000 users with the greatest cumulative
reward. For information, some famous accounts such that
@dailytelegraph, @Independent or @CNBC were part of
them.

Results Figure 4 on the left represents the evolution of
the cumulative reward of a two-weeks-long run for the four
tested policies. From these curves, we note the very good
behavior of our algorithm on a real-world scenario, as the
amount of rewards it accumulates grows greatly much more
quickly than other policies, especially after the 500 first it-
erations of the process. After these first iterations, our al-
gorithm appears to have acquired a good knowledge on the
reward distributions, w.r.t. observed contexts and over the
various users of the network.

In order to analyze the behavior of the experimented poli-
cies during the first iterations of the capture, we also plot on
the right of the figure a zoomed version of the same curves
on the first 150 time steps. At the beginning of the process,
the Static policy performs better than every others, which
can be explained by two reasons: 1) bandit policies need
to select every user at least once in order to initialize their
scores and 2) users who are part of the Static policy’s pool
are supposed to be relatively good targets considering the
way we chose them. Around iteration 80, both CUCBV and
our Contextual algorithm become better than Static policy,
which corresponds to the moment they start to trade off be-
tween exploration and exploitation. Then, after a period of
around 60 iterations (approximately between the 80th and
the 140th time step) where CUCBV and our Contextual ap-
proach behave similarly, the latter then allows the capture
process to collect greatly more valuable data for the speci-
fied need. This is explained by the fact that our Contextual
algorithm requires a given amount of iterations to learn the
correlation function between contexts and rewards and then
taking some advantage of it. Note the significant changes in
the slope of the cumulative reward curve of our Contextual
algorithm, which highlight the ability of the algorithm to be
reactive to the environment changes. Finally, the number of
times every user has been selected by our Contextual algo-
rithm is more spread than with a stationary algorithm such
as CUCBV, which confirms the relevance of our dynamic
approach. To conclude, in both offline and online settings,
our approach proves very efficient at dynamically selecting
user streams to follow for focused data capture tasks.

6 Conclusion

In this paper, we tackled the problem of capturing relevant
data from social media streams delivered by specific users of
the network. The goal is to dynamically select useful user-
streams to follow at each iteration of the capture, with the
aim of maximizing some reward function depending on the
utility of the collected data w.r.t. the specified data need. We
formalized this task as a specific instance of the contextual
bandit problem, where instead of observing every feature
vectors at each iteration of the process, each of them has
a certain probability to be revealed to the learner. For solv-
ing this task, we proposed an adaptation of the popular con-

139



0 200 400 600 800 1000 1200 1400

Time step

0

100000

200000

300000

400000

500000

600000

700000

C
um

ul
at

iv
e

R
ew

ar
d

Random
CUCBV
Contextual
Static

0 20 40 60 80 100 120 140 160

Time step

0

1000

2000

3000

4000

5000

6000

7000

C
um

ul
at

iv
e

R
ew

ar
d

Random
CUCBV
Contextual
Static

Figure 4: Cumulative Reward w.r.t time step for different policies on the live experiment. The figure represents the whole
experiment on the left and a zoom on the 150 first steps on the right.

textual bandit algorithm LinUCB to the case where some
contexts are hidden at each iteration. Although not any sub-
linear upper-bounds of the regret can be guaranteed, because
of the great uncertainty induced by the hidden contexts, our
algorithm behaves well even when the proportion of hidden
contexts is high, thanks to some assumptions made on the
hidden contexts and a well fitted exploration term. This cor-
responds to an hybrid stationary / non stationary bandit algo-
rithm. Experiments show the very good performances of our
proposal to collect relevant data under real-world capture
scenarios. It opens the opportunity for defining new kinds
of online intelligent strategies for collecting and tracking fo-
cused data from social media streams.
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