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Abstract

We derive the political climate of the social circles of Twit-
ter users using a weakly-supervised approach. By applying
random walks over a sub-sample of Twitter’s social graph we
infer a distribution indicating the presence of eight Flemish
political parties in users’ social circles in the months before
the 2014 elections. The graph structure is induced through a
combination of connection and retweet features and combines
information of over a million tweets and 14 million follower
connections. We solely exploit the social graph structure and
do not rely on tweet content. For validation we compare the
affiliation of politically active Twitter users with the most-
influential party in their network. On a validation set of around
700 politically active individuals we achieve F1 scores of 0.85
and greater. We asked the Twitter community to evaluate our
classification performance. More than half of the 2 258 users
who responded reported a score higher than 60 out of 100.

Introduction
The landscape of political activism has shifted to so-called
new media (Bennett 2003). Blogs and social networks play
an important role in the diffusion of political ideas (Adamic
and Glance 2005). We investigate the spread of influence of
political parties in Twitter. We look at the contributions of
eight Flemish political parties in the months before the 2014
elections in Belgium.

Electoral prediction from Twitter data has received a lot of
criticism over past years (Gayo-Avello 2012), mainly due to
the biased nature of the Twitter population towards youths.
We postulate that political influences travel through social
graphs similarly to how ideas spread viva voce. Many so-
cial networks exhibit homophilic properties (Conover et al.
2011a), implying that personal networks are grounded in so-
ciodemographic, behavioral and intrapersonal characteristics
(McPherson, Smith-Lovin, and Cook 2001). Based on these
properties we extract link-based features from interaction
data on Twitter and simulate a random walk over an induced
graph structure. For validation we compare the affiliation
of politically active Twitter users with the most-influential
party in their network. We observe good performance with
F1 scores of 0.85 and higher in an experiment with inferred
hyperparameters. One week before the Flemish elections we
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asked the relevant Twitter community to evaluate our perfor-
mance in the wild. As expected, we received diverse opinions
given the controversial nature of the study. More than half of
the 2 258 users who responded reported feedback scores of
60 out of 100 or higher.

Methodology
We provide a classification of nodes in a social graph based
on link structure. Specifically, we determine the presence
of a collection of labeled nodes in the neighborhoods of
nodes in the network. We then choose the label of the most
prominent node in each individual node’s neighborhood as
its label. We postulate that the most prevalent political party
in an individual’s network can give an indication of that
individual’s political affiliation.

To begin, we identify k Twitter users whom we label man-
ually. In our case these k users correspond to the official
accounts of political parties. Due to rate limitations enforced
by Twitter we are only able to retrieve information about
a specific subset of users. We choose to select only those
users that follow at least kmin of the k labeled users. For-
mally, we define the social graph as a directed, weighted
graph G(V,E,W ) where the set of nodes V , the set of edges
E and weight matrix W respectively designate the set of n
users, the connections between those users and the intensity
of the connections. A positive, non-zero weight wij implies
a connection from user i to user j. Note that the elements of
W are unbounded in magnitude.

The graph G is instantiated from real-world Twitter in-
teraction data. For each of the target users (i.e., those who
follow at least kmin of the k labeled users) we retrieve the
users following them and their 200 most-recent tweets. Using
this method we are able to materialize a sub-graph that we
can use for the purpose of classification. Note, however, that
the this sub-graph also contains users who were observed but
not necessarily targeted. For example, a user following any of
the targeted users but who were themselves not targeted will
also be contained in the data sample. We distinguish between
disjoint sets Vobserved and Vtargeted as results for users in the
former might be unreliable due to data sparsity. We compute
the strength of connections between users as a weighted sum
of interaction counts (e.g., a retweet or a tweet subscription).
Consider a sample of size n and p distinct interactions Ik, for
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Input: G = (V,E,W ), L0

1: t← −1
2: repeat
3: t← t+ 1
4: for v ∈ V − Vl do
5: Ltv ←

∑
uW

ᵀ
uvL

t−1
u

6: Normalize Ltv (L1 norm).
7: end for
8: until convergence

Output: Distributions Ltv|v ∈ V

Algorithm 1: Iterative formulation of an absorbing random
walk over a social graph.Lt denotes the n×k matrix of labels
at time t in the iterative formulation. At time t = 0 users
i ∈ Vl are assigned the label distribution with Lii = 1 and
the remaining matrix consists of all zeros, where Vl denotes
the set of k initially labeled users.

every user i in our sample

W>i = f



I1i,1 I2i,1 . . . Ipi,1
I1i,2 I2i,2 . . . Ipi,2

...
...

