
Answering Complex Queries
in an Online Community Network

Azade Nazi,† Saravanan Thirumuruganathan,†
Vagelis Hristidis,‡† Nan Zhang,†† Gautam Das†

†University of Texas at Arlington; ‡†University of California, Riverside; ††George Washington University
†{azade.nazi@mavs, saravanan.thirumuruganathan@mavs, gdas@cse}.uta.edu, ‡†vagelis@cs.ucr.edu, ††nzhang10@gwu.edu

Abstract
An online community network such as Twitter or ama-
zon.com links entities (e.g., users, products) with var-
ious relationships (e.g., friendship, co-purchase) and
make such information available for access through a
web interface. The web interfaces of these networks of-
ten support features such as keyword search and “get-
neighbors” - so a visitor can quickly find entities (e.g.,
users/products) of interest. Nonetheless, the interface is
usually too restrictive to answer complex queries such
as (1) find 100 Twitter users from California with at
least 100 followers who talked about ICWSM last year
or (2) find 100 books with at least 200 5-star reviews at
amazon.com. In this paper, we introduce the novel prob-
lem of answering complex queries that involve non-
searchable attributes through the web interface of an on-
line community network. We model such a network as
a heterogeneous graph with two access channels, Con-
tent Search and Local Search. We propose a unified ap-
proach that transforms the complex query into a small
number of supported ones based on a strategic query-
selection process. We conduct comprehensive experi-
ments on Twitter and amazon.com which demonstrate
the efficacy of our proposed algorithms.

Introduction
Motivation: An online community network, such as Twit-
ter and amazon.com, offers information about entities (e.g.,
Twitter users, products sold at amazon.com) and various
types of relationships between them (e.g., follower/followee
relationships between Twitter users and co-purchase rela-
tionships between amazon.com products). Such information
is made available through a web interface which often pro-
vides various search and browsing features for visitors to
locate the entity/relationship information of interest - some
common examples here include form-like search, keyword
search and graph based browsing features.

While simple and intuitive to use, these search/browsing
features are often insufficient to support complex queries de-
sired by many users and third-party applications. For exam-
ples, a complex query may (a) involve attributes that are not
searchable through the web interface (e.g., user’s home lo-
cation in Twitter or average rating/reviews in amazon.com),

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and/or (b) require more expression power than the simple
conjunctive conditions allowed by the interface (e.g. a query
may call upon a classifier to determine whether a Twitter
user is an expert in a topic - such a classifier is clearly un-
specifiable through the web interface). While a user may
manually (and repeatedly) reformulate queries till finding
the desired entities, to the best of our knowledge, there has
not been an automated solution to avoid the tedious manual
process and efficiently answer complex queries through the
restrictive web interface of an online community network.
Our Problem - Answering Complex Queries: In this pa-
per, we focus on complex queries that satisfy two conditions:
(1) it returns a subset of entities in the online community
network, and (2) whether an entity satisfies the query can
be determined based on information about the entity that is
publicly available from the network. Given an online com-
munity network and a complex query specified by a user,
our objective is to design an efficient algorithm to retrieveN
entities that satisfy the query, where N is a pre-determined
constant, using nothing but the public web search interface
provided by the network.
Challenges: There are two main technical challenges facing
the processing of complex queries over an online commu-
nity network. First is the heterogeneous access channels. To
properly answer complex queries, one has to identify ways
to leverage and synthesize the various access mechanisms
simultaneously. Second, most of the online community net-
works impose query rate limitations (Twitter allows only
180 queries per 15 minutes per user). Thus, a complex query
processing technique must minimize the number of queries
issued through the web interface of the community network.
Outline of Our Contributions: The contributions of this
paper can be summarized as follows:
• We define the novel problem of answering complex

queries over an online community network.
• We model an online community network as heteroge-

neous networks and identify two orthogonal techniques,
Local Search and Content Search.

• We propose a multi-armed bandit based strategy selection
algorithm that interleaves the two strategies to achieve
better results consistently.

• We conduct comprehensive experiments on Twitter and
amazon.com that show the efficacy of our algorithms.

Proceedings of the Ninth International AAAI Conference on Web and Social Media

662

Preliminaries
In this section, we introduce our abstract graph model for
an online community network followed by discussion of the
search interfaces and a taxonomy of complex queries.
Graph Model: We model an online community network
as a heterogeneous graph with multiple types of nodes and
edges. Specifically, we consider two types of nodes. VU is
the set of nodes associated with the entities U (e.g., users
in Twitter or products in amazon.com). VK is the set of
nodes corresponding to content K (e.g., tweets in Twitter
or product details in amazon.com). There are two type of
edges, i.e., intra-edges Euu′ ⊆ (VU × VU) and inter-edges
Euk ⊆ (VU × VK). Intra-edges (Euu′) are locality-based
edges connecting different entities, e.g., the friendship be-
tween users, while inter-edges (Euk) are between entity
nodes and content nodes, e.g., connecting a user with the
tweets he/she posted. While an intra-edge can be directed or
undirected in practice for the purpose of this paper, we con-
sider all edges to be undirected (such as by defining undi-
rected edges to exist between users who are followers or fol-
lowees of each other). Formally, the heterogeneous graph is
defined as G = (V = {VU ∪ VK}, E = {Euu′ ∪ Euk}).
Search Interfaces in Online Community Network: Most
popular online community network provide one or more
mechanisms to search their content. Such interfaces could
broadly be categorized into three categories.

