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Abstract

Identifying the patterns in urban mobility is important for a
variety of tasks such as transportation planning, urban re-
source allocation, emergency planning etc. This is evident
from the large body of research on the topic, which has ex-
ploded with the vast amount of geo-tagged user-generated
content from online social media. However, most of the ex-
isting work focuses on a specific setting, taking a statistical
approach to describe and model the observed patterns. On the
contrary in this work we introduce EigenTransitions,
a spectrum-based, generic framework for analyzing spatio-
temporal mobility datasets. EigenTransitions capture
the anatomy of the aggregate and/or individuals’ mobility as
a compact set of latent mobility patterns. Using a large cor-
pus of geo-tagged content collected from Twitter, we utilize
EigenTransitions to analyze the structure of urban mo-
bility. In particular, we identify the EigenTransitions
of a flow network between urban areas and derive hypothesis
testing framework to evaluate urban mobility from both tem-
poral and demographic perspectives. We further show how
EigenTransitions not only identify latent mobility pat-
terns, but also have the potential to support applications such
as mobility prediction and inter-city comparisons. In partic-
ular, by identifying neighbors with similar latent mobility
patterns and incorporating their historical transition behav-
iors, we proposed an EigenTransitions-based k-nearest
neighbor algorithm, which can significantly improve the per-
formance of individual mobility prediction. The proposed
method is especially effective in “cold-start” scenarios where
traditional methods are known to perform poorly.

Introduction

Urban and transportation planners, as well as, city officials
have been trying to understand the way people act and be-
have in our cities for many years now. This will allow
them to design cities that can deliver a livable, resilient and
sustainable urban environment that is relevant to the city-
dwellers’ needs. Identifying the pulse of a city through the
mobility of its dwellers and visitors has been central to geo-
graphical and social sciences as well as to urban and trans-
portation planning since the seminal work on migration from
Ravenstein (Ravenstein 1885). Nevertheless, it is only re-
cently that an unprecedented amount of data on urban activ-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ities has become available to researchers and can facilitate
these efforts.

Using data from cellular networks and geo-tagged social
media content a large volume of research has attempted to
build models that describe the statistical properties of urban
human mobility. Contrary to existing work on modeling of
the statistical properties of the urban human mobility pat-
terns, in this work we aim to provide a generic framework
for analyzing mobility data that is able to also tie the mobil-
ity with the context within which it emerges. These patterns
are affected by the underlying urban geography (Isaacman et
al. 2010; Noulas et al. 2012), and are also shaped by the ac-
tivities possible in the various parts of the city as well as the
dwellers’ interests. Hence, our study context can refer either
to characteristics of the dweller’s themselves (e.g., demo-
graphic information, interests etc.) or to the urban form of a
neighborhood in the city.

As a proxy for the urban mobility we use geo-tagged
content generated from Twitter users. Using the transitions
observed we build a network between urban areas (e.g.,
neighborhoods) in the city that can reveal their underly-
ing connectivity. We further propose a generic, spectrum-
based method, EigenTransitions, that can analyze and
capture the network dynamics generated by the underly-
ing human mobility by reducing its effective dimensionality.
EigenTransitions utilize Principal Component Anal-
ysis (PCA) as its core building block to identify the latent
urban transition patterns. These mobility patterns are often
shaped by individuals with their regular travel needs and in-
terests across space and time. Depending on the transition
matrix on which we apply PCA we can analyze different as-
pects of the mobility traces and in different (temporal and
spatial) granularities.

As an example, Figure 1 presents the original transi-
tion flow between neighborhoods in New York City (NYC),
where we can see the incoming and outgoing transitions
to/from Manhattan dominate the urban flow. Figure 2 shows
the four major EigenTransitions when we apply PCA
on a transition matrix where each row corresponds to a day
and each column is a transition between specific neighbor-
hoods. The mobility pattern underlying component (a) re-
sembles the original flow pattern which essentially explains
the most popular transition pattern that most people tend
to follow. Components (b)-(d) capture less popular but still
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Figure 1: Human urban transition flow between NYC neigh-
borhoods. The incoming and outgoing transitions to/from
Manhattan dominate the structure of urban mobility.

strong transition flows to other urban areas. For example,
component (c) represents people visiting Central Park. Since
this leisure activity might be taking place during specific
days only (e.g., weekends) this pattern is less popular overall
as compared to component (a).

Using EigenTransitions we show that we can iden-
tify differences in the mobility of sub-populations that are
not observable when using the original, high, dimension-
ality. By leveraging EigenTransitions into a rigorous
hypothesis testing framework, we are able to identify mobil-
ity differences between different demographic parts of the
population. We further present that EigenTransitions
are able to facilitate location prediction, especially in cold-
start scenarios, i.e., predicting transitions that have never
been observed in the past. In particular, we propose an
EigenTransitions-based nearest neighbor algorithm
that leverages the mobility behavior of similar neighbors in
the latent space. Our experiments using data from two cities
show that our proposed algorithm can significantly improve
the prediction performance with the help of only a small
fraction of neighbors among the whole population. Further-
more, we show how EigenTransitions can be used to
compare (and group) different cities based on their mobil-
ity patterns. Inter-city comparisons are important in order to
understand how solutions can be transferable between cities.
For example, cities with similar mobility patterns can poten-
tially benefit from sharing ideas and solutions to transporta-
tion problems.

