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Abstract

Social media systems have increasingly become digi-
tal information marketplaces, where users produce, con-
sume and share information and ideas, often of public
interest. In this context, social media users are their own
curators of information – however, they can only select
their information sources, who they follow, but cannot
choose the information they are exposed to, which con-
tent they receive. A natural question is thus to assess
how efficient are users at selecting their information
sources. In this work, we model social media users as
information processing systems whose goal is acquiring
a set of (unique) pieces of information. We then define
a computational framework, based on minimal set co-
vers, that allows us both to evaluate every user’s perfor-
mance as information curators within the system. Our
framework is general and applicable to any social me-
dia system where every user follows others within the
system to receive the information they produce.
We leverage our framework to investigate the efficiency
of Twitter users at acquiring information. We find that
user’s efficiency typically decreases with respect to the
number of people she follows. A more efficient user
tends to be less overloaded and, as a consequence, any
particular piece of information lives longer in the top
of her timeline, thus facilitating her to actually read the
information. Finally, while most unique information a
user receives could have been acquired through a few
users, less popular information requires following many
different users.

Introduction
In the last decades, the creation, distribution, acquisition
and manipulation of information has been a significant eco-
nomic, political and cultural activity (Castells 2011). In the
information society, people have increasingly relied on the
Web for finding information of public interest as well as
keeping up to date with last breaking news. In other words,
the Web has become people’s “first reads,” i.e., their default
source of information (Kohut and Remez 2008). A broad
spectrum of websites have emerged to serve that purpose,
ranging from online news media outlets such as the New
York Times or CNN, specialized blogs and online magazines
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such as Engadget or Gizmodo, to digital encyclopedias such
as Wikipedia. Importantly, in most of these sites, informa-
tion is often curated by editorial boards, professional jour-
nalists, or renowned experts with a recognized reputation.

The advent of social media and social networking sites
is changing dramatically the way in which people acquire
and consume information. Social media sites such as Twi-
tter, Tumblr or Pinterest have become global platforms
for public self-expression and conversation; more formally,
we can think of these sites as large information networks
where nodes (i.e., users) both create and consume informa-
tion (Kwak et al. 2010). In this context, nodes play the role
of information curators by deciding which information to
post, which other nodes in the network to follow, and which
information posted by other nodes to forward. This entails
serious challenges as well as raises many important ques-
tions, which have not been addressed until very recently.
For example, users tend to follow too many other users, per-
haps afraid of missing out (Hodas and Lerman 2012). As a
consequence, they become overloaded and effectively miss
the information they were interested in (Gomez-Rodriguez,
Gummadi, and Schoelkopf 2014; Lerman and Hogg 2014).

The present work is motivated by a fundamental question
that, perhaps surprisingly, is barely understood: How effi-
cient are the users of a social media site at selecting which
other users to follow to acquire information of their inter-
est? In what follows, we will quantify users’ efficiency at
acquiring information.

The Present Work
In this paper, we define a intuitive computational framework
that allows us to quantify Twitter users’ efficiency at acqui-
ring information. Our framework is based on the following
key concept: given a set of unique ideas, pieces of informa-
tion, or more generally, contagions, I spreading through an
information network, we think of the minimal set of nodes
U∗(I) that, if followed, would allow us to get to know I,
as the most compact representation of I in the information
network. Finding U∗(I) reduces to a minimum set cover
problem, which we can solve using an well-known (effi-
cient) greedy algorithm with provable guarantees (Johnson
1973). We then leverage this idea to define the efficiency of
a user, by comparing the number of people she follows, i.e.,
the number of followees, with the size of the minimal set of
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users that, if followed, would provide the same unique con-
tagions. High efficiency means that the number of followees
is close to the size of the minimal set. Importantly, we can
extend this idea to account for partial coverage or additional
constraints on the minimal sets, enabling a deeper under-
standing of the subtleties of information acquisition in an
information network.