1. Form based interface: It allows searches that specify the
desired values for one or a few attributes - such a specifi-
cation is then translated to a conjunctive query.

2. Keyword Search interface: These interfaces, popularized
by search engines, often consist of a single textbox. The
user expresses a query through one or more keywords and
the interface returns results most relevant to the query.

3. Graph based interface: This interface allows users to nav-
igate to other similar entities - e.g., one can browse a Twit-
ter user’s follower list and then navigate to a follower’s
page and access its information.

Mapping Edge Navigation to API Calls: It is possi-
ble to abstract all access mechanisms into three sim-
ple primitive operations over the heterogeneous graph G.
GET-NODE-DETAILS operation provides details about
the node - e.g., getting user profile in Twitter (via
users/show or users/lookup API). Second, opera-
tion GET-LOCAL-NEIGHBORS produces a list of entities
that are connected through intra-edges with u - e.g., get-
ting the list of followees or followers of a Twitter user (via
friends/list. Finally, GET-CONTENT-NEIGHBORS
retrieves a list of entities that are connected through
content based edges with u through keyword k - e.g.,
search/tweets or users/search APIs in Twitter.
Problem Definition: A complex query could be formulated
as an SQL-like query Q of the form SELECT * FROM U
WHERE CONDITION. Here is a non-exhaustive list of ways
to classify complex queries Q based on its CONDITION.
• Queries over Non-Searchable Attributes: Each entity

in the graph has a well defined schema (e.g., user pro-
file/timeline in Twitter, product schema in amazon.com).
However, there are many attributes that cannot be queried
using the search interfaces - e.g., the number of reviews

of a product in amazon.com, the number of followers of a
Twitter user.

• Queries involving Mathematical Operators: If the con-
dition involved operators such as ≥,≤, 6=, it might not
be specifiable through the native interfaces - e.g., movies
with running time of more than 2 hours.

• Queries with Blackbox Predicate Matching: It is possi-
ble that some queries would require a black box to decide
if CONDITION is satisfied. The black box could take en-
tire entity details (Twitter user profile+timeline) and out-
put a binary value to indicate if the entity matched the
predicate. The black box could be a simple classifier such
as decision tree or some complex function - e.g., black
box functions that determine the location of a user from
their tweets/neighbors.

PROBLEM DEFINITION: Given a complex query Q over an
online community network with entities U , and the desired
number of results N , find N entities U ′ ⊆ U that satisfy Q
with minimal query cost.
Baseline Approaches: All search mechanisms offered by
an online community network can be abstracted as vari-
ous types of edges. Specifically, the form-based/keyword
search interfaces provide information about content based
edges Euk while graph based browsing interface provides
knowledge about locality based edges Euu′ . Hence, a sim-
ple method to answer user query q is to start from one or
multiple seed nodes S and to systematically traverse the het-
erogeneous graph G - i.e., for each node newly visited, ver-
ify if it satisfies the query. We have considered two simple
yet orthogonal baseline approaches - Local Search (LS) that
traverses locality based edges and Content Search (CS) that
traverses only content based edges. Algorithm 1 describes
the pseudocode for LS, where the function PICK-NODE re-
turns a randomly chosen node from the set of candidates.
Depending on the query the number of API calls to check
whether a node satisfies it varies. Algorithm 2 depicts the
pseudocode for CS, where the sub-routine FindKywds re-
turns the most discriminative keywords among the entities,
ranked according to tfidf (term frequency inverse document
frequency) (Manning, Raghavan, and Schütze 2008).

Although the baseline approaches retrieve N relevant re-
sults for a complex query, the query cost can be very high,
as we demonstrate later in the experimental results.

Algorithm 1 Local Search (LS)
1: U ′ = {S}; Candidates = {S}
2: while |U ′| < N
3: s = PICK-NODE(Candidates, U ′)
4: if s satisfies q
5: Append s to U ′ and

GET-LOCAL-NEIGHBORS(s) to Candidates

Strategy Selection Algorithm
In this section, we propose a sophisticated strategy selection
approach that carefully interleaves these two approaches so
that all possible user queries Q can be answered efficiently.