The key contributions of this work include: (1) We pro-
pose a generic framework, EigenTransitions, to iden-
tify the latent structure of large-scale urban transition flow
patterns. (2) Through leveraging EigenTransitions
into a rigorous hypothesis testing framework, we are able to
identify demographic and temporal differences in the mobil-
ity dynamics that are not visible in the original data. In par-
ticular, we show statistically significant differences exist in
the transition flow of different gender and ethnicity groups.
Moreover, temporal differences are also identified. (3) We
further apply EigenTransitions in location prediction

application and demonstrate its effectiveness over baseline
methods, with a particular improvement over cold-start sce-
narios.

Moreover, to showcase the generalizability of our
proposed method, we further provide results on using
EigenTransitions to compare different cities with re-
spect to their mobility predictability. Our preliminary results
demonstrate that EigenTransitions are not only ef-
fective in sub-populations comparisons but can be used in
cross-population comparison and more border context.

Related Work
In this section we will review studies related to our work.

Urban Mobility Literature: Despite the long interest in
urban mobility, it is only recently, with the advancements in
mobile technology and computing, that we have been able
to obtain large-scale, real-world mobility data. Using data
from cellular networks and geo-tagged social media con-
tent a large volume of research has attempted to build mod-
els that describe the statistical properties of urban human
mobility (e.g., (Noulas et al. 2012; Isaacman et al. 2012;
Song et al. 2010b; 2010a) - with the list of course being non-
exhaustive).

In terms of mobility models there are two big classes. The
first one is inspired by Newton’s law of gravity and supports
that mobility is impeded by distance. Movements over long
distances cost more than moves over short distances. In par-
ticular, the flow of people from a given starting location �s
to a destination location �j decreases with the distance be-
tween these two locations (Carrothers 1956; Wilson 1967;
Erlander and Stewart 1990; Krings et al. 2009). The sec-
ond class of models is based on Stouffer’s law of inter-
vening opportunities (Stouffer 1940). As Stouffer posits it
“The number of persons going a given distance is directly
proportional to the number of opportunities at that dis-
tance and inversely proportional to the number of interven-
ing opportunities”. Simply put, displacements are driven by
the spatial distribution of places of interest. While exist-
ing literature seems to favor Stouffer’s theory (Miller 1972;
Haynes, Poston, and Sehnirring 1973), both models are ex-
tensively used.

Urban Activity Literature: In a different line of re-
search, data from a variety of sources (e.g., location-based
social networks, call detailed records from cellular net-
works, GPS traces etc.) have been used to quantify and
model the activities that people engage in the urban space
(e.g., (Noulas, Mascolo, and Frias-Martinez 2013; Yuan,
Zheng, and Xie 2012; Reades, Calabrese, and Ratti 2009;
Becker et al. April 2011; Girardin et al. October Decem-
ber 2008; Froehlich, Neumann, and Oliver 2009; Zhang and
Pelechrinis 2014; Noulas et al. 2011; Cranshaw et al. 2012;
Jiang, Jr., and Gonzalez 2012)). The common motivation be-
hind these studies lays on the fact that understanding the
spatial and temporal properties of urban activities can fa-
cilitate data-driven urban planning operations such as urban
re-development and resource allocation.

Origin-Destination (OD) Flow Estimation: In trans-
portation and operations research, there have been stud-
ies on OD flow estimation and prediction (Hazelton 2001;
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(a) Component 1 (b) Component 2 (c) Component 3 (d) Component 4

Figure 2: Urban transition flow recovered by EigenTransitions. The first component captures the main structure of urban
mobility, indicating that most incoming and outgoing flow concentrates in Manhattan. On the contrary, the rest of the compo-
nents represent less popular, but still important, patterns. In component (b), frequent transitions happen between neighborhoods
in Bronx and Queens; component (c) captures transitions to/from Central Park, while component (d) represents a sub-structure
that captures the mobility between major transportation hubs (i.e., Penn Station and JFK Airport).

Ashok and Ben-Akiva 2000; Li et al. 2015), mainly us-
ing traffic data from vehicle and bicycle commuting. The
work by (Djukic, van Lint, and Hoogendoorn 2012) is
closer to EigenTransitions. In particular, they use
PCA that dramatically reduces the computational cost of
the OD matrix prediction. However, the OD flow estima-
tion can be considered as a special application/case of
EigenTransitions, since it focuses on mobility predic-
tion at the aggregate level.

Contrary to the existing literature our study aims at
developing a generic framework that can analyze the
mobility patterns at a reduced dimensionality space.
EigenTransitions can form the core of a number of
applications beyond the aggregate mobility flow prediction
that is the focus of existing literature.