. . .
...

I1i,n I2i,n . . . Ipi,n



α1

α2

...
αp




where Ikij is the occurrence count of directed interactions
Ik from user i to user j, αk is the independent, global weight
assigned to interaction Ik and f an element-wise activation
function; {α1, . . . , αp} and f are the model’s parameters.

Our choice of function f depends on numerous factors
related to the data sample. In large graphs every user is influ-
enced by many others. However, the strength of an incoming
edge is determined relatively to every other incoming edge
at a single node. This has a damping effect when the num-
ber of edges increases. A single strong connection can be
suppressed as an increasing data volume introduces a large
amount of weak connections. Previous work (Zhu, Ghahra-
mani, and Lafferty 2003; Azran 2007) makes use of the soft-
max function. We considered several alternatives used as
activation functions of artificial neurons, such as the linear
threshold and logistic activation functions.

Due to the unbounded nature of the weights, we encounter
numerical instability if we apply an exponential weighting
function. We developed a new method to counter the damping
effect of weak connections. We apply a high-pass logistic
filter followed by a quadratic inflation of the weights:

f(x) =

(
x

1 + eβ−x

)2

As a result, large numbers of low-magnitude weights become
less dominant in the graph, while still retaining some magni-
tude. Stronger connections are not influenced by the logistic
filter and are inflated by their exponentiation. The choice of β
determines the range of the high-pass filter and acts as a bias
term. We choose β = 6.0 such that the seemingly linear part
of the sigmoid function lies at the right side of the y-axis.

Actual classification of nodes is performed through an
iterative algorithm (Algorithm 1) (Baluja et al. 2008; Bha-

gat, Cormode, and Muthukrishnan 2011) equivalent to per-
forming random walks over an absorbing Markov chain.1
Their formulation is similar to the iterative formulation of the
PageRank algorithm (Page et al. 1999), which is preferred
over the closed formula solution for scalability reasons. We
will now elaborate on the Markov chain formulation of the
problem at hand as it gives insight in the inner workings of
the method.

We present our social graph as a first-order Markov chain
where the set of states Q = {q1, . . . , qn} of the automata
corresponds to the set of social network users V . The row-
stochastic transition matrix A = D−1W is derived from
weight matrix W by normalizing its rows, where D is a
diagonal matrix of size n with elements di =

∑
j wij .

We write Vl for the set of k users in V who are initially
assigned a label. We organize weight matrix W , and conse-
quently transition matrix A, such that the first k rows of both
matrices correspond to these k labeled users. We take these
k users as absorbing states in the Markov chain such that
for user i Aii = 1 and Aij = 0 for all j 6= i. Note that this
absorbing Markov chain is not irreducible as a random walk
over the chain currently at state qi at time ti might be unable
to reach qj at time tj > ti. This is due to the fact that a ran-
dom walk might eventually get trapped in an absorbing state.
If an absorbing state (i.e., any qi with i ≤ k) is reachable
from any state qj with j > k then we are guaranteed that ev-
ery random walk instantiated at any position in the chain will
eventually terminate at an absorbing state. Consequently, if
we simulate every possible random walk starting from some
state qj to any absorbing state qi (i ≤ k) we can infer the
probability P (Y = i|j) of ending up in any of the k initially
labeled users. The classification ci for user i is then given by
ci = arg maxc P (Y = c|i).

We determine the values of parameters α using a uniform
grid search over the space [0, 1]p ⊂ Rp and maximize class-
based agreement over a validation set. There are many weight
configurations that lead to similar models as the relative
relation between different weights plays an important part
(e.g., multiplying a weight vector by a scalar results gives
the same linear weight relations). In addition we constrain
the weights to be non-negative as our model expects positive
edges only (if Wij = 0 then there is simply no directed edge
from user i to user j). If ti and ci denote the target class and
the output class for user i respectively in some validation set
for a model with configuration α, then

1

k

k∑
c=1

∑
i[yi = c ∧ ti = c]∑

i[ti = c]
(1)

denotes the quantity we wish to maximize where we use
Iverson brackets for notational convenience.