663

Algorithm 2 Content Search (CS)
1: U ′ = {S}; K ′ = FindKywds (U ′)
2: while |U ′| < N
3: s = PICK-NODE(Candidates, U ′)
4: if s satisfies q
5: Append s to U ′ and GET-CONTENT-

NEIGHBORS(s,K ′) to Candidates
6: Periodically update K ′ using FindKwds(U ′)

A key hurdle in using baseline techniques is that, given
a query, it is not easy to determine which of the two ap-
proaches will work best. This conundrum motivates us to
design a single algorithm that balances the complementary
strengths and weaknesses of the two approaches. We formu-
late the problem as a strategy selection problem. In practice,
LS works effectively within a community while CS could
be used as a way to transition between communities. Hence,
given a query, we seek to use both strategies to answer the
query instead of choosing a single one. However, we would
like to note that this is a non-trivial problem. To give a sim-
ple example, determining if and when an entity node u is
part of a community is challenging to determine without
expending additional queries. This obviates some intuitive
heuristics such as using LS within a community and when it
is fully consumed, use CS to jump to another. We propose to
adapt a popular sequential strategy selection technique from
Artificial Intelligence based on Multi-armed bandits.

Multi-Armed Bandits
The problem of Multi-Armed Bandits(Barto 1998) abstracts
following learning problem. The user is given a set of n dif-
ferent options each of which is associated with an arbitrary
reward distribution that is unknown to the user. The user se-
lects a single option and is rewarded based on the chosen
option’s reward distribution. The goal is to maximize the ex-
pected reward over a period of, say L choices.
Mapping MAB to Strategy Selection Problem: There ex-
ists a simple mapping between our problem of selecting
the right strategy and MAB. Specifically, we formulate our
problem as a 2-armed bandit problem with LS and CS as two
arms. In other words, the two strategies correspond to the
two arms, one of which is chosen by the user. The selected
strategy is then used to obtain the next entity node u ∈ U ′.
Once node u is obtained, the user achieves a reward based
on the efficacy of the choice and based on all prior knowl-
edge asked to make next strategy choice again. The objective
is to come up with an optimal set of strategy choices that
maximizes the total reward. The minimal query cost con-
straint could be easily integrated into the problem through
the design of reward function, -e.g., the reward function for
choosing a strategy could be the reciprocal of the number of
queries issued till a new entity node is chosen.

The main challenge of designing this approach is that
the expected rewards of the LS and CS are unknown which
makes the decision of switching between the algorithms dif-
ficult. To address this problem, we use the general paradigm
of exploration-exploitation. An action is said to exploitation,

when the user makes a greedy decision based on the cur-
rent information that she has. On the other hand, an explo-
ration occurs when the user decides to make a choice ran-
domly. There exist multiple algorithms (see (Barto 1998)
for a discussion) to determine when to make an explo-
ration/exploitation decision. For the purposes of our paper,
we use ε-greedy technique, where we are given a constant
0 < ε ≤ 1. At decision time, the exploitation (greedy choice
with highest reward so far) would be selected with proba-
bility 1 − ε and with probability of ε a strategy is randomly
selected for exploration.

While ε−greedy is known to work well in practice, a
slight modification is required for our problem. Notice that
when a strategy is invoked, its reward will not be updated
until it finds a new entity node that satisfies a query. In other
words, a poorly chosen strategy might consume a large num-
ber of queries to identify the next node that satisfies query.
Thus, in order to reduce number of queries, we limit the
maximum number of API calls that can be used by a strategy
to the number of API calls that were used by the previously
utilized strategy. For example, suppose the reward of the LS,
and CS to obtain a new entity node in the previous round
were rls, rcs with rls < rcs. In exploitation step, the CS will
be invoked with assigned threshold rls and it would stop if
its reward is lower than the cost of the LS and it has not
found a new entity yet. Algorithm 3 outlines the pseudocode
of MAB algorithm.

Algorithm 3 Multi-Armed Bandits (MAB)
1: U ′ = {S}; rls = rcs = 0 (reward for LS and CS)
2: while |U ′| < N
3: With probability ε, pick a random arm and with

probability 1− ε, pick arm with highest reward
4: Use chosen strategy to retrieve next relevant node
5: Update reward of selected arm (discounted by δ)

Related Work
There exist a number of prior work to retrieve information
from an online community network using only one of the
access mechanisms. The crawling of the form based inter-
faces proposed by (Sheng et al. 2012), while (Wolf et al.
2002) introduced algorithms for crawling keyword based in-
terfaces such as in search engines. (Ye, Lang, and Wu 2010)
and (Gjoka et al. 2011) study the problem of crawling on-
line graphs and (Chakrabarti, Van den Berg, and Dom 1999)
study the problem of Focused crawling for web pages that
match a particular topic. (Nazi et al. 2014) tackled a prob-
lem of answering queries over unsearchable attributes us-
ing the baseline versions of crawling using graph and key-
word based interface. In contrast our work leverages multi-
ple search interfaces and proposes unified approach.

