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Abstract
Hashtags, originally introduced in Twitter, are now becom-
ing the most used way to tag short messages in social net-
works since this facilitates subsequent search, classification
and clustering over those messages. However, extracting in-
formation from hashtags is difficult because their composi-
tion is not constrained by any (linguistic) rule and they usu-
ally appear in short and poorly written messages which are
difficult to analyze with classic IR techniques.
In this paper we address two challenging problems regard-
ing the “meaning of hashtags”— namely, hashtag relatedness
and hashtag classification — and we provide two main con-
tributions. First we build a novel graph upon hashtags and
(Wikipedia) entities drawn from the tweets by means of topic
annotators (such as TagME); this graph will allow us to model
in an efficacious way not only classic co-occurrences but also
semantic relatedness among hashtags and entities, or between
entities themselves. Based on this graph, we design algo-
rithms that significantly improve state-of-the-art results upon
known publicly available datasets.
The second contribution is the construction and the public
release to the research community of two new datasets: the
former is a new dataset for hashtag relatedness, the latter is
a dataset for hashtag classification that is up to two orders
of magnitude larger than the existing ones. These datasets
will be used to show the robustness and efficacy of our ap-
proaches, showing improvements in F1 up to two-digits in
percentage (absolute).

1 Introduction
In the last years social networks have enormously grown in
popularity and, as a consequence, the volume of data pro-
duced everyday by their users has grown too. It is not a
surprise that this vast collection of data attracted the atten-
tion of several researchers and companies interested in min-
ing, categorizing or searching relevant pieces of information
from this huge, unstoppable and unstructured large-scale so-
cial stream. The introduction of tags as a democratic and
user-driven way to organize content in Twitter, Facebook,
Google+ and several other social networks is of course a
clear evidence of this need.

In this paper we concentrate on hashtags, which have
been made popular by Twitter. A hashtag is a string of char-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

acters preceded by the symbol #; it is used as a way to
join public discussions (Huang, Thornton, and Efthimiadis
2010), categorize messages or build communities around a
specific topic of interest (Laniado and Mika 2010; Yang et
al. 2012; Wang et al. 2011). Acronyms or abbreviations are
very often used as hashtags, mainly because of the length
constraint imposed on tweets, thus making it difficult for a
(human or automatic) reader to understand the meaning of a
hashtag by just looking at its character composition1.

The peculiarities of hashtags, as well as the short and
noisy/poor content of tweets, make it challenging to solve
IR problems formulated over hashtags because of the dif-
ficulties encountered by classic approaches hinging on the
Bag-of-Word paradigm. In order to overcome these limi-
tations, we clearly need to dig more into the understand-
ing of tweets and hashtags. Following a recent line of re-
search, we augment the TF-IDF vector space model with
new semantic dimensions based upon entities drawn from
Wikipedia or other knowledge bases (see, among the oth-
ers, (Suchanek and Weikum 2013; Meij, Balog, and Odijk
2014)). The key idea in those approaches is to identify,
in the (possibly short) input text, meaningful sequences of
terms (also called mentions) and link them to unambigu-
ous entities (pages) drawn from Wikipedia. Since those
entities occur as nodes in the Wikipedia graph, new and
more sophisticate methods have been designed that em-
power classic approaches and thus allow to achieve better
solutions for many well-known problems formulated over
short and possibly noisy texts, such as tweet classifica-
tion (Vitale, Ferragina, and Scaiella 2012; Meij, Weerkamp,
and de Rijke 2012), news clustering (Scaiella et al. 2012),
query understanding and annotation (Carmel et al. 2014;
Bordino et al. 2013; Blanco, Ottaviano, and Meij 2015;
Cornolti et al. 2014). This justifies the significant interest
in the literature about the design and comparison of those
topic annotation systems, which are at the core of many ap-
plications (Usbeck et al. 2015).

In this paper we start from these achievements and in-
vestigate the use of topic annotators in the understand-
ing of the meaning of hashtags. Our first step is the con-
struction of the Hashtag-Entity Graph: a weighted labeled

1As an example, consider the hashtag #tcot which stands for
“Top Conservatives on Twitter”.
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graph made up of hashtags and entities drawn from a set of
tweets, properly connected via weighted edges which take
into account hashtag-entity and entity-entity relations. En-
tities are extracted by using one of the best topic annota-
tors to date, namely TagME (Ferragina and Scaiella 2010;
Cornolti, Ferragina, and Ciaramita 2013). The HE-graph
models via its edges both the classic co-occurrence feature
among hashtags and entities and, more crucially, the seman-
tic relatedness among those entities computed accordingly to
the underlying Wikipedia graph. By parsing a tweet collec-
tion of 10M messages, which we have crawled in December
2013 using the Twitter API, we constructed an HE-graph of
about 530k nodes and 22M edges.

