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Abstract
Measurement studies of online social networks (OSNs) show
that all social links are not equal, and the strength of each
link is best characterized by the frequency of interactions be-
tween the linked users. To date, few studies have been able
to examine detailed interaction data over time. In this paper,
we first analyze the interaction dynamics in a large online so-
cial network. We find that users invite new friends to interact
at a nearly constant rate, prefer to continue interacting with
friends with whom they have a larger number of historical in-
teractions, and most social links drop in interaction frequency
over time. Then, we use our insights from the analysis to de-
rive a generative model of social interactions that can capture
fundamental processes underling user interactions.

Introduction
The last few years has seen the arrival of several measure-
ment studies of user relationships and activities on popu-
lar online social networks, including Facebook (Wilson et
al. 2009), Twitter (Kwak et al. 2010; Grier et al. 2010),
LinkedIn (Leskovec et al. 2008), Renren (Jiang et al. 2010)
and others (Schneider et al. 2009). A common observation
made across many platforms is that the presence of a social
link connecting two users is a poor estimate of the “relation-
ship strength” between them. Fortunately, the gathering of
interaction data has allowed to take into account the vari-
ation of link strength, enabling the research going beyond
the purely topological point (Gilbert and Karahalios 2009;
Kahanda and Neville 2009).

Although several studies examine the user interactions on
OSNs, the mechanisms that drive how users create interac-
tion in OSNs is still largely unknown. Prior works (Chun et
al. 2008; Wilson et al. 2009) focus on a static view of in-
teractions, and therefore only capture a small piece of the
picture. The study (Viswanath et al. 2009) examines chang-
ing dynamics of user interactions in Facebook, but it fails to
give a complete view of user interaction dynamics. A deeper
understanding of user interactions requires the formulation
of a generative model, which can intuitively capture the pro-
cesses that drive user interaction events.

Prior works (Yook, Jeong, and Barabási 2001; Bar-
rat, Barthélemy, and Vespignani 2004) provide models of
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traffic networks, and others (Zhao et al. 2011; Starnini,
Baronchelli, and Pastor-Satorras 2013) present models for
human face-to-face interactions. Although these models
generate weighted network, they are not suitable in the con-
text of today’s OSNs due to different underlying dynamics
and network properties. No generative graph model exists to
explain properties observed in measured traces of user on-
line interactions, or to construct realistic arbitrary-sized user
online interaction traces.

In this paper, we seek to fill this void by building a model
based on a large detailed trace of user interactions on Ren-
ren, the Chinese social network similar to Facebook in func-
tionality. Our trace covers over a year in length, and contains
data on the creation of 600+K users, 8+Million new links,
and 29+ Million interaction events. We present detailed anal-
ysis of our interaction data, and extract three processes that
drive dynamics of social interaction over the network:

Forgetting process: A particular pair of users slowly de-
crease their interaction rate over time. The potential reason
is that users tend to forget each other as they cannot meet
face to face on a regular basis, leading to the closeness be-
tween friends declined rapidly over time.

Reinforcement process: For each pair of users, the proba-
bility of continued interactions displays a memory reinforce-
ment (inertia). In particular, the more two nodes interact
with each other, the more it demonstrates a close relation-
ship between them . Thus, the user would more likely to re-
inforce this relationship to counteract the forgetting process,
which explains how users dynamically direct a finite set of
resources (time and attention) towards the relationships.

Exploration process: In order to replace existing ones
which are no longer attractive, users continuously explore
new interaction relationships at a nearly constant rate, irre-
spective of their age or degree.

We propose a generative model for social interactions that
is based on these three processes. Our model is important for
understanding how the pairwise user interaction evolves. In
addition, our model can be coupled with prior social mod-
els (Barabási and Albert 1999; Leskovec, Kleinberg, and
Faloutsos 2007; Leskovec et al. 2008). This is an important
application as we can capture the dynamical and full spec-
trum of relationship strengths in OSNs.
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Figure 1: The average interaction rate
over users of different age.

Figure 2: Upcoming interaction fre-
quency η(n) for an interaction edge that
already has n interactions.

Figure 3: Upcoming interaction fre-
quency η(a) for an interaction edge of
age a.

Experimental Dataset
With 120 million users, Renren is the largest and oldest on-
line social network in China, and provides functionality and
features similar to Facebook. The most popular interaction
between users in the early evolution of Renren is writing
wall posts to each other.

Our interaction dataset includes all the 29,506,068 wall
posts occurring in our measurement period. To guarantee
user privacy, we only get the anonymized IDs of sender and
receiver for each wall post, without knowing the content.
Since our goal is to characterize edge strength based on user
interactions, we ignore the wall posts not along edges (e.g.,
greeting messages between strangers). As a result, we focus
on the remaining 23,000,141 wall posts created along edges,
representing the friendship maintenance effort of users (ac-
counting for nearly 80% of the total wall posts).

