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Abstract 
The need to exploit the physical vicinity of mobile users in 
social platforms has never been more evident as increasing-
ly more users access social networks from mobile devices. 
The effect of online social connections has already   been 
shown as instrumental in spreading content and influence 
via social cascade. In this paper, we examine the phenome-
non of social cascade when confined to the user's physical 
vicinity. We examine the intersection between patterns of 
both social cascade and physical colcoation. We combine 
traces of user mobility with models of online social cascade 
and show that content propagated via social cascade on 
online social networks are likely to be already cached on the 
devices of colocated peers. 

 Introduction  
Increasingly, users access online social networks (OSNs) 
via mobile devices; whereas of the second quarter of 2014, 
62% of Facebook advertisement revenue is generated from 
mobile traffic. In the arena of mobile social networks, sev-
eral studies have shown self-reported social links, such as 
the ones manifested in online social networks, to be a pre-
dictor for the frequency of physical colocation between 
socially-linked users (Hui et al. 2011; Bigwood et al. 
2011). The increased probability of physical encounters 
among socially-connected users has been further exploited 
for routing content in delay-tolerant networks (Costa et al. 
2008; Yoneki et al. 2008; Jahanbakhsh et al. 2010). More-
over, as social relations were shown to affect mobility and 
colocation patterns, we aim to explore how social cascade 
patterns in the OSN relate to colocation patterns in the mo-
bile social network (MSN). Correlation of OSN content 
access and physical colocation can be exploited in multiple 
opportunities and applications, such as realizing large scale 
deployment of distributed web of trust systems and friend 
recommendation. A suite of applications can be built to 
propagate “nearby” popular content to accompany and 
drive location-based advertisement and services. As short 
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range, wide bandwidth connectivity become more ubiqui-
tous, the opportunity to localize the retrieval of bandwidth-
expensive content to colocated peer devices is yet another 
opportunity. 

Using Social Cascade for Localized Access 
The social cascade phenomenon captures the impact of 
social connections in increasing the user's bias to access 
the same content as her peers. The user becomes interested 
in accessing content after and in part due to her becoming 
aware that one or more social connections have accessed 
such content. In this paper we attempt to quantify the fea-
sibility of the social cascade phenomenon within a coloca-
tion network. This is a preliminary study, where we quanti-
fy the coincidental probability of social cascade intersect-
ing with colocation patterns. If such correlation exists, we 
envision multiple applications and incentives to further 
encourage accessing social content from colocated peers. 
 We define colocation cascade as the probability of 
successfully obtaining a copy of OSN cascade content 
from a socially-connected and physically-colocated 
peer versus retrieving it from the OSN directly. Coloca-
tion cascade thus captures the correlation between the 
progression of online cascade users' physical encoun-
ters. We quantify colocation cascade as a probability. If 
a data item is propagated via online social cascade from 
node A to node B at time t, and if  B is colocated with  
A within time window w from t, this occurrence is rec-
ognized as an instance of colocation cascade. If the data 
item can be retrieved via colocation cascade, this is 
considered as a hit in the putative distributed social 
cache that could be emergent from the devices of colo-
cated peers, otherwise it is a miss. We then calculate the 
probability of hits versus misses for the full cascade 
study. 
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Modeling Social Cascade 
To begin to understand colocation cascade, we need to first 
model online social cascade. There is not yet a consensus 
on such a model. In light of previous studies of cascade 
dynamics, we recognize two possible models; long chain 
model (LCM) and short chain model (SCM). We construct 
the long chain model based on the empirical analysis of 
Cha et al. (Cha et al. 2008) for the propagation of popular 
“favourited” photos on Flickr. The short cascade model is 
based on Sun et al. (Sun et al. 2009) that analyzed the act 
of “fanning” pages via Facebook news feeds.  As early 
analysis of the social cascade phenomenon built on epide-
miology literature, the term infection is used to refer to the 
spread of the interest in a data item from a user to a social 
peer. 