As the next step we argue that the HE-graph offers a pow-
erful and semantically-structured representation of tweets
and their occurring hashtags, so we deploy these promising
features to design new algorithms that hinge upon the HE-
graph and solve at the state-of-the-art two difficult IR prob-
lems pertaining to the understanding of hashtags: hashtag
relatedness and hashtag classification. Our algorithms turn
out to be language-independent as long as a topic annotator
is available for the target language of the tweets.

The relatedness between two hashtags is the core oper-
ation in various applications which concern hashtags, both
directly and indirectly via tweets, such as clustering, classi-
fication or recommendation, just to mention a few (Yang et
al. 2012; Meng et al. 2012; Ozdikis, Senkul, and Oguztuzun
2012). However, detecting relatedness between (hash)tags
is a difficult task for various reasons: first of all, any relat-
edness judgment needs to draw upon a vast common sense
and knowledge background regarding the meaning (or the
meanings) of a hashtag; furthermore, there is an unavoid-
able subjective facet due to the value/belief system of the
observer (e.g. how much are #money and #happiness re-
lated?); finally, some (hash)tags are polysemous and so they
could be associated with many meanings (e.g. #apple). The
additional key difficulties with hashtags are that Twitter is
not strictly a folksonomy (Wang et al. 2011) and hashtags
have different roles in Twitter than tags in other social me-
dia (see e.g. (Yang et al. 2012)); finally, tweets are very short
and noisy, and generally contain very few hashtags (if any).
These features ask for new modeling and algorithmic ap-
proaches as well as datasets to test them.

In this paper, we are the first ones in the literature to ex-
plicitly deal with hashtag relatedness as a problem on its
own, presenting and validating various relatedness functions
on a new dataset consisting of about 1000 hashtag pairs
rated as relevant or not by human judges, which we con-
structed for this purpose. Our study will involve a number of
hashtag relatedness functions designed upon classic lexical
(TF-IDF) as well as co-occurrence features, plus more so-
phisticated features which take into account the ”semantic”
structure inherent in the HE-graph. Our experiments show
that the known approaches, which just consider lexical fea-
tures and co-occurrences of hashtags, obtain a poor error rate
of about 11%; whilst our algorithms deploying the peculiar
properties of the HE-graph achieve error rates up to 1%. In
order to strengthen our achievements we also evaluated the
performance of our relatedness functions in the clustering

framework, where a k-medoid approach is used upon these
functions to cluster hashtags in 8 known clusters (see our
classification dataset below). As a final result, our related-
ness functions will show a sharp gain in clustering precision
(measured via the Adjusted Rand Index (Hubert and Arabie
1985)) with respect to other known measures.

Building upon these promising results which highlight, as
argued above, the power and robustness of the HE-graph
in modeling the semantic relatedness of hashtags, we at-
tack a well-known IR problem regarding the classification of
hashtags in Twitter (Romero, Meeder, and Kleinberg 2011;
Posch et al. 2013). This problem has been recently intro-
duced by (Romero, Meeder, and Kleinberg 2011), who stud-
ied how the diffusion pattern of tweets among users charac-
terizes the different categories of the hashtags contained in
those tweets. More recently (Posch et al. 2013) advanced
the previous result by proposing a SVM classifier based
on lexical (i.e., TF-IDF) and pragmatic features, which de-
scribe how a hashtag is used over time by a large group of
users. These authors showed an F1 ranging between 73%-
79% over 7 classes and 64 hashtags; a rather small exper-
imental setup indeed. In our paper we provide two contri-
butions with respect to this problem. First, we improve the
lexical classifiers above by proposing a new hashtag classi-
fier that hinges on the HE-graph and deploys the taxonomy
of Wikipedia categories in order to achieve a consistent im-
provement in F1 up to +12% (absolute). Moreover, in or-
der to assess the robustness of our proposal, we construct a
much larger dataset consisting of more than 5000 hashtags,
properly classified in 8 categories, and show that our classi-
fication algorithm improves the one in (Posch et al. 2013)
in F1 up to +9% (absolute).
Overall, our paper introduces the following contributions:

• We devise the HE-graph as a powerful, yet simple, rep-
resentation of hashtags and entities occurring in tweets,
by leveraging the annotations produced by TagME (Fer-
ragina and Scaiella 2010), one of the best annotator
in this setting. The structure of the HE-graph models
classic/semantic features given by the co-occurrence of
hashtag-entities in tweets as well as the semantic relat-
edness among those entities computed accordingly to the
underlying Wikipedia graph. By parsing a tweet collec-
tion of 10M messages, crawled in December 2013, we
construct an HE-graph of about 530k nodes and 22M
edges.

