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Abstract
Automatically identifying the event type of event-related in-
formation in the sheer amount of social media data makes ma-
chine learning inevitable. However, this is highly dependent
on (1) the number of correctly labeled instances and (2) la-
beling costs. Active learning has been proposed to reduce the
number of instances to label. Albeit the thematic dimension
is already used, other metadata such as spatial and temporal
information that is helpful for achieving a more fine-grained
clustering is currently not taken into account.
In this paper, we present a novel event-based clustering
strategy that makes use of temporal, spatial, and thematic
metadata to determine instances to label. An evaluation
on incident-related tweets shows that our selection strategy
for active learning outperforms current state-of-the-art ap-
proaches even with few labeled instances.

1 Introduction
Detecting event-related information in microposts has
shown its value for a variety of domains. Especially in
emergency management, different situational information is
present that could contribute to understand the situation at
hand. However, solving the actual problem of classification
of the incident type in this domain requires labeled data that
often is hard to acquire. Therefore, we deal with two major
issues: (1) The costs for labeling a single instance, and (2)
the number of instances to label.

Due to the huge number of tweets, labeling all instances
is impossible as even with cheap labeling the costs would
explode. Keeping the number of instances to label low while
maintaining accurate classifiers is a typical active learning
problem. Here, labeling costs are reduced by iteratively (1)
selecting small subsets of instances to query for labels and
(2) re-training a classifier with the newly labeled data. Thus,
there are two important issues to solve, namely selecting a
good initial training set and the right instances in each itera-
tion.

For selecting appropriate instances, several selection
strategies have been proposed based on the two criteria in-
formativeness which measures the usefulness of an instance
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to reduce the uncertainty of the model and representative-
ness where it is measured how good an instance represents
the overall input of unlabeled data (Tang, Luo, and Roukos
2002; Huang, Jin, and Zhou 2010). The latter usually is
solved by employing clustering approaches where then from
each cluster the instances to be labeled are drawn. As it is
unknown how often an event occurred, the number of clus-
ters is not known in advance. Hence, most often the number
of distinct event types is used, which obviously is not ap-
propriate. For instance, one event might be a tiny fire in a
waste bin whereas another is a huge fire in a factory; though
microposts for both events need to be classified with ”fire”,
state-of-the-art approaches would not distinguish these two
events and thus could not yield an optimal selection of in-
stances. For better distinguishing events, an event should be
characterized not only by its type, but also by spatial and
temporal information resulting in two different clusters.

Except the work of (Hu et al. 2013), which takes the re-
lations between tweets into account, none of the existing
approaches has been evaluated on microposts or has taken
event-related metadata into account. Also, no information
about real-world error rates is present or was used in active
learning. Consequently, we contribute an event-based clus-
tering approach that also leverages the temporal and spatial
dimension of tweets to allow a more fine-grained clustering.
Due to smaller clusters the selection of appropriate instances
is easier because one can assume that even with a bad sam-
pling the selected instances will still be of high quality. The
evaluation shows that this enhanced clustering indeed im-
proves the selection compared to state-of-the-art. It is also
shown that our approach has a good performance even when
only few examples are labeled.

2 Event-Based Classification and Clustering
In this section, we show how active learning can be utilized
to classify the event type of microposts.

2.1 Active Learning for Event Type Classification
Active learning is an iterative process to build classification
models by selecting small subsets of the available instances
to label. Two major steps are conducted: (1) a learning step,
where a classifier is built and (2) an improvement step, in
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which the classifier is optimized. We follow a pool-based
sampling approach. First, large amounts of microposts are
collected as an initial pool of unlabeled data U . From this, a
set of training examples L is chosen. It is highly important
how to choose this set, because with a well-selected initial
training set, the learner can reach higher performance faster
with fewer queries.

For training a classifier using this initial set, we reuse the
classification approach for social media data presented in
(Schulz, Ristoski, and Paulheim 2013). As the amount of
geotagged microposts is rather low, we employ an extension
of our approach for geolocalization (Schulz et al. 2013) of
microposts and for extracting location mentions as features.