Dataset and Experimental Setup
Data Collection: We collected geo-tagged Tweets gen-
erated within the area covering New York City and Pitts-
burgh from Jul 15, 2013 to Nov 09, 2014. Each tweet
has a tuple format <user Id, place Id, time,
latitude, longitude>. In total, we have 27,664,594
geo-tagged tweets from 274,933 users in NYC, and
1,988,569 geo-tagged tweets from 19,763 users in Pitts-
burgh. In our analysis, we consider the municipal neighbor-
hoods as the basic spatial granularity. For our study we also
need the population in each urban area (e.g., neighborhood).
For this we obtain the neighborhoods boundaries and Cen-
sus Demographics data at the neighborhood level from NY-
COpenData and from Pittsburgh’s Department of City Plan-
ning. In summary, there are 195 and 91 municipal neighbor-
hoods in NYC and Pittsburgh, separately.

Urban Region Flow Network: In the urban region flow
network1 GU = (U , E), the set of nodes U is a collection of
non-overlapping areas/neighborhoods in the city under ex-
amination. Furthermore, a directed edge eij ∈ E between

1For simplicity, we will refer to this network as flow network
for the rest of the paper.

two areas ui, uj ∈ U exists if there has been observed a tran-
sition by a city-dweller from ui to uj . The definition of the
urban region can be arbitrary (e.g., municipal neighborhood
borders, grids etc.). In our analysis, we divide the whole city
using municipal neighborhood borders. We can also anno-
tate every edge eij with a weight w(eij), which captures the
number of such transitions between the two urban regions
i and j. However, we will need to calibrate the absolute
number of transitions to account for the population in every
neighborhood, since the population size of two urban areas
indicates a baseline degree of interaction between them. In
particular,

w(ei,j) =
τi,j√

κi · √κj
(1)

where τi,j is the absolute number of transitions from a loca-
tion in ui to one in uj and κi is the population in ui.

In order to obtain the structure of GU for NYC and Pitts-
burgh we use the geo-tagged Tweets. In particular, we gen-
erate an edge eij ∈ E if the same Twitter user has gener-
ated two consecutive tweets in locations �i ∈ ui and �j ∈ uj

within a predefined time interval Δt and the distance be-
tween these two locations is greater than a threshold Δd. The
edges of GU describe the dynamic interaction between urban
neighborhoods as captured by the underlying human mobil-
ity. In our experiments, we set Δt = 4 hours, and given the
typical accuracy of GPS technology in urban areas we set
Δd = 100m. This value for Δd also ensures that potential
movements within the same building are not considered as
transitions. Finally, we have 3,791,072 such transitions in
NYC and 260,284 in Pittsburgh. Note here that, the above
definition allows for self-edges in GU .

The calculation of the weights for the edges in GU , re-
quires the estimation of the home neighborhood of a Twit-
ter user. We define the home neighborhood of a user as the
one that is most frequently visited by the user. Consequently
we estimate the (Twitter) population of neighborhood ui by
counting the number of Twitter users with home location
ui. Using the estimated population allows us to compute
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Figure 3: Communities detected using the dynamic urban
human flow are spatially concentrated and similar to the five
areas defined by the municipality of NYC.

κi, ∀ui ∈ U . Note here that, one could have used the in-
formation from the Census Demographics, but this would
only be appropriate if Twitter users were a uniformly sam-
pled subset of the actual population, which is not necessarily
true (Mislove et al. 2011).

Neighborhood Communities: As alluded to above the
flow network can be defined using different spatial divisions
of the city. For example, one can aggregate neighborhoods
to communities, based on GU and then define a higher level
network, where the nodes represent a set of neighborhoods
belonging to the same community, while the edges represent
transitions between communities (as compared to neighbor-
hoods). In fact, our framework, EigenTransitions, is
generic and can analyze flow networks at different spatial
levels as we show later.

Given the urban neighborhood flow network, we apply a
community detection algorithm, namely Infomap (Rosvall
and Bergstrom 2008) to cluster the neighborhoods into dif-
ferent communities. To reiterate, the community represents
a higher-level unit as compared to the predefined neighbor-
hoods. Figure 3 presents the community structure of NYC
captured by GU , where different colors indicate different
communities. The interesting thing to note is that the identi-
fied communities are spatially concentrated, while they are
similar to the five well known areas of NYC, namely, Man-
hattan, Brooklyn, Queens, Bronx and Staten Island.

In our work we analyze both the neighborhood-based ur-
ban flow network Gn, as well as, the community-based flow
network Gc.

EigenTransitions

In this section we will formally present
EigenTransitions. Given a set of N non-overlapping
urban areas and a set of transitions between these areas,
we define the N × N matrix T as the adjacency matrix of
the corresponding flow network GU . The adjacency matrix
T can be constructed in a variety of ways. For instance,
we can use the transitions of a single user over the whole
period that our dataset covers. Alternatively, we can use the
transitions from all the users but only during a specific time
period. In general, matrix T allows for different aggregation

levels/entities. For a given entity i, we vectorize T and
get a transition profile for this entity, which is essentially
a N2 × 1 vector. Considering m instances of this entity
(e.g., m users if each matrix T corresponds to a user) we
define the transition matrix X as the matrix where each row
represents a separate transition profile. Simply put, X is an
m×N2 matrix.