Experiments
We consider a node classification problem over eight political
parties active in the Flemish region of Belgium. While some

1The implementation of the label propagation algorithm applied
in this paper can be found on-line at https://github.com/cvangysel/
social-graph-influence for use on Hadoop or Spark clusters.
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of these parties share common views, they are relatively
spread out over the political spectrum. We refer to the analysis
of Deschouwer (2010) for a comprehensive overview. These
parties collectively published lists of 780 Twitter users with
whom they associate themselves. We consider these lists as
ground truth data and use these to measure classification
performance and to determine the weights αi.

We targeted 12 254 Twitter users who followed at least
two of these eight parties and consequently retrieved their
information as described in the previous section. We gath-
ered 1 249 091 tweets (of which 273 213 were retweets)
and 14 849 213 follower connections. These connections and
tweets referred to at least 10 million users in total, which
corresponds to the total number of nodes |V |.

We then built a graph structure from the gathered data.
More precisely we introduce a directed edge from user i
to user j if user i follows user j or when user i retweets a
message from user j. In an initial experiment (experiment A)
we assign both these interactions a unit weight. Later we also
considered weights for the inversed edges, such that if user i
follows user j a directed edge is added from user j to user i
and similarly for retweets. We also considered a weight that
is added when both user i and user j follow each other, which
indicates reciprocal following. These additional interactions
are interesting as they give insight in how actions of other
users influences one’s position in the social graph.

As mentioned earlier, we assign unit weights to the interac-
tion where someone follows or retweets in a first experiment
(experiment A). In a second experiment (experiment B) we
determine values for the various weights through maximum
likelihood estimation. For this we sampled a separate graph
from Twitter of all users which follow all eight parties and
picked the value of α that maximized class-based agreement
(see (1)) of the weights over half of the ground truth data. We
then separately considered the classifications of the remain-
ing half in order to avoid overfitting. Performance over both
sets was similar.

Our setting is different from a regular classification prob-
lem as we are unable to provide a classification for just any
unseen user. Instead, we require that we have knowledge
about the user’s position in the social graph (and recursively
regarding its neighbours) prior to having the ability to label
them. Therefore, the amount of relevant ground truth data
differs with each graph sample we consider. Writing Vtruth
for the set of users for whom we have a target label, we now
evaluate the performance of our classification for the inter-
section of Vtruth with Vtargeted (340 users) and Vtruth with
Vobserved (766 users). We compute precision and recall for
each class individually and afterwards aggregate these mea-
sures by micro- (µ) and macro-averaging (M ). These results
are shown in Tables 1 and 2 for experiment A and B, re-
spectively. Note that micro-averaged precision and recall are
identical as the number of false positives and false negatives
are equal in the global contingency table.

We asked Twitter users to evaluate their individual classi-
fication a week before the Flemish elections of 2014. Users
were shown a distribution over the eight political parties and
could voluntarily provide feedback between 0 and 100, where
a higher score indicates a better classification. Some users

Recall Precision F1

Vtargeted

M (macro) 74.29% 91.59% 0.8204

µ (micro) 84.41% 84.41% 0.8441

Vobserved

M (macro) 75.35% 93.72% 0.8354

µ (micro) 87.08% 87.08% 0.8708

Table 1: Relevance measures for Vtargeted and Vobserved in
experiment A.

Recall Precision F1

Vtargeted

M (macro) 85.53% 91.10% 0.8823

µ (micro) 95.00% 95.00% 0.9500

Vobserved

M (macro) 81.16% 90.15% 0.8542

µ (micro) 94.13% 94.13% 0.9413

Table 2: Relevance measures for Vtargeted and Vobserved in
experiment B.

expressed concern as they observed a non-zero probability
for right- or left-winged extremist parties. We believe that
some feedback scores were purposely negative so as to deny
association with these parties, even though these associations
were negligible in a statistical setting. We received feedback
from 2 258 users. The distribution of the feedback scores is
shown in Figure 1, along with its population mean (51.57),
standard deviation (35.97) and median (62.0).

Related work
In this paper we apply graph classification through random
walks on a sample of the Twitter social graph in order to
determine the political climate of social circles. We do not
attempt to predict the outcome of the Flemish 2014 elections
from Twitter. The distribution of votes we predict diverges
from intermediate polls and the final election outcome.