After the initial training, this classifier is retrained in sev-
eral iterations using newly labeled instances. After each it-
eration, the labeled instances are removed from the pool of
unlabeled instances U and added to the pool of labeled in-
stances L, thus, more instances can be used for learning. A
selection strategy is used on U to query labels for a number
of instances in each iteration. For coping with this query se-
lection problem, several selection strategies can be chosen
based on informativeness and representativeness.

For informativeness, uncertainty sampling (Lewis and
Catlett 1994) is commonly applied that selects particularly
these examples for labeling for which the learner is most un-
certain. However, the main issue with this approach is that
only a single instance is considered at a time, often lead-
ing to erroneously selecting outliers. In contrary, clustering
helps to identify representative instances. The most repre-
sentative examples are those in the center of the cluster,
which are the instances most similar to all other instances.
Nevertheless, selecting always the centers of the clusters
might result in selecting always very similar instances for
each iteration hindering improvement of the model. Further-
more, it remains unclear how many clusters have to be built.
Also, and most important in our case, the resulting clusters
not necessarily correlate to the real-world events as spatial
and temporal information is omitted.

The general idea to overcome these individual problems is
to select the most informative and representative instances.
This results in selecting the instances, which are representa-
tive for the whole dataset as well as have the highest chance
to improve the model. We use metadata provided in microp-
osts to cluster instances based on both criteria and to choose
the most valuable instances for training the classifier. The
whole process of active learning continues until a maximum
number of iterations is reached or when the model does not
improve any more.

2.2 Event-based Clustering
Clustering-based approaches are frequently used for identi-
fying representative instances. However, there might not be
an obvious clustering of event-related data, thus, clustering
might be performed at various levels of granularity as the
optimal number of cluster is unknown.

Consequently, we use a more natural way of clustering by
taking the properties of real-world events into account. We
use event-related information such as temporal and spatial
information in combination with the event type to perform

an event-based clustering. On the one hand, we are directly
able to find a number of clusters without the need of spec-
ifying the number beforehand and on the other hand both
selection criteria are combined.

The design of our approach follows the assumption that
every event-related information is either related to a specific
real-world event or not. Thus, we propose to cluster all in-
stances based on the three dimensions that define an event:
temporal and spatial extent as well as the event type. As a re-
sult, each instance is aggregated to a cluster. As we use the
properties of real-world events, it is much easier to identify
those tweets that might be helpful for training.

If a micropost lies within the spatial, temporal, and the-
matic extent of another micropost, then the new micropost is
assumed to provide information about the same event. The
spatial extent is given by a radius in meters around the loca-
tion of the event, the temporal extent is a timespan in min-
utes, and the thematic extent is the type of the event. To spec-
ify the spatial and temporal extent we relied on emergency
management staff. In this work we used 200m and 20 min.
Clearly, altering the radius or the time will have a strong ef-
fect on the final clustering. Inspecting the effects of different
parameterizations remains subject for future work, however,
we are confident that our proposed approach is not affected
negatively by a change of these parameters.

To handle missing values, microposts containing no the-
matic information are assigned the unknown event type.
Missing spatial information is replaced with a common spa-
tial center, e.g., the center of the city for which the microp-
osts are used. Missing temporal information is replaced with
the creation date of the micropost.

Based on this clustering approach, we are able to clus-
ter all microposts related to a specific event. This helps to
identify those microposts that might be helpful for better
training. Opposed, those not related to events are assigned to
larger clusters, containing lots of noise and being less valu-
able for the learning process.

2.3 Initial Selection Strategy
For selecting the initial dataset that needs to be labeled,
related approaches rely on random sampling or clustering
techniques (Zhu et al. 2008). However, the selection of ap-
propriate instances is not guaranteed, because the initial
sample size is rather small, whereas the size of clusters is
large. In contrast, event-based clustering uses the properties
of real-world events to perform an initial clustering.

Based on the set of clusters resulting from our event-based
clustering, the most representative instances for the com-
plete and unlabeled dataset are identified. For this, we use
the event clusters ordered by information density of their
containing instances. Selecting informative instances clearly
is not possible yet, as a classifier cannot be trained at this
point. In the following, we describe the algorithm in detail.