Our goal with EigenTransitions is to develop a
generic framework that analyzes and summarizes the ur-
ban mobility in a smaller dimensionality, which will al-
low for spotting persistent patterns in the data by fil-
tering out the noise. As we will show in detail later,
EigenTransitions is indeed able to spot differences in
the mobility of different parts of the population that are not
“visible” in the original, higher dimensionality. Towards this
objective we apply Principle Component Analysis (PCA) on
matrix X to get the spectrum of its covariance matrix. We
consequently use the eigenvectors and eigenvalues obtained
to define the EigenTransitions.

With X ∈ Πm×n, where m is again the number of in-
stances (i.e., users) and n = N2 is the number of features
(i.e, the original dimensionality of the transition profile), we
first calculate the covariance matrix S. In particular,

S =
1

m− 1
XTX (2)

Then, we calculate the eigenvectors and eigenvalues of ma-
trix S. This process is computational expensive especially
when n is large. However, there is an interesting connection
between Singular Value Decomposition (SVD) and PCA. In
particular, let the SVD of matrix X be:

X = UΣV T (3)

Then the eigenvalue decomposition for S is

S =
1

m− 1
V ΣTUTUΣV T = V ΛV T (4)

where Λ is a diagonal matrix containing the eigenvalues λi

of S in descending order. In particular, Λ = 1
m−1

ΣTΣ, since
UTU = I. Based on Equation (4) the eigenvectors of S are
the right singular vectors of X, and the eigenvalues of S are
the square of the singular values of X divided by m − 1.
Matrix V includes the EigenTransitions, which are
essentially the proto-mobility patterns present in the origi-
nal dataset. These EigenTransitions correspond to a
latent mobility space. More specifically, the columns of ma-
trix V correspond to the basis of this latent space, while
the rows correspond to the original columns of matrix X,
namely, the features. Simply put, matrix V encodes the la-
tent, proto-mobility, patterns of the population as a linear
transformation of the original space (that of the full tran-
sitions) to the latent space of EigenTransitions. U is
the coefficient matrix, where each row corresponds to an in-
stance of the original matrix X (e.g., a user) and each col-
umn captures the coordinates of this instance in the latent
EigenTransitions space. For example, element Ui,j is
the coordinate of instance i in the EigenTransitions
dimension j with base vector the j-th right eigenvector of
X. In other words, matrix U captures how much an instance
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contributes to each latent pattern depending on the value of
coefficients.

However, not all of the columns are necessary to recon-
struct the original dataset. In fact, a small number of proto-
mobility patterns might be enough to explain a pre-defined
level of the variance in the dataset (i.e., reconstruct the co-
variance matrix S). A principled way of choosing the num-
ber of proto-patterns involves the calculation of the ratio:

φk =

∑k
i=1 λ

2
i∑n

i=1 λ
2
i

(5)

This ratio represents the percentage of variance in the
dataset that can be explained by the k first principal com-
ponents. A typical value for the variance explained is 95%
and hence, the minimum value of k that provides a ratio
φk > 0.95 is the number of EigenTransitions we
consider. Given the number of EigenTransitions, the
transition profile of the various instances in the latent space
can be represented by the reduced matrix Ur, that is, the first
k columns of matrix U .

Scalability consideration: For a large matrix (i.e., an
extremely high-dimensional space), we are interested in
keeping only those principal components whose eigenvalues
are greater than 1, as components with eigenvalues greater
than 1 explain at least the same amount of variance as a
single transition dimension. In practice, we can compute
a partial eigenvalue decomposition using the augmented
implicitly restarted Lanczos bidiagonalization (irlba) algo-
rithm (Baglama and Reichel 2005), which allows for fast
and scalable eigenvalue decomposition using a few approxi-
mate singular values and the corresponding singular vectors.
This method can also work on a large sparse matrix, which is
typically the case for a transition matrix X that corresponds
to a finer spatial granularity.

Temporal & Demographic Mobility Dynamics

In this section we will explore the benefits of
EigenTransitions in identifying differences in
sub-groups of the total population that cannot be observed
in the original, high dimensionality. For example, based
on the gender of users, we are interested in examining the
difference between the mobility patterns of male and female
population. In particular, are these two groups different with
regards to their mobility patterns? To answer this question
we build two transition matrices Xmale and Xfemale. Row
i of Xmale (Xfemale) corresponds to the original transition
profile of male (female) user i.

Previous work (Bagrow and Lin 2012) using phone call
records has indicated some connections between individ-
ual mobilities and demographics. With the application of
EigenTransitions in our study, demographic informa-
tion (e.g., ethnicity, gender, age etc.) is not the only way to
define and compare sub-populations. Temporal dynamics of
urban mobility can also be examined. For example, we can
study the different travel behaviors during the weekdays and
weekends by defining and using daily-wise transition matrix
Xday that captures the transitions of users (rows) on spe-
cific days. Further population segmentation can be achieved

by combining demographic and temporal dimensions, e.g.,
we can compare the mobility behavior during weekdays and
weekends for the male population by building a daily-wise
transition matrix Xday,male using transitions only from the
male population.