Our analysis yields several insights that do not only reveal
how efficient are users in social media at acquiring informa-
tion, but also help us in understanding the influence different
factors have on this efficiency:

1. We find that users’ efficiency decreases with respect to the
number of people they follow.

2. Users that are more efficient at choosing the people they
follow are proportionally less overloaded. As a conse-
quence, contagions live longer in the top of their timeline,
facilitating its discovery.

3. There is a trade-off between information coverage and
information efficiency. While most unique information a
Twitter user receives could have been acquired through
a few users, less popular information requires following
many different users.
Most of our empirical findings shed light on how our in-

tuitive notion of efficiency relates to different aspects of a
user’s timeline (e.g., amount of information a user receives).
However, an important remaining question, left as potential
future work, is to investigate how users’ efficiency relates
to their level of activity and engagement within the online
social media system.

Dataset Description
We use data gathered from Twitter as reported in previous
work (Cha et al. 2010), which comprises the following three
types of information: profiles of 52 million users, 1.9 bil-
lion directed follow links among these users, and 1.7 billion
public tweets posted by the collected users. The follow link
information is based on a snapshot taken at the time of data
collection, in September 2009. In our work, we limit our-
selves to tweets published during one week, from July 1,
2009 to July 7, 2009, and filter out users that did not tweet
before July 1, in order to be able to consider the social graph
to be approximately static. After the preprocessing steps, we
have 395, 093 active users, 39, 382, 666 directed edges, and
78, 202, 668 tweets.

Then, we pick 10,000 users at random out of the 395,093
active users and reconstruct their timelines by collecting all
tweets published by the people they follow (among all the
395,093 users), build their ego networks by finding who
follows whom among the people they follow, and track all
the unique contagions they are exposed to. Following pre-
vious work, we consider two different types of contagions:
hashtags1 (Romero, Meeder, and Kleinberg 2011) and web-

1Hashtags are words or phrases inside a tweet which are pre-
fixed with the symbol # (Romero, Meeder, and Kleinberg 2011).
They provide a way for a user to generate searchable metadata,
keywords or tags, in order to describe her tweet, associate the tweet
to a (trending) topic, or express an idea.

sites (Mislove et al. 2007). Our set of active users mention
286,219 and 379,424 unique hashtags and websites, respec-
tively, during the week under study. As one may have ex-
pected, the distribution of unique number of mentions for
both types of contagions follows a power-law distribution.
Our methodology does not depend on the particular choice
of contagion, however, it does make two key assumptions.
First, it assumes we can distinguish whether two contagions
are equal or differ. Distinguishing certain contagions such
as hashtags may be trivial but distinguishing others, such
as ideas, may be very difficult. Second, it assumes that re-
ceiving several copies of the same contagion from different
users does not provide additional information, even if dif-
ferent users express different opinions about the contagion.
Although it seems difficult, it would be very interesting to
relax the second assumption in future work.

Finally, an important characteristic of Twitter in 2009 is
that it did not have features such us “Lists” and “Persona-
lized Suggestions” and so the primary way users received
and processed information was through their feed, for which
we have complete data. However, this comes at the cost of
observing a smaller number of users and social activity.

Information Efficiency
In this section, we will first define an intuitive notion of effi-
ciency, which can be efficiently approximated with theoreti-
cal guarantees. Then, we will compute how efficient Twitter
users are, Finally, we will give empirical evidence that more
efficient users are proportionally less overloaded and, as a
consequence, information in their feeds has longer lifetime.
We will conclude elaborating on the trade-off between infor-
mation coverage and information efficiency.

Consider a Twitter user u and the set of unique contagions
Iu (be it in the form of hashtags or websites) she is exposed
to through her feed in a given time period, by following Uu
users2. Now, we can think of the minimal set of users U∗(Iu)
that, if followed, would expose the user to, at least, Iu, dur-
ing the same time period as the most compact representation
of Iu in Twitter. Then, we define the efficiency of a Twitter
user u at acquiring a certain type of contagion as:

Eu =
|U∗(Iu)|
|Uu|

, (1)

where 0 ≤ Eu ≤ 1. If the number of users she follows co-
incides with the number of users in the minimal set, her ef-
ficiency is Eu = 1, and the larger the relative difference be-
tween the size of the set of followees and the size of the min-
imal set, the smaller the efficiency. Importantly, it is straight-
forward to extend our definition of efficiency to account for
partial coverage, by simply considering minimal set of users
that, if followed, would expose the user to, at least, a per-
centage of the unique contagions Iu.