• We investigate the robustness of the HE-graph in mod-
eling the semantic relatedness among hashtags by build-
ing a dataset of about 1000 hashtag pairs rated as rele-
vant or not by human judges. We then study a number
of hashtag relatedness functions designed upon classic
lexical as well as more sophisticated features we specifi-
cally built upon the HE-graph, and show that the known
approaches, which consider just lexical features and co-
occurrences of hashtags, obtain a poor error rate of about
11%; whilst our novel algorithms achieve error rates up
to 1%. We strengthen these achievements by checking the
robustness of these relatedness measures over a clustering
problem. Again, our relatedness functions show a sharp
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gain in clustering precision with respect to other known
measures.

• Building upon these promising results, we attack the hash-
tag classification problem and offer two main contribu-
tions: (i) a dataset consisting of more than 5000 hash-
tags, properly classified in 8 categories, thus resulting up
to two-order of magnitudes larger than the one proposed
in (Posch et al. 2013); and (ii) a novel classification algo-
rithm which hinges on the HE-graph and deploys the tax-
onomy of Wikipedia categories in order to achieve a con-
sistent improvement in F1 over (Posch et al. 2013) up to
+9% (absolute), and provides a robust performance even
for smaller training sets.

The HE-graph and the relatedness and classification datasets
are available at http://acube.di.unipi.it.

2 Related work
For the sake of space, we just point out the main differences
between our proposals and the related literature.

On the HE-Graph. Constructing and exploiting a graph-
based data structure to model and extract useful informa-
tion from a dataset is a popular idea in Information Re-
trieval (Baeza-Yates and Tiberi 2007). The recent advent
of topic-annotation tools, as commented in the introduc-
tion, paved the way to constructing graphs which mix to-
gether lexical features and entity-based features together
with their semantic relatedness measures (see e.g. (Suchanek
and Weikum 2013) and refs therein). The proposals closer to
our approach are the following ones.

The Entity-Query graph (Bordino et al. 2013) consists of
two types of nodes: user queries (issued to a search engine)
and entities drawn from Wikipedia. Nodes are connected by
three types of edges: query-query (if two queries are con-
tiguous in a user query session); entity-query, which con-
nect each entity to the queries that contain it; entity-entity,
if a user who submitted a query related to the first entity
is likely to search for the second one. This graph was used
to tackle the problem of recommending a small and diverse
set of queries that are serendipitous and relevant for a given
web page. Apart from the different types of nodes, the other
significant difference with our HE-graph resides in the def-
inition of the entity-entity links that, in our case, are based
on the relatedness measure by (Witten and Milne 2008).

The Topics graph (Scaiella et al. 2012) is a bipartite-like
graph, whose nodes are either result-snippets (returned by a
search engine) or entities drawn from Wikipedia and occur-
ring in those snippets; edges connect either pairs of entities
(based on their relatedness) or they connect snippets with
their annotated entities. The authors exploited the spectral
properties of this graph to produce an appropriate topical
clustering of search-engine results. The entity-entity edges
recall the ones available in our HE-graph, but instead of
snippets we have hashtag nodes which are linked to entities
via new weight functions.

Recently (Sedhai and Sun 2014) introduced an entity-
hashtag graph in the context of hashtag recommendation
for tweets with hyperlinks. Albeit the name resembles our

proposal, our HE-graph is strongly different in structure
and goals; the most evident structural difference consists in
the definition of ”entity” which, in our context, denotes a
Wikipedia page that lives in the rich semantic space mod-
eled by Wikipedia’s graph (in the spirit of the recent flow
of research on entity annotators); moreover the links are not
just induced by entity-hashtag co-occurrences but also by
entity-entity semantic relations induced by the Wikipedia’s
graph structure. We will deploy those interconnections to de-
sign novel algorithms for ”understanding” the meaning of
hashtags and thus solve efficiently and efficaciously the two
problems addressed in this paper.

On hashtag relatedness. In the literature the terms relat-
edness and similarity are often used interchangeably. But,
as observed in (Budanitsky and Hirst 2006), semantic re-
latedness is a more general concept than similarity; simi-
lar entities are semantically related by virtue of their sim-
ilarity (bank–trust company), but dissimilar entities may
also be semantically related by lexical relationships such as
meronymy (car–wheel ) and antonymy (hot–cold ), or just
by any kind of functional relationship or frequent associa-
tion (pencil–paper, penguin–Antarctica, rain–flood ). Appli-
cations typically require relatedness rather than just similar-
ity, therefore in our paper we address the relatedness prob-
lem between hashtags.