In principle, EigenTransitions are not necessary for
comparing the mobility of two populations. Focusing, for
presentation reason, on comparing the male and female mo-
bility patterns, one could simply perform a statistical hy-
pothesis test between the two populations using as features
the full transition profiles. In other words, one could perform
a Hotelling’s T2 test (Hotelling 1931) on the datasets de-
scribed by matrices Xmale and Xfemale. The Hotelling’s T2

test is the generalization of the t-test for the case of multidi-
mensional variables. In a nutshell, with Xmale and Xfemale

being the multivariate means for the male and female sub-
populations respectively, Hotelling’s T2 examines the fol-
lowing hypothesis test:

H0 : Xmale = Xfemale (6)
H1 : Xmale �= Xfemale (7)

However, an alternative way to compare the two pop-
ulations is applying again the Hotelling’s T2 test but in-
stead of using the original feature space, we can use the
EigenTransitions, which have much lower dimen-
sionality but at the same time can capture the majority of the
variance in matrices Xmale and Xfemale. To reiterate each
row in the coefficient matrix U captures the “coordinate” of
an instance in the the latent space. We can then compare the
coefficients matrix U of each sub-population, i.e., Umale and
Ufemale. The hypothesis test now becomes comparing the
multivariate means Umale and Ufemale:

H0 : Umale = Ufemale (8)
H1 : Umale �= Ufemale (9)

Note here that, in practice we are using the reduced coef-
ficient matrix Ur given the top-k principle components ex-
tracted.

The premise is that the noise present in the high dimen-
sionality of the original transition space can affect the perfor-
mance of the test. For example, when the size of the datasets
is small compared to the dimensionality of the features, the
statistical power of the test can be reduced and therefore, it
might be unable to identify (small) differences between the
populations compared at a pre-defined significance level. In
fact, when the dimensionality is strictly larger than the total
size of the two populations the Hotelling’s T2 test cannot be
applied at all! Using a space of reduced dimensionality can
overcome this problem and hence, EigenTransitions
are crucial in similar settings. Furthermore, depending on
the dataset, a high dimensionality can potentially lead to the
null hypothesis being rejected due to differences in a small
number of “secondary” elements of the feature vector. The
reduced dimensionality space that EigenTransitions
offer can again alleviate this problem since they capture the
most important mobility patterns in the dataset.
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Table 1: p-value of the Hotelling T2 test comparing the mo-
bility patterns between two populations from different tem-
poral and demographic perspectives.

Spacial granularity Neighborhood Community
NYC PITT NYC PITT

Gender female/male 0.0 0 0 0.033

Ethnicity

White/Black 0.0 0.542 0.012 0.988
White/Asian 0.001 0.005 0.388 0.014
White/Hispanic 0.0 0.039 0.0 0.496
Black/Asian 0.0 NA 0.0 0.692
Black/Hispanic 0.098 NA 0.002 0.998
Asian/Hispanic 0.0 0.815 0.0 0.849

Temporal Weekday/Weekend 0 0 0.0132 2e-04
Daytime/Night 0 0 2e-192 0

In what follows we use EigenTransitions to com-
pare different demographic parts of the population. In par-
ticular, we infer the ethnicity and gender of each user in our
dataset (see Appendix A for details) and compare their mo-
bility patterns. We use the EigenTransitions identified
by both the neighborhood-based urban flow network Gn as
well as the community-based urban flow network Gc, which
essentially give us the transition profiles at two different spa-
tial granularities. Apart from the demographics comparisons
we also compare the temporal patterns of the urban mobility
captured from our data.

Demographic and temporal dynamics comparisons:
Table 1 presents the results of the Hotelling’s T2 test for dif-
ferent divisions of the populations for NYC and Pittsburgh.
As we can see for NYC, in (almost) all of the cases the null
hypothesis is rejected (at the significance level of 0.01), i.e.,
there is strong evidence against the hypothesis that the two
populations exhibit the same EigenTransitions on av-
erage. For Pittsburgh, in some cases the test fails to reject
the null hypothesis. This most probably can be attributed to
low statistical power of the test since the size of the various
subgroups is fairly small (e.g., we were able to only iden-
tify 7 “Black” users). In a few cases we were not even able
to perform the Hotelling test at all since the dimensional-
ity of the feature space was greater than the total sample set
size. As we can see these cases appear when we consider
the neighborhood-based flow network where the number of
nodes (and hence, the dimensionality of X) is much larger.

In order to ensure that the rejection of the null hypothesis
is not an artifact of the large size of our dataset, leading to
the rejection of H0 due to irrelevant differences between the
two populations, we perform a “within” population test. In
particular, we randomly split each sub-population into two
parts and perform the Hotelling’s T2 test on these random
splits. One would expect that since both parts come from the
same population, the Hotelling’s T2 test will fail to reject
the null hypothesis. Indeed this is the case for all the demo-
graphic and temporal sub-populations as we can see in the
results presented in Table 2. In particular, for every case we
perform 100 random splits and present the median p-value.

We further examine the temporal mobility dynamics for
each population. Tables 3 and 4 present the results compar-
ing the patterns during weekdays and weekends, as well as

Table 2: Hotelling T2 tests within a population by randomly
splitting the population into two groups. Each p-value re-
ported is the median of 100 different random splits.