To better measure mutual relationship (tie strength) be-
tween users, we use the term interaction to mean a pair of
reciprocal wall posts. For example, if node u sends m mes-
sages to v but receives nmessages from v, the number of in-
teractions between them is min (m,n). The wall posts that
have not been replied to are pruned. This definition means
that u and v cannot be supposed to have strong mutual rela-
tionship if one sends many messages to the other but rarely
receives replies (e.g., u trusts user v, but not necessarily vice
versa). So we use the the number of interactions as a con-
servative estimate on the edge strength, instead of the total
number of wall posts that occurred along the edge. Based on
this definition, we transform wall posts into 7,639,488 inter-
actions.

The interaction definition also allows us to represent the
Renren interaction network evolution as a series of undi-
rected edge-weighted graphsG1, . . . , GT , so that a snapshot
Gt = (Vt, Et,Wt) consists of the nodes, edges and corre-
sponding interactions that have arrived by time t. The term
interaction edge represents the friendship edge along which
at least one interaction is generated. We define the creation
time of an interaction edge as the time when its first interac-
tion is generated. For example, we say a node u creates an
interaction edge (u, v) at time t if u and v begin to interact
with each other at that time. Table 1 summarizes our inter-
action dataset. We see that interaction edges only accounts

Period 2005.11 ∼ 2006.12
# of wall posts 29,506,068

# of wall posts along edges 23,000,141
# of interactions 7,697,270

# of users having interactions 420,978
Mean # of interactions per user 18
# of edge having interactions 2,623,040

Mean # of interactions per edge 3

Table 1: Summary of Renren interaction data

for a small fraction (32%) of the total edges, meaning users
only interact with a small subsect of their friends.

Analysis of User Interactions
In this section, we analyze the Renren interaction data to
uncover the temporal pattern of user interaction evolution. In
the following, we study how users create interaction edges
and generate interactions along these edges.

Interaction Partners Invitation
Intuitively, making friends in an OSN is very easy, since the
click of “add as friend” button does not need any energy
cost. In contrast, interaction relationship requires more effort
to create and maintain, e.g., a certain amount of time and
energy used for reading and writing wall posts. Such energy
cost will limit the rate at which users add new interaction
partners, since they only have a finite amount of resources
(e.g., time and energy).

Given a node u of age a, we define its interaction rate
ru(a) as the ratio of the number of interaction edges nu(a)
it has created to its current age a, i.e., ru(a) = nu(a)/a.
Interaction rate measures the speed at which users request
new friends to interact with. To examine the temporal pat-
tern of interaction edge initiations, we examine R(a), the
average interaction rate of nodes achieved age a during our
measurement period:

R(a) =

∑T
t=1

∑
u∈St(a)

ru(a)/|St(a)|
T

(1)
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where St(a) = {u|t−t0(u) = a} is the set of nodes achieve
age a at time step t. Here, t0(u) is the arrival time of a node
u. As shown in Figure 1, people tend to be more interactive
immediately after they join, but the effect quickly wears off
as the interaction rateR(a) converges to a constant just after
a week.

Interaction Distribution
Next, we examine how users distribute new interactions over
their existing interaction partners. We analyze the interaction
distribution from two perspectives: first, what is the effect
of intensity, i.e. is their correlation between the number of
times friends have interacted in the past, and the number of
times they will interact in the future?

Fig. 2 plots η(n), the average number of new interactions
between friends that already have n interactions:

η(n) =

∑T
t=0

∑
e∈Sn(t)

Ie(t)/|Sn(t)|
T

(2)

where Sn(t) = {e|
∑t−1
k=0 Ie(k) = n} is the set of inter-

action edges that already have n interaction before time t.
We observe that η(n) is proportional to the number of past
interactions across the edge in the network. Intuitively, this
means that the interactions between friends reinforce their
relationship, leading to more future interactions.

Second, what is the effect of time, i.e. do friends tend to
interact more or less over time?

Fig. 3 plots η(a), the average number of new interactions
created along edges of age a:

η(a) =

∑T
t=0

∑
e∈Sa(t)

Ie(t)/|Sa(t)|
T

(3)

where Sa(t) = {e|t − t0(e) = a} is the set of interaction
edges with age a at time t, and Ie(t) is the number of new in-
teractions generated along edge e at time t. We see that η(a)
is inversely proportional to edge age a in the network. Intu-
itively, this means that a given pair of users tends to interact
less over time. One possible explanation for this is users tend
to forget each other as they cannot meet face to face on a reg-
ular basis, leading to the closeness between friends declined
rapidly over time. Interestingly, our observation on online
relationships is consistent with the ecology model on real-
life relationships. Prior work (Burt 2000) investigated four
annual surveys of colleague relationships for 345 bankers
in a large financial organization, and found that the liveness
of relationships decay over time and decay is also a power
function of time.