We will experiment with the most significant known ap-
proaches which are either based on co-occurrences of hash-
tags with non-hashtag words in tweets, context similarity
and distributional similarity (Meng et al. 2012; Ozdikis,
Senkul, and Oguztuzun 2012), or use some random-walk
measures in folksonomies (such as FolkRank (Cattuto et al.
2008)). We will also compare those measures with some
newly designed relatedness functions which will be based
upon the HE-graph’s structural properties.

On hashtag classification. As already described in the in-
troduction, the first work addressing the problem of hash-
tag classification is due to (Romero, Meeder, and Kleinberg
2011), which prove that is possible to extract the category
information of a hashtag by analyzing the diffusion patterns
of the tweets that contain it. Then (Posch et al. 2013) pro-
posed the use of a SVM classifier based on both lexical
(bag of words) and pragmatic features, the latter ones de-
scribing how a hashtag is used over time by a large group
of users. We start from this literature and propose a signif-
icantly improved classification method for tweets that de-
ploys the HE-graph and the taxonomy of Wikipedia cate-
gories, thus achieving better performance than known ap-
proaches.

For the sake of completeness we mention (Overell, Sig-
urbjörnsson, and Van Zwol 2009), who addresses the prob-
lem of Flickr tag classification. The authors mapped Flickr
tags to Wikipedia pages using anchor texts of Wikipedia,
and trained a classifier, which uses Wikipedia Categories
and Templates, to classify Wikipedia pages into a set of cat-
egories. The idea of using the Wikipedia Category Graph for
Wikipedia pages’ classification is common to our approach.
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#stratos

#livejump

#SpaceJumpLIVE

Felix Baumgartner

Wind

Altitude

Parachuting
Joseph Kittinger

0.8

0.58

0.380.43

0.34

0.34

 RedBullOK @RedBullOkla
 "It's all about what we do now and accomplish now.We've made it so 
far, there's no way we are turning back." - Felix Baumgartner #stratos
 The Atlantic @TheAtlantic
Update: Felix Baumgartner's record-breaking #livejump aborted due 
to wind gusts
 Discovery_news @Discovery_News
In 1959, Joe Kittinger set the skydive altitude record; the record has 
remained for 52 years: #SpaceJumpLIVE

Figure 1: Tweets are at the bottom, the HE-graph is at
the top. Ee−e is in green (with the weights), Eh−e is
in black. Notice that the relatedness between #stratos
and #SpaceJumpLIVE might be derived from the relat-
edness edge between entities Felix Baumgartner and
Joseph Kittinger.

But, unlike this method, the HE-graph provides links from
hashtags to entities spotted in several tweets, plus other addi-
tional information, such as the annotation weights provided
by TagME; all such information can be used to collectively
and more robustly infer the topic of a given hashtag.

3 The HE-graph
Our solutions rely upon the HE-graph GHE = (Vh ∪
Ve, Eh−e ∪ Ee−e), whose structure is derived by parsing a
snapshot of Wikipedia and a (possibly large) set T of tweets.
GHE consists of two types of nodes:
• Vh consists of hashtag nodes, one per hashtag occurring

in the tweets of T .
• Ve consists of entity nodes, one per entity detected by

the annotator TagME in the tweets of T . The choice
of TagME is due to its efficient and effective perfor-
mance over short and poorly composed texts, as tweets
are (Cornolti, Ferragina, and Ciaramita 2013). We recall
that TagME associates to each entity annotation also a ρ-
score which measures the robustness of the resulting an-
notation. From all the annotations of T we will discard the
ones with ρ < 0.15, since they are not reliable (Ferragina
and Scaiella 2010).

The HE-graph consists of two types of edges:
• Eh−e is the set of directed edges linking a hashtag node
h to an entity node e iff they co-occur in a tweet of T .
Since h and e can co-occur in more than one tweet, there
is one single edge (h, e) labeled with a list containing the
ρ-values of the annotations regarding the occurrences of e
in T ’s tweets; from this list we then derive an edge weight,
denoted by w(h, e), which counts the cardinality of this
list. If w(h, e) = 1, the edge is dropped.
• Ee−e is the set of undirected edges linking two entities

e1 and e2 if they are semantically related. The semantic
relatedness problem has been deeply studied in the liter-
ature (see e.g. (Witten and Milne 2008; Ceccarelli et al.
2013) and refs therein); we use the well established mea-
sure rel(e1, e2) of (Witten and Milne 2008), which does
not need any ML-step, it is efficient to be (pre)computed
(and stored), and it takes into account the structure of the
Wikipedia graph since the more in-pages are shared by the
entities/pages e1 and e2, the closer their meaning should
be, and thus the higher should be their relatedness too. So
we set w(e1, e2) = rel(e1, e2) and drop the edge if its
weight is < 0.5, in order to focus only on strong ”seman-
tic” entity-entity links.