Spacial granularity Neighborhood Community
NYC PITT NYC PITT

Gender female 0.55 0.65 0.55 0.59
male 0.545 0.45 0.545 0.48

Ethnicity

White 0.44 0.58 0.558 0.62
Black 0.465 NA 0.575 0.485
Asian 0.49 0.425 0.413 0.475
Hispanic 0.46 0.625 0.518 0.47

Temporal

Weekdays 0.445 0.515 0.449 0.513
Weekends 0.515 0.455 0.480 0.428
Daytime 0.44 0.57 0.453 0.48
Nighttime 0.658 0.545 0.579 0.503

Table 3: Each population sub-group presents significantly
different mobility patterns during weekdays and weekends.

Spacial granularity Neighborhood Community
NYC PITT NYC PITT

Gender female 0 0 4.166e-05 0
male 0 0 0.006 0.005

Ethnicity

White 0 0 0.003 0
Black 0.001 0.003 0.4 0.004
Asian 0 0 3.441e-06 0.034
Hispanic 0 0.319 0.0131 0.055

during daytime (4am-6pm) and nighttime. As we can see, in
(almost) all of the cases there is a strong temporal compo-
nent, i.e., the groups change their behavior over time.

Discriminative patterns: Hotelling’s T2 test provides us
with a sense of whether two populations are heterogeneous
across the whole latent mobility space. The more interest-
ing question is which EigenTransitions really differ-
entiate them. To answer this question we compare the two
sub-groups under consideration with regards to the individ-
ual EigenTransitions using bootstrap hypothesis test
(Efron and Tibishirani 1993). We choose to rely on boot-
strap for the hypothesis testing rather than on the t-test to
avoid any assumption for the distribution of the data. In par-
ticular, the i-th column of the reduced coefficient matrix Ur

contains the coefficient for the i-th EigenTransitions
for the entities described by its rows. Hence, for example,
by considering the i-th column of the Ur

male and Ur
female re-

duced coefficient matrices we can identify whether the i-th
EigenTransitions discriminates the two populations.

Table 5 presents the results for the top 3 components for
NYC (the result for Pittsburgh are omitted due to space
limitations and since they exhibit the same behavior). The
most interesting observation is that most of the tests for the
first EigenTransitions fail to reject the null hypothe-
sis. This indicates that the two populations are similar with
regards to the strongest mobility pattern. Intuitively the first
component from PCA always captures a large fraction of the
variance and resembles the main artery of the urban mobil-
ity, that everybody (every time) tends to follow. What really
differentiate the two populations are usually the secondary
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Table 4: The mobility behavior of a population sub-group
differs between daytime and nighttime.

Spacial granularity Neighborhood Community
NYC PITT NYC PITT

Gender female 0 0 0.001 0
male 0 0 0.021 0

Ethnicity

White 0 0 0.013 0
Black 0 0.004 0.361 0.002
Asian 0 0 0 0.002
Hispanic 0 0.097 0 0.032

patterns which capture the different interests of the individ-
uals. These discriminative EigenTransitions play an
important role in understanding and targeting a specific pop-
ulation of interest.

Neighbor facilitated mobility prediction

In this section, we examine how EigenTransitions
can facilitate the mobility prediction problem, focusing es-
pecially in the so-called “cold-start” scenarios where tradi-
tional methods have been shown to be ineffective. These
cases correspond to the situations where a user visits an
area for the first time and hence, any methods that are
purely based on individuals historical trails will fail. Exist-
ing methods that utilize the gravity (Erlander and Stewart
1990) and/or the intervening opportunity model (Stouffer
1940) mainly take advantage of the aggregate level travel
demand, but they do not consider the interest of individuals.
Recent work consider the historical travel behavior of indi-
vidual users to predict their movement in the future, since
most individuals are highly predictable given enough his-
torical trails (Song et al. 2010b). Social features have also
been proven to help improve the location prediction of in-
dividuals (Cho, Myers, and Leskovec 2011), since mobility
patterns are homophilous (Zhang and Pelechrinis 2014) and
users’ movement can be influenced by their social connec-
tions (Wang et al. 2011).

In this work, we consider a different setting. In particu-
lar, we are interested in predicting the next destination area
(neighborhood or community depending on the scenario)
when the origin is an urban area that the user has not vis-
ited before. This is a cold-start problem in the sense that we
do not have any historical travel information for the user so
as to build the transition probability distribution to destina-
tions. One way to solve this problem is to simply take advan-
tage of the transition behavior of the whole population. This
forms an intuitive baseline, since if the majority of the pop-
ulation is following specific transition patterns, then there
should also be a high probability that the user under consid-
eration will follow the same patterns. However, this method
is limited since it utilizes the same transition distribution re-
gardless of individuals’ interests and mobility structures.

Instead of using the overall population, we propose to
leverage the mobility behaviors of the top-K nearest neigh-
bors (KNN) to facilitate the location prediction for “cold”
users. This is similar to the idea of collaborative filtering in
recommender systems, e.g., users with similar interests in

some types of products may also have similar interests in
other types of products. In the setting of location prediction,
users with similar mobility behavior across some urban ar-
eas will be more likely to have similar behaviors across other
urban areas. In particular, given that a target user currently
moves to urban area ui for the first time, we first identify
the top-K nearest neighbors with similar historic transition
profile. Leveraging neighbors’ historical transitions starting
from area ui to other areas, we then build the transition dis-
tribution for the target user, with the underlying assumption
that the target user tends to have similar transition behaviors
originating from ui as the identified neighbors. The proba-
bility that the user will travel to destination area uj conse-
quently depends on this transition distribution.