User Interaction Model
Besides befriending with others, nodes also request a certain
number of friends to interact with, and distribute interactions
over their interaction friends. Based on the insights on user
interaction behavior in the OSNs, we now introduce our in-
teraction model, as shown in Figure 4.

Intuitively, not all the users are simultaneously present in
system. Thus we assume that users can be in an active or
an inactive state. If an user is active, she interacts with her

Inactive Invite a new partner

Interact with existing partners
w1 w2

w3

t(1-p) 

tp

tp

1-t

t(1-p) 1-t

Figure 4: User interaction model in OSNs.

friends; otherwise she simply rests without interacting. Ac-
cording to empirical observations (e.g., constant interaction
frequency), we assume that, at each time step, one inactive
user can become active with a probability r, while one active
user can become inactive with probability 1− r. In practice
this means that the user activity pattern, while stochastic,
will display some regularity in time, interaction events fol-
lowing each other on average at 1/r steps, very long inter-
event times are exponentially rare.

Once the user is active, she would communicate one of
her friends. The empirical observations show that the user
invites new friends to interact at a constant rate, irrespective
of node age. Therefore we assume that, once the node is ac-
tive, with probability p, she chooses to communicate with a
new interaction partner from her friends that she have not in-
teracted with yet. With the complementary probability 1−p,
the user chooses to communicate with one of her existing
partners that she has previously interacted with. However,
interactions are biased by the interpersonal attraction built
up over time. The more interest she raises in a partner, the
more likely she will interact with this partner (inertia). Based
on the empirical observations (e.g., effects of intensity and
time), we measure the appeal ηuv of a partner v to an user u
by ηuv = nuv/a

τ
uv , where nuv is the current number of in-

teractions between users u and v, and auv is the current age
of this interaction relationship. Thus, if an user u chooses to
interact with an existing partner, she will choose the partner
v with a probability proportional to ηuv .

The interaction model captures the fundamental fact that
the interaction relationships require that we invest time to
keep them alive, especially once it becomes physically dif-
ficult for friends to meet face to face on a regular basis. In
particular, each user has a forgetting behavior: the attraction
between a pair of users declined rapidly when they lose con-
tact (captured by the decay factor τ ). To counteract the ef-
fects of forgetting, each user exhibits a reinforcing behavior:
she wants to keep the important relationships alive. Thus,
with limited time to use, she biases towards relationships of
more interactions. Also, each user has a exploring behav-
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ior: she continuously explores new interaction relationships
(captured by the probability p), in order to replace existing
ones which are no longer attractive.

Heterogeneous Model
The activation probability r represents user activeness in the
social interaction. To this end, we have assumed that all
users have the same tendency to be active, that is, the ac-
tivation probability r does not depend on the user who is
interacting. Real social systems display however additional
complexity since the social behavior of individuals may vary
significantly across the population. For example, individuals
vary widely in the total time spent accessing OSNs (Ben-
evenuto et al. 2009), and may devote different amount of
energy to interaction.

A natural extension of the model presented above consists
therefore of making the probability r dependent on the user
who is interacting. To this aim, we assign to each user u
a parameter ri that characterizes his/her propensity to form
social interactions. In real networks this propensity will de-
pend on the features of the users. In the model we assume
that this propensity, that we call “sociability”, is a quenched
random variable randomly chosen from a prefixed distribu-
tion ζ(r) characterizing the system’s heterogeneity, which is
assigned to each agent at the start of the dynamical evolution
and remains constant.

Conclusion
In this paper, we develop an interaction model that gener-
ates interactions across social links. The insights behind our
model are derived from a large scale dataset from Renren.
This data reveals that users invite new friends to interact at
a nearly constant rate, prefer to interact with friends with
whom they have many past interactions, and gradually lose
interest in interacting with old friends. We believe that these
observations not only affect the design of network interac-
tion models but also have broader implications in other ar-
eas, such as friend recommendation, information diffusion,
and news feed ranking.

There are several directions to extend the current study.
First, we can combine our interaction model with social
graph model to generate interaction graphs. Another direc-
tion is to accommodate more attributes of nodes to improve
the accuracy of the model. Recent works (Allamanis, Scel-
lato, and Mascolo 2012) begin to examine influence of spa-
tial attribute on the temporal evolution of friendship links,
but how these factors affect interaction evolution remains
unknown.
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