On the topic of political analyses of social media, Adamic
and Glance (2005) study the linking patterns and discussion
topics of political bloggers in the United States; they ob-
serve a divided blogosphere. Tumasjan et al. (2010) find the
number of tweets referencing a political party to be a use-
ful feature. Conover et al. (2011a) achieve 95% accuracy
using a classifier based on the segregated community struc-
ture of political diffusion networks on a data set of 1 000
manually-annotated politically active individuals. Conover et
al. (2011b) find that this is not the case for the user-to-user
mention network. Gayo-Avello (2012) describes the problem
as interesting, very difficult and possibly infeasible.

When considering semi-supervised learning methods,
Szummer and Jaakkola (2002) were among the first to induce
a graph structure from real-valued vectors without an under-
lying graph structure in order to perform random walks. Zhu,
Ghahramani, and Lafferty (2003) do so similarly, but apply
exponential weighting to the edges. Azran (2007) induces an
exponentially weighted graph and only consider the nearest
neighbors of every node. Their labeled nodes represent ab-
sorbing states in the Markov chain; they did not exploit the
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Figure 1: Histogram of feedback score distribution. The black
circle indicates the mean of the distribution, while the hori-
zontal dotted line shows the standard deviation. The vertical
line denotes the median of the distribution.

inherent connections in their data but relied on a metric to
provide edge weights.

Baluja et al. (2008) propose an algorithm to recommend
YouTube videos based on randomly walking over the co-view
graph. Bhagat, Cormode, and Muthukrishnan (2011) provide
a survey on node classification methods in social networks.
They introduce the idea of applying these methods on large-
scale social networks for the use of electoral prediction, but
do not handle practical problems such as data harvesting and
graph instantiation. An iterative graph classification frame-
work is proposed by Neville and Jensen (2000).

Conclusion and Discussion
We postulate that the presence of a political party in social cir-
cles might have good predictive power of individual political
affiliation. We consider an eight-class problem where some
classes are very similar to others and might overlap. Previous
work (Conover et al. 2011a) focuses on the U.S. elections,
which constitutes a well-divided binary problem. We achieve
comparable performance as Conover et al. (2011a) on a set
of politically actively individuals. We go beyond existing
work by testing our hypothesis with the Twitter community.
We notice that more than half of the feedback group gave a
feedback score of 60 or higher.

Prior work (Bermingham and Smeaton 2010; Kouloumpis,
Wilson, and Moore 2011; Conover et al. 2011a) describes
the challenges associated with using the contents of tweets.
Because of this we ignored the contents of tweets. However,
we do believe that features extracted from content may be
valuable in the context of predicting political affiliation. One
interesting property of our method is that it considers in-
fluence through third parties as well as direct interactions
with political parties. E.g., if a user interacts with a strong
advocate for a political party but not necessarily with the
party itself, this will be contained within our results. Pre-
liminary experiments in which mentions of political parties
lead to a stronger connections to these parties have shown
performance increases.

While our results are promising, the performance can be
increased through ensembles of link- and content-based mod-
els. Further work should focus on gathering larger amounts
of data from social networks. One possible approach would

be to construct a mixture of label propagation models, where
each model handles a specific network feature; this should
give insights in the dynamics of interactions.

Acknowledgments This research was partially supported
by the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement nr 312827
(VOX-Pol). We would like to thank Daan Odijk, Tom Kenter
and Benjamin Allardet-Servent for useful comments. Thanks
goes out to Anthony Liekens for his help with the user study.

References
Adamic, L. A., and Glance, N. 2005. The political blogosphere and
the 2004 U.S. election: Divided they blog. In LinkKDD ’05, 36–43.
ACM.
Azran, A. 2007. The rendezvous algorithm: Multiclass semi-
supervised learning with markov random walks. In ICML 2007.
Baluja, S.; Seth, R.; Sivakumar, D.; Jing, Y.; Yagnik, J.; Kumar,
S.; Ravichandran, D.; and Aly, M. 2008. Video suggestion and
discovery for Youtube: Taking random walks through the view graph.
In WWW 2008, 895–904.
Bennett, L. W. 2003. New Media Power: The Internet and Global
Activism. Rowman and Littlefield.
Bermingham, A., and Smeaton, A. F. 2010. Classifying sentiment
in microblogs: Is brevity an advantage? In CIKM 2010, 1833–1836.
ACM.
Bhagat, S.; Cormode, G.; and Muthukrishnan, S. 2011. Node
classification in social networks. CoRR abs/1101.3291.
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