In order to find neighbors with similar mobility behavior,
we calculate the distance between users’ original historic
transition profiles and then select the top-K nearest neigh-
bors. However, the noise present in the original transition
profiles may distort the distance calculation, leading to a
non-robust set of nearest neighbors. In this work, we pro-
pose a EigenTransitions-based k-nearest neighbors
(eKNN) algorithm. By using the EigenTransitions,
we identify nearest neighbors with similar mobility patterns
in the latent EigenTransitions space. In particular, we
select the top-K nearest neighbors by calculating the Euclid-
ian distance between the users’ coefficients from the reduced
coefficients matrix Ur.

To evaluate our algorithm, we utilize our NYC and Pitts-
burgh datasets and focus on the mobility prediction task at
the community level. We first split the 16-month data into
two parts: the first 11-months are used for training and the
rest for testing. We keep users who have at least 10 tran-
sitions in the whole dataset and at least 1 transition in the
training set. The latter ensures that we have some historic
information about the user and hence, we can obtain a ba-
sic view for the mobility interests of the user. This is nec-
essary for locating neighbors with similar mobility profiles.
In the training stage, we build the transition matrix X using
the corresponding transitions. Consequently we can find the
nearest neighbors by either using the original transition pro-
file or the EigenTransitions. In the testing stage, we
only consider the “cold”-start scenarios.

We compare our eKNN algorithm to four baselines: (1)
random guess, that is the user selects the destination uni-
formly at random; (2) population-based, the destination is
selected based on the transition distribution from the whole
population. This is essentially a special case of eKNN,
where we set the number of nearest neighbors to the size
of whole population. We refer this method as population-
based nearest neighbors (pNN); (3) K neighbors are uni-
formly at random selected (rKNN); (4) neighbors are se-
lected based on the distance between the original transition
profiles (oKNN).

Figure 4 presents the prediction accuracy for our experi-
ments. As we can see even with a small number of nearest
neighbors eKNN is outperformed by the population-based
algorithm. However, as the number of nearest neighbors
considered increases and exceeds a certain threshold, i.e.,
the percentage of the nearest neighbors used exceeds 1.5%
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Table 5: Our individual bootstrap hypothesis tests for the top-3 EigenTransitions indicate that the secondary la-
tent mobility patterns are important for differentiating between sub-groups of the population. k indicates the number of
EigenTransitions for the specific sub-population.

Spacial granularity Neighborhood Community
k E1 E2 E3 k E1 E2 E3

Gender female/male 161 0.314 0.315 0.531 6 0.324 0.715 0.482

Ethnicity

White/Black

130

0.404 0.489 0.133

6

0.983 0.388 7.119e-07
White/Asian 0.035 0.090 0.383 0.579 0.620 0.022
White/Hispanic 0.129 0.061 0.115 0.017 3.112e-05 4.167e-10
Black/Asian 0.411 0.179 0.161 0.894 0.316 0.400
Black/Hispanic 0.773 0.106 0.930 0.600 0.578 0.481
Asian/Hispanic 0.002 0.039 0.047 0.033 0.0003 0.612

Temporal Weekday/Weekend 1 0.01322 NA NA 4 0.219 0.002 1.326e-23
Daytime/Night 1 2.174e-192 NA NA 4 0.253 1.133e-07 2.416e-36
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Figure 4: Performance of location prediction comparing different algorithms. The x-axis represents the percentage of the nearest
neighbors used from the whole population. Our results indicate that the proposed EigenTransitions-based k-nearest
neighbors algorithm outperforms all the baselines considered, given the percentage exceeds a small threshold (i.e., 1.5%).
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Figure 5: Odds ratio between the prediction performance of eKNN and pNN. eKNN exhibits a diverging trending as the
percentage of nearest neighbors increases, with respect to predicting transitions within communities and between communities.

of the whole population, eKNN outperforms pNN. The ac-
curacy reaches its peak when the percentage of the near-
est neighbors used is about 5% − 10% of the whole pop-
ulation. Further increasing the number of neighbors con-
siders, does not significantly improve the performance of
eKNN over pNN and finally converges to that of pNN as
one might have expected. These results confirm the intu-
ition that a subset of neighbors with similar mobility inter-
ests can facilitate the location prediction in cold-start sce-
narios. Furthermore, eKNN is always better than oKNN
and oKNN is always outperformed by the population-based
method. This indicates that similar neighbors identified in

the EigenTransitions latent space are more robust and
effective than that in the original high-dimensionality noisy
space. rKNN outperforms eKNN when a small percentage
of neighbors is used. We speculate that this is due to the
fact that when a small number of neighbors is used, it is
very likely that they do not include “cold” transitions of the
user, since his neighbors will be similar to him. On the other
hand rKNN will include at least the most popular “cold”
transitions with high probability. However, as the number of
neighbors consider by eKNN increases, our scheme is able
to diversify more and hence, outperform rNNN.