Experiments
Dataset Description: We performed our experiments over
two popular online community networks - Twitter and ama-
zon.com. Our experiments over Twitter was conducted in

664

Figure 1: LS and CS vs. MAB (Twitter) Figure 2: LS and CS vs. MAB (amazon.com) Figure 3: Varying # MAB Arms

real-time by leveraging its REST API. For amazon.com,
we crawled more than 500K products from diverse domains
such as books, movies, digital cameras. Each domain con-
sisted of at least 50K products. For each product, we crawled
the product details, reviews and related products.
Queries Evaluated: We evaluated our algorithms by using
three types of queries. QT-I denotes queries specified over
unsearchable attributes (such as retrieving 100 Twitter users
who are Physicians or 100 books that got 5 Star review from
at least one top-1000 reviewers). QT-II refers to queries
involving mathematical operators (such as 100 Twitter users
with 200 or more followers, 100 movies that have a run-
ning time of 2 hours or more). Finally, QT-III refers to
queries that might need some external blackbox to verify
if an entity satisfied the query (such as 100 Twitter users
who are Physicians (expertise)/effervescent (sentiment) or
100 movies that got universal acclaim in comments). Addi-
tional, we also “hid” few visible attributes (such as location)
and sought to retrieve entities without using it. We evalu-
ated our experiments with a total of 400 queries (200, 100,
100 queries respectively for QT-I, II and III). By default, all
experiments sought to retrieve N = 200 matching entities.
Comparing LS and CSwith MAB: Figures 1 and 2 show the
results on Twitter and amazon.com. We can see that MAB is
competitive with both the algorithms. While the LS and CS
variants have multiple queries that trip them up, MAB per-
formed well in all queries. A key rationale for MAB is that
it could be used for all queries without any prior knowledge
of the query type. If one of LS or CS is best suited for this
query, then MAB would soon find and exploit it resulting in
a query cost comparable to just running the best performing
variant. We conducted an experiment where we varied the
number of arms in MAB. While most of our experiments
used two arms (one for LS and CS), it is possible to use
higher number of arms especially when we have multiple
seed nodes by assigning one seed node per strategy. Figure
3 shows the results. While increasing arms is helpful in re-
ducing the query cost, it has diminishing returns. In general,
identifying the optimal number of MAB arms is non-trivial.

Conclusion
In this paper, we introduce the novel problem of answering
complex queries in an online community network by lever-
aging and synthesizing search interfaces. Our proposed so-
lution, return the relevant results of a user query by consid-

ering the limited budget for the number of API calls. We
proposed a unified approach based on strategy selection to
answer such queries. We conduct exhaustive and compre-
hensive experiments on Twitter and amazon.com that show
the proposed algorithm based on strategy selection, provide
relevant results for variety of the queries with fewer cost.

Acknowledgment
The work of Azade Nazi, Saravanan Thirumuruganathan
and Gautam Das was partially supported by National Sci-
ence Foundation under grants 0915834, 1018865, Army Re-
search Office under grant W911NF-15-1-0020 and a grant
from Microsoft Research. Nan Zhang was supported in
part by the National Science Foundation grants 0852674,
0915834, 1117297, 1343976, and Army Research Office un-
der grant W911NF-15-1-0020. Vagelis Hristidis was par-
tially supported by National Science Foundation grants
1216007, and 1447826.

References
Barto, A. G. 1998. Reinforcement learning: An introduction.
MIT press.
Chakrabarti, S.; Van den Berg, M.; and Dom, B. 1999. Fo-
cused crawling: a new approach to topic-specific web re-
source discovery. Computer Networks 31(11):1623–1640.
Gjoka, M.; Kurant, M.; Butts, C. T.; and Markopoulou, A.
2011. Practical recommendations on crawling online social
networks. JSAC special issue 29(9).
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. In-
troduction to information retrieval, volume 1. Cambridge
university press.
Nazi, A.; Thirumuruganathan, S.; Hristidis, V.; Zhang, N.;
Shaban, K.; and Das, G. 2014. Query hidden attributes in
social networks. In Third Workshop on Intelligent Data Pro-
cessing (IDP), ICDM.
Sheng, C.; Zhang, N.; Tao, Y.; and Jin, X. 2012. Optimal
algorithms for crawling a hidden database in the web. VLDB.
Wolf, J. L.; Squillante, M. S.; Yu, P.; Sethuraman, J.; and
Ozsen, L. 2002. Optimal crawling strategies for web search
engines. In WWW, 136–147. ACM.
Ye, S.; Lang, J.; and Wu, F. 2010. Crawling online social
graphs. In APWEB. IEEE.

665