Characteristic Long chain model Short chain model 

Starter nodes Few starter nodes 14-47% of all nodes 

Infection 
introduction 
rate 

Biased to early in 
cascade lifetime 

Spread throughout 
cascade life time 

Infection 
propagation 
rate 

Controlled by 
exposure density 

unlimited 

Chain length unlimited Limited according to 
a right-skewed 
distribution 

Table 1: Characteristics of long vs. short cascade models 

The long chain model further builds on epidemiology 
literature in assuming an infection is introduced to a social 
network through one node. In contrast, Sun et al. demon-
strated that cascade behavior is started by many starter 
nodes. Each starter node then triggers multiple cascade 
chains, most of which are of short length. Many short 
chains eventually conglomerate into one big cluster as the-
se chains overlap at multiple nodes. The model further im-
poses a right-skewed distribution on chain length and a 

cascade chain is obsoleted after reaching this length and it 
is not propagated any further. In contrast, the long chain 
model imposes no limit on the length of a cascade chain 
and assumes an infection is sustained for the length of the 
experiment. 
 While both cascade models show a correlation between 
exposure to the cascade item and the probability of adopt-
ing the infection object, they differ in their findings on the 
number of starter nodes and the chain length or depth. The 
long chain model assumes a minimal number of starter 
nodes, while the short chain model found that 14-47% of 
nodes are involved as cascade starters. 
 The main difference between the two models, and which 
motivates naming the models is the cascade depth. LCM 
adopts that cascade chains grow indefinitely; in contrast, 
SCM found that chain length followed a right-skewed dis-
tribution, where most chains were fewer than 3-nodes long. 
More recently, Dow et al. contributed to the discussion on 
whether a deep or a shallow cascade model is more accu-
rate (Dow et al, 2013). They found out that by correcting 
for exposure sequence, a deep model was a more accurate 
presentation of Facebook large cascades. We here intro-
duce both models still as the dynamics of multiple online 
social communities vary enough to potentially allow for 
both models to exist in different communities. 

Long Chain Model (LCM) 
 The long chain model (LCM) distinguishes two types of 
propagation steps; initial steps that introduce a popular 
photo to a social cluster via starter nodes versus following 
steps, where the photo propagates via social links in the 
network. 
  LCM introduces most infections early on in the lifetime 
of the cascade, where 50% of the infections occur within 
the first 3 days of object introduction. To simulate LCM, 
we control the probability of following infections so that 
infections are introduced into the network according to the 
number of exposures a node sees from friends. Our model 
dictates that 45% of infected users were exposed to the 
photo via three or more infectors, 35% of users had a sin-

 
Figure 1: Infection propagation in (a) long chain model and (b) 

short chain model 
 

Figure 1: Infection propagation in the (a) long chain model and (b) short chain model 

3



gle infector and 20% of users had two infectors. The length 
of the chain is unlimited and infections persist for the peri-
od of the experiment. 

Short Chain Model (SCM) 
In the short chain cascade model (SCM), infections are 

introduced to the population throughout the cascade life-
time. The length of a chain is controlled to reflect a distri-
bution whereby 25% of chains are of length 1, 25% of 
chains are of length 2, 25% of  chains are of length 3, 20% 
of  chains are of length 11 or fewer and 98% are of length 
18 or fewer. Our model adheres to these distributions and 
ends the propagation of an infection when the maximum 
length is reached. This is in addition to 14-47% of nodes 
being cascade starters. 

Experiments 
Evaluating colocation cascade requires three-fold 
knowledge: the user’s social graph, traces of online social 
cascade and colocation traces. For this initial study of the 
concept, we rely on simulation based on synthesizing two 
datasets. Social cascade traces are constructed via the long 
and short chain models discussed in the previous sections. 
The two cascade models are applied to the real-life social 
graph of a group of users and for a period of 75 days (to 
match the time length of the colocation traces). The propa-
gation of cascade infections on the social graph is recorded 
as cascade traces. These traces are then replayed against 
the real-life colocation traces of the same group of users. 

Dataset 
For the social graph and colocation traces, we use the 

SASSY dataset, collected by St. Andrews university and 
available via the CRAWDAD archive for crawled datasets 
(Bigwood et al. 2011). This dataset was collected over 75 
days, where 25 users carried T-mote sensors in a university 
environment. The dataset captures 112264 encounters be-
tween users with a mean of around 1496 encounters a day 
and a median of 252 encounters a day. 