Figure 5 further presents the odds ratio between the pre-
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diction performance of eKNN and pNN. The odds ratio is
calculated as:

OR(eKNN, pNN) =
peKNN/(1− peKNN )

ppNN/(1− ppNN )
(10)

where p is the prediction accuracy of the algorithm. eKNN
outperforms pNN if the odds ratio is greater than one.

In particular, we are interested in examining what is the
prediction performance when considering different transi-
tion types, e.g, self-transitions (i.e., transitions within com-
munity) versus transitions between communities. As we can
see eKNN exhibits a diverging trending as the percentage
of nearest neighbors considered increases. This implies that
nearest neighbors do not help with predicting individual mo-
bility within communities. However, it is necessary to have
a certain number of similar neighbors to enhance transition
prediction between communities. This might be due to the
fact that transitions within communities are much more pop-
ular than transitions between communities, thus, naturally
more predictable. So neighbors’ transition profiles are not
that helpful in this situation.

Discussion

EigenTransitions is a generic analytical framework
and hence, potential population biases associated with the
Twitter dataset used do not affect the core of our study.
EigenTransitions can form the building block in a va-
riety of applications, and of course in this case the data that
drive the application are crucial. While in this study we have
focused on its applicability and benefits when comparing
mobility patterns between sub-populations and facilitating
the cold-start mobility prediction, there are many different
scenarios where EigenTransitions can be helpful.

For instance, cross-city comparisons are crucial for under-
standing what policies might be transferable between cities.
EigenTransitions can facilitate a comparison between
cities with respect to the underlying mobility and its pre-
dictability. For example, given a city c, the matrix Xc cap-
tures the transition profiles of all its dwellers. The number
of EigenTransitions that explains 95% of the vari-
ance of the underlying data can provide us with an esti-
mate of the predictability of the aggregate urban mobil-
ity. For example, a city that includes a small number of
EigenTransitions can be deemed fairly more “pre-
dictable” in terms of transportation needs as compared to
one that requires a large number of EigenTransitions.
Of course, transportation and mobility patterns are mutually
dependent but the point is that the developed framework can
be used to perform cross-city comparisons as well.

For example, Table 6 presents the number of compo-
nents needed to explain 95% of the variance for NYC and
Pittsburgh and for different transition matrices X. Focusing
on the matrix where the rows correspond to specific users,
we see that for the dataset from the city of Pittsburgh less
EigenTransitions are required to explain 95% of the
variance, translating to more “stable” patterns. While our ex-
periments here are very small-scale they are clearly illustrat-
ing the potential of EigenTransitions to be used as a

cross-city comparison metric. In the future, we opt to further
explore this direction.

Table 6: The number of EigenTransitions needed to
capture 95% of the variance for the mobility dataset of dif-
ferent cities and for different matrices X.

Entity Neighborhood Community
NYC PITT NYC PITT

Users 204 80 6 4
Days 4 7 1 2

Conclusions

In this work, we introduce EigenTransitions, a
generic framework to analyze and summarize mobil-
ity datasets. We demonstrate that EigenTransitions
can be applied in a variety of settings. In particular,
we utilize EigenTransitions to compare the tempo-
ral and demographic dynamics of the observed mobility.
EigenTransitions are able to identify differences that
are not observable in the original transition space. Fur-
thermore, we develop an eKNN-based mobility prediction
method, which as we show outperforms various baselines in
“cold-start” prediction scenarios.

In the future, we opt to incorporate into our anal-
ysis mobility traces from more cities and explore how
EigenTransitions can be used to examine and com-
pare mobility patterns across difference cities. Finally we
plan to extend our methodology of matrix factorization to
the high-dimension tensor decomposition, that enables to
capture multiple facets of urban mobility simultaneously.
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Appendix A: Demographics Inference
A large volume of methods have been proposed to infer the de-
mographics of Twitter users. In our work, we utilize a simple and
reliable method reported in (Mislove et al. 2011), which infers the
gender and ethnicity of a user from the self-reported names.

Table 7: Number of users with identified demographics.
City New York City Pittsburgh

Gender female 13,059 982
male 14,090 1,050

Ethnicity

White 7,340 738
Black 175 7
Asian 783 32
Hispanic 1,953 27

Inferring gender from first names: As per (Mislove et al.
2011), we first download the list of top 1000 male and female baby
names for each year between 1900 and 2013, as reported by U.S.
Social Security Administration. Then we aggregate the names to-
gether and calculate the corresponding frequency for each name,
which results in 3,757 female names and 3,114 male names. We
only keep the names that are at least 95% predictive, that is, given
a first name, the proportion of a gender (male or female) is at least
95% (e.g., we remove the name Taylor for which 26% are males
and 74% are females). Finally, to infer the gender, we compare the
first word of a user’s name to the compiled list of first names.

Inferring ethnicity from last names: Similar to the gender
identification, we identify the ethnicity of Twitter users using their
last names. To achieve this, we download the list of last names
from U.S. Census 2000, where each last name is associated with a
distribution for its ethnicity. Then we keep the last names that are at
least 90% predictive and identify the ethnicity by matching the last
name of users with the ones in the compiled list. Table 7 presents
the number of users with demographics identified for NYC and
Pittsburgh.
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