Our definition captures two types of inefficiency, which
we illustrate by two contrasting examples. If a user follows
U other users, each of them mentioning different (disjoint)

2We consider only users (followees) that mention a contagion at
least once. Considering all followees leads to qualitatively similar
results, but lowers absolute values of efficiency.
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(a) PDF (b) Average efficiency vs num-
ber of followees

Figure 1: Efficiency. Panel (a) shows the empirical proba-
bility density function (pdf) of user’s efficiency. Panel (b)
shows the average efficiency against number of followees

set of contagions, and there is another user v /∈ U that cover
all the contagions the followees cover, then the user’s effi-
ciency will be Eu = 1/U . If a user follows U other users and
all these users mention exactly the same contagions, then the
user’s efficiency will be Eu = 1/U and limU→∞Eu = 0.
The former type is due to following users that cover too
few contagions while the latter is due to following redun-
dant users.

In practice, computing Eu, as defined by Eq. 1, reduces to
finding the minimal set of users U∗(Iu), which can be cast
as the classical minimum set cover problem (SCP) (Karp
1972). Although the minimum set cover problem is NP-hard,
we can approximate U∗(Iu) using a well-known (efficient)
greedy algorithm (Johnson 1973), which returns a set cover
of cost at most H(d) · OPT, where OPT is the minimum
size of any set cover, d = maxs∈S |s| is the maximum set
size and H(d) ≈ 0.58 + ln d is the d-th harmonic number.

Once we have a meaningful definition of users’ efficien-
cy at selecting their information sources, we measure it for
Twitter users. Solid lines in Figure 1 represent the empirical
probability density function (pdf)3 of user’s efficiency for
two types of contagions, as defined by Eq. 1. We find seve-
ral interesting patterns. First, the pdf exhibits a clear peak
around 0.55 for the websites and two clear peaks, around
0.80 and 1.0, for hashtags, with most of the density lying
around these peaks. Second, approximately 64% and 6% of
the users, respectively for hashtags and websites, yield effi-
ciency above 0.75; or, in other words, users are much more
efficient at acquiring hashtags than websites. A plausible
explanation is that users often create new short-term hash-
tags to describe breaking news or ideas, which are used only
once (Huang, Thornton, and Efthimiadis 2010). As a conse-
quence, minimal set covers for hashtags may often be close
in size to the original set of followees. In contrast, many
users only mention well-known websites, such as newspa-
pers or specialized blogs, who can be covered by few users.
Now, we compute the empirical pdf’s of user’s efficiency
for a 90% partial coverage for two types of contagions and
plot them using dashed lines in Figure 1. The results suggest
that covering the last 10% of the contagions requires signifi-
cantly larger minimal set covers, especially for hashtags, as

3The pdf has been empirically estimated using kernel density
estimation (Bowman and Azzalini 2004).

(a) Hashtags (b) Websites

Figure 2: Average efficiency vs. tweet in-flow difference be-
tween the original timeline and the timeline induced by the
minimal set cover.

one may have expected given the short-term nature of some
hashtags. However, both efficiency curves, for partial and
complete coverage, are qualitative similar. In the remainder
of the paper, we compute efficiency using full coverage but,
remarkably, we found qualitatively similar results for a 90%
partial coverage.

Next, we investigate users’ efficiency against the number
of people they follow. Figure 1(b) summarizes the results,
where we plot the average efficiency against the number of
followees. We find that the efficiency decreases with res-
pect to the number of people they follow. This indicates that
whenever a user decides to follow one more person, the new
content this followee adds to the user’s timeline diminishes
with the number of people she follows, degrading her effi-
ciency. Importantly, average efficiency is always larger than
0.3, independently of the number of people a user follows.
In other words, for any given user, the number of people she
follows is typically less than three times the size of the min-
imal set.