Simulation Setup 
Using a discrete event simulator we developed in Py-

thon, we capture the propagation of the cascade through 
the social graph during 75 days. We construct the social 
cascade traces by applying the Long and short chain mod-
els to the social graph of the users in the SASSY dataset. A 
number of independent infections is generated according to 
LCM and SCM. For the results shown here, we generate 7 
independent infections and run the simulation 10,000 
times, to account for the random factors in LCM and SCM.  
One example infection trace is shown in figure 1. The se-

cond phase of the simulation is then to replay these cascade 
trace while simulating the physical encounters of the same 
group of users.    

Measuring Colocation Cascade 
We calculate the probability of colocation cascade by 
measuring the number of times an online cascade between 
two users can be satisfied via a colocation with the same 
user. This occurrence counts as a hit and is counted against 
misses as the probability of colocation cascade. We use a 
time window of 8 hours; that is, a cascade interaction is 
considered a hit or what we call a colocated cascade if the 
two users involved have a physical encounter within a pe-
riod of 8 hours from the online cascaded time. The time 
window choice is due to the natural breakdown of daily 
activities, This assumes that a user affected by cascade of 
online content will still be interested in accessing the con-
tent up to 8 hours from exposure time. 
 
 The long chain model achieves a cumulative distribution 
of 0.69 colocation cascade hits, while the short chain mod-
el sees a higher rate reaching a CDF of 1 before the end of 
the simulation as shown in figure 2. This is perhaps due to 
the small size of population in the dataset leading to early 
saturation in the case of the long chain model. Meanwhile, 
as the short chain model distributes starter infections 
throughout the lifetime of the cascade, new starter infec-
tions can help the cascade chain escape a saturated clique 
of users to further spread the content throughout the full 
population. 

Discussion 
Our simulation finds that colocation cascade occurs as a 
natural side-effect of online social networks going mobile. 
Contributing factors are the social cascade phenomenon, 
our tendency to befriend people we frequently encounter 
and to be around some of our online social friends. A suite 
of applications that fully expose and exploit this phenome-
non is yet to be developed. While some mobile applica-

Figure 2:Colocation cascade CDF, long versus short chain models 
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tions already transparently utilize user location to optimize 
application behavior, these have been limited to location 
but not colocation data─ perhaps due to privacy challeng-
es. Our simulation accounts only for coincidental coloca-
tion cascade; that is naturally occurring colocation cas-
cade─ in absence of any incentive or application-driven 
interactions. We thus believe that our findings are an un-
derestimation of the occurrence of colocation cascade. We 
envision users to favor localized access if an application 
suite existed. 
 One challenge of further developing our model is that of 
gathering a dataset that combines three pieces of infor-
mation simultaneously: online social graph, physical colo-
cation and content access traces. Few such datasets exist 
due to the difficulty anonymizing them, as experienced 
with Harvard's Facebook dataset (Lewis et al. 2012).   

Related Work 
Several works have looked into location information that 
users self-reported via “check-ins” on online social 
networks. Location information was then used to infer and 
study community formation and dynamics (Brown et al. 
2012; Allamanis et al. 2012). We believe that sentient 
colocation follows distinct dynamics and can serve a 
different suite of applications and perhaps system-level 
services. More recently, Socievola et al. introduced the 
concept of multi-layer social network, where they 
recognize implicit colocation information as a system-level 
activity rather than a social application in itself (Socievole 
et al. 2014). Distributed social networks, like Persona and 
Diaspora (Baden et al. 2009; Bielenberg et al. 2012) put 
user location at the core of the social network design; they 
are not close to replacing online social networks. The 
wealth of user data already on OSNs as well as the 
exhaustiveness of the social connection directory 
accumulated by their current users are likely to make users 
hesitate before quitting an OSN for a distributed version. 

Conclusions 
We have introduced the concept of colocation cascade and 
attempted to estimate quantified it via simulation and using 
a real-life dataset of user encounters and their online social 
graphs. In the process, we built two models of online social 
cascade based on empirical studies of two of the largest 
online social networks: Flickr and Facebook. Our findings 
show that colocation can be an effective means for sharing 
socially-propagated content, laying the groundwork for 
further analysis and application. 
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