First, our clustering approach is applied on the complete
unlabeled set U without a thematic specification. Thus, the
unknown event type is used as a thematic extent. Sec-
ond, for all instances in each cluster the information den-
sity is calculated. This is done based on the similarity of in-
stances, thus, outliers are regarded as less valuable. We used
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a K-Nearest-Neighbor-based density estimation (Zhu et al.
2008): DS (x) =

∑
s∈S(x) Similarity(x,si)

N .
The density DS(x) of instance x is estimated based on

the N most similar instances in the same cluster1 S(x) =
{s1, s2, ..., si}. As a similarity measure, we use the cosine
similarity between two instances. The information density
DSC of each cluster C is then calculated based on the av-
erage of the information density of each instance as follows:
DSC (c) =

∑
x∈C DS(x)

N .
Doing this, we are able to avoid noisy clusters with lots

of unrelated items, which would typically be clusters not re-
lated to an event. Based on DSC(c) the clusters are sorted.
Then we iterate over the ordered list and select instances
until bi (number of the initial training size) instances are se-
lected. Proceeding this way, we achieve a good distribution
over all valuable event clusters as it is guaranteed that the
instances are selected from the most representative clusters.
Based on these instances, the initial model is build.

2.4 Query Selection Strategy
The initial selection strategy gives us the most valuable in-
stances for training the initial model. For every following
iteration, appropriate instances for improving the classifier
have to be chosen. Besides identifying representative in-
stances based on clustering, the goal of our approach is to
avoid instances that the learner is already confident about.

In every iteration, the classifier trained on the currently
labeled instances is applied to label all unlabeled instances.
As a result, every instance is assigned a thematic dimension.
Then, the event clustering is applied using the spatial, tem-
poral, and thematic information yielding a set of clusters C.

Next, for the query selection strategy, we calculate the in-
formation density DS per instance. For identifying informa-
tive instances, we use the instances for which the classifier
is most uncertain. As uncertainty measure the entropy cal-
culated for each instance x and each class y was employed.

Based on the information density and the entropy, the
density×entropy measure DSH(x) = DS(x)×H(x) (Zhu
et al. 2008) is calculated for each instance x. The informa-
tiveness and representativeness of each cluster is then com-
puted based on the mean average of DSH of each instance
i in the cluster c: DSHC (c) =

∑
i∈C DSH(x)

N .
For selecting appropriate instances to query, the clusters

are sorted by the DSHC of each cluster. The number of in-
stances to draw per cluster is calculated as n = log(ms)CS.
To determine how many instances have to be selected per
cluster (n), we calculate the average size of all clusters ms
and the size of the current cluster CS. We decided to use a
logarithm at basis ms to avoid drawing too many instances
from larger clusters as would be the case with a linear ap-
proach. In the latter, large clusters would contribute many
more instances compared to small clusters which is avoided
by penalizing large clusters with the employed logarithmic
scale. We assume that drawing only small numbers per clus-
ter is sufficient, as at some point additional instances will not
yield any additional information. Furthermore, we achieve

1K is equal to the number of instances in the cluster.

that a limited amount of instances is drawn per cluster, to
avoid choosing too similar instances for training, e.g., as it
would happen by using n = CS/ms.

We select instances until the number of instances to la-
bel per iteration is reached. Based on the previous and the
new instances the model is retrained. The whole process is
repeated until all iterations are finished.

3 Experiments
In the following section, we present the evaluation results.

3.1 Methodology
We differentiate between three incident types and a neutral
class in order to classify microposts: car crash, fire, shoot-
ing, and no incident. We collected public microposts using
the Twitter Search API in a 15km radius around the city cen-
ters of Seattle, WA and Memphis, TN. As this initial set of
7.5M tweets needed to be labeled manually, we had to fur-
ther reduce the size of the datasets. We identified and ex-
tracted microposts containing incident-related keywords as
described in (Schulz, Ristoski, and Paulheim 2013).

After applying keyword-filtering, we randomly selected
2,000 microposts. These were then manually labeled by four
domain-experts using an online survey. To assign the final
coding, at least three coders had to agree on a label. In-
stances without an agreement were further examined and re-
labeled during a group discussion. The final dataset consists
of 2,000 tweets (328 fire, 309 crash, 334 shooting, 1029 not
incident related). For our evaluation, we used 1,200 tweets
from dataset for training and 800 tweets for testing (tempo-
ral split, i.e., the testing instances are later in time than the
training instances). Though this selection might seem arbi-
trary, all compared algorithms rely on the same sampling,
thus, allowing for a fair comparison. However, please note
that the absolute numbers in terms of F1 do only reflect the
performance for the current train/test split.