We have defined efficiency in terms of number of people a
user follows. However, do the minimal set cover representa-
tions result in smaller tweet in-flow rates? If so, our measure
of efficiency will be also useful to assess how efficient is a
user in terms of in-flow. On the one hand, since tweet in-flow
rates are strongly and linearly correlated with the number of
followees, one may expect minimal set covers to result in
smaller tweet in-flow rates. On the other hand, users in the
minimal set covers may be among the most active ones, and
thus produce significantly higher tweet in-flow rates than the
average set of followees. Figure 2 gives empirical evidence
that the minimal set covers do result in a smaller tweet in-
flow rates than the original sets of followees, by showing
the relative difference between the original in-flow and the
in-flow induced by the minimal set cover. One potential ex-
planation is that users in the minimal set cover specialize in
one type of contagions but together do not actually produce
larger tweet in-flow than the original sets. Importantly, the
greater the efficiency, the smaller the difference in tweet in-
flow between the minimal set covers and the original sets of
followees.

If minimal set covers result in smaller tweet in-flow rates,
one may expect contagions in the feed induced by the min-
imal set cover to have longer lifetime. Here, we define life-
time as the time that a contagion appears in the top of their
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(a) Contagion lifetime differ-
ence vs efficiency

(b) Coverage percentage
against the growing set cover

Figure 3: Panel (a) shows the average difference in con-
tagion lifetime between the feed induced by the minimal
set cover and the original feed, plotted against average effi-
ciency. Panel (b) shows the coverage percentage against the
growing set cover for three users with different number of
followees (|Uu|) for two types of contagions: hashtags (solid
lines) and websites (dashed lines).

feed. In practice, we define lifetime of a contagion in a user’s
feed as the time that the contagion appears in the top-50 of
the feed. However, results are qualitatively similar for other
choices such as top-10 or top-20. Figure 3(a) confirms this
intuition by showing that the contagion lifetime is longer in
the feed induced by the minimal set cover than in the origi-
nal feed. Here, we find that the more efficient a user is, the
smaller the contagion lifetime difference between the feed
induced by the minimal set cover and the original feed. A
possible interpretation of this finding is that contagions live
relatively longer in the feeds of efficient users and therefore
are more easily discovered (Gomez-Rodriguez, Gummadi,
and Schoelkopf 2014).

At the beginning of this section, we computed the dis-
tribution of user’s efficiency considering both full and par-
tial (90%) coverage. Now, we investigate further the trade-
off between partial coverage and the size of the minimal set
cover. Our hypothesis here is that while most popular con-
tagions may be acquired by following a few active users,
acquiring rare contagions falling far into the tail of the dis-
tribution may require following proportionally more users.
Figure 3(b) supports our hypothesis by showing the cover-
age percentage provided by a growing minimal set cover for
three users with different number of followees (|Uu|), cho-
sen at random (we find a similar trend across all users). The
first 25% of the users chosen by the greedy algorithm cover
already 65% of the contagions, which are typically the most
popular; in contrast, the last 25% of the users cover only
10% of the contagions, which are typically the rarest.

Discussion
We have introduced a framework that allows us to define an
intuitive notion user’s efficiency in social media, based on
minimal set covers, to measure how good users are at se-
lecting who to follow within the social media system to ac-
quire non redundant information. Our framework is general
and applicable to any social media system where every user
follows others within the system to receive the information
they produce.

Our work also opens interesting venues for future work.
For example, we have defined and computed a measure of
efficiency for each Twitter user independently. However, one
could also think on global notions of efficiency for the Twi-
tter information network as a whole, perhaps using a multi
set cover approach. We have evaluated user’s efficiency at
acquiring two types of contagions (hashtags and websites).
However, a systematic comparison of user’s efficiency at
acquiring many types of contagions appears as a interes-
ting research direction. We have applied our framework to
study information efficiency on Twitter. It would be interes-
ting to study information efficiency in other microblogging
services (Weibo, Pinterest, Tumblr) and social networking
sites (Facebook, G+). Finally, it would be worth to investi-
gate how users’ efficiency relates to their levels of activity
and engagement within the online social media system.
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