As a classifier, we used Weka’s support vector machine
(Platt 1998). A different classifier could also be used but the
primary interest is the difference of the approaches not so
much the absolute performance.

The active learning algorithms select instances from the
training set to query for labels. Based on these, a classifier
was trained and then evaluated on the test set. Due to the
complexity of determining best parameter settings for each
iteration and each approach, we follow related approaches
(see (Huang, Jin, and Zhou 2010)), and decided to compare
all algorithms on fixed parameters. Consequently, the SVM
was used with standard settings. Clearly, parameter tuning
would result in much better performance.

For comparison, the deficiency metric (Raghavan and oth-
ers 2006) is calculated using the achieved F1 score of all
iterations of a reference baseline algorithm (REF) and the
compared active learning approach (AL). The result is nor-
malized using the maximal F1 score and the learning curve
of the reference algorithm REF. Thus, the measure is non-
negative and values smaller than one indicate better perfor-
mance than the REF algorithm, whereas a value larger than
one means worse performance.
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Figure 1: Evaluation results of state-of-the-art selection
strategies and our approach.

Table 1: Deficiencies with Tang et al. as a baseline strategy

Approach Deficiency
(Tang, Luo, and Roukos 2002) 1

Uncertainty Sampling 0.53
(Zhu et al. 2008) 0.90

Event-based Clustering 0.44

We applied different active learning algorithms. In order
to evaluate the performance of our approach, we compared it
to two state-of-the-art clustering-based approaches that also
take representativeness as well as informativeness into ac-
count. Furthermore, we compared to an entropy-based un-
certainty sampling algorithm.

We reimplemented the approaches of (Tang, Luo, and
Roukos 2002) and (Zhu et al. 2008) as well as a simple un-
certainty sampling. When using 200m and 20 min for our
approach, the 1,200 tweets of the training set are divided
into 438 distinct event clusters.

Following the experimental settings of (Huang, Jin, and
Zhou 2010) and (Hu et al. 2013) we set the size of the ini-
tial training set as well as the size during the iterations to
50. No further tuning or parameterization was applied. Each
iteration for each algorithm was repeated 10 times, as for in-
stance, the uncertainty approach is highly dependent on the
selected instances. We used the averaged F1 score based on
the repetitions.

3.2 Comparison to state-of-the-art approaches
The overall performance graph for the ground truth data is
shown in Figure 1. As can be seen in the graph, the per-
formance after selecting the initial training set is superior
with our approach. Also, in regions where only a few in-
stances were labeled, the event-based clustering has a higher
F1 value. This shows that a high-quality selection of the it-
eration instances is possible with our method.

Table 1 shows the deficiency. With respect to the perfor-
mance of the iterations, our approach has a decreased de-
ficiency compared to other clustering approaches (0.44 vs.

0.53). The approach of Zhu et al. outperforms the approach
of Tang et al. in most iterations and also with respect to
the deficiency. We attribute this to the improved strategy for
query selection. A surprising result is the performance of un-
certainty sampling, which outperforms the other two cluster-
ing strategies. Apparently, only focusing on the informative-
ness seems to be a good strategy for our dataset. In contrast,
using the number of distinct event types as the number of
clusters might not be the most efficient approach.

The graph also shows that our approach has a steep learn-
ing curve as only a sixth of all instances are needed to
achieve about 84% F1. This is especially important when
it comes to labeling costs, as only a limited amount of data
would need to be labeled. One can see that our approach
has a drop at 500 instances. This is most likely because with
more instances the number of clusters is decreasing, thus,
selecting appropriate instances is more difficult.

We can conclude that event-based clustering that takes
representative as well as informative instances into account
is a promising strategy for active learning. We also showed
that our approach outperforms state-of-the-art for selecting
an initial training set and for choosing appropriate instances
for labeling in each iteration.

4 Conclusion
In this paper, we presented an event-based clustering strat-
egy for event type classification of microposts based on tem-
poral, spatial, and thematic information. The approach that
identifies representative as well as informative instances out-
performs state-of-the-art clustering methods and was able to
select a better initial training set as well as to choose appro-
priate instances for labeling in each iteration.
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