A concrete example of a HE-graph is provided in Figure 1,
where the h − e links capture the co-occurrence between
hashtags and entities, whereas the novel semantic dimension
is given by the e − e links. Our algorithms will exploit all
those features to efficiently and efficaciously solve the two
hashtag-understanding problems at hand.
Let us introduce some further useful notation:
• Given a hashtag h, we define LEh as the set of entities

which are linked to h in GHE (LE stands for Linked En-
tities). According to the definition of the HE-graph, these
are the entities that co-occur with h in some tweets and
got a good annotation score.

• We define GE as the subgraph of GHE restricted to the
entity nodes Ve and the relatedness links Ee−e. We can
look at GE as the catalog of entities present in the HE-
graph and their semantic relations.

• Given an entity e, we define REe as the set of entities
linked to e in GE (RE stands for Related Entities).

4 Hashtag Relatedness
We recall that the investigation on the hashtag relatedness
problem has a twofold objective: from one hand, we wish
to evaluate whether the semantic dimension induced by the
Wikipedia’s entities inGHE allows the design of algorithms
for the ”understanding” of hashtags which improve the clas-
sic proposals based on lexical (TF-IDF) features and the co-
occurrences of hashtags and terms in tweets; from the other
hand, we wish to design relatedness functions which are ro-
bust and efficiently computable so that they can be used as
a basic block into the successful solution of other problems,
such as hashtag clustering.

Our goal is to devise a relatedness function that, given
two hashtags h1 and h2, outputs a real value in [0, 1] which
is closer to 1 the more the two hashtags are semantically re-
lated, and it is closer to 0 the more the two hashtags are se-
mantically far apart. We designed and tested several hashtag
relatedness functions but, because of space restrictions, we
discuss below only the ones that are the most interesting al-
gorithmically and/or got the best experimental performance
(see Section 7.1).2 In our design we started from classic
ideas — such as vector-space model and cosine similarity, or

2For example we experimented all approaches reviewed in
(Markines et al. 2009) for tag similarities, such as Jaccard and Dice
coefficients, but they gave poor results in our hashtag context.
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random walks— and then moved to four more sophisticated
measures that exploit the structural properties of GHE .

Baseline (CosText). Our baseline is inspired by (Ozdikis,
Senkul, and Oguztuzun 2012) and indeed measures the re-
latedness between h1 and h2 by constructing two meta-
documents consisting of tweets in T that respectively in-
clude h1 and h2, and then computing the cosine similarity
between their TF-IDF vectors.

Labeled LDA (CosLLDA). This was described in (Meng
et al. 2012), where hashtags in a tweet are considered la-
bels for a document consisting of the remaining words of
that tweet. Then a Labeled LDA model is trained to obtain
the hashtag-word distribution, say p(Wh), for the hashtag
h. Finally, the relatedness between the two hashtags h1 and
h2 is estimated by computing the cosine similarity between
the two vectors p(Wh1) and p(Wh2). We also experimented
with the negative symmetric KL divergence of the two dis-
tributions p(Wh1) and p(Wh2), but the results were poorer
and so will not be reported in the Experimental Section.

Cosine similarity over entities (CosEntity). Our first new
proposal hinges on co-occurrences between hashtags and en-
tities in tweets. We introduce the vector Wh, for the hashtag
h, that consists of |Ve| components (one per entity in the
HE-graph) and whose j-th component is equal to w(h, ej).
Therefore Wh is a vectorized representation of the hashtag
h in the entity space, according to the hashtag-entity co-
occurrences in the tweet dataset T . We then compute the
hashtag relatedness as the cosine similarity between Wh1

and Wh2. The obvious limitation of this measure is that vec-
tor components take into account only entity occurrences,
without any deployment of their relatedness relations, so that
relatedness is caught only if LEh1 ∩ LEh2 6= ∅. In our case
this is an unjustified constraint since entities are intercon-
nected by relatedness links in GE , which we would like to
exploit in order to move to a sort of semantic space.

Expanded cosine similarity (ExpCosEntity). This relat-
edness measure addresses the limitation above by applying
the cosine similarity upon semantically-expanded vectors.
Given a hashtag h and its weighted vector Wh, we compute
the “expanded” vector Wh, which is obtained by spreading
the weight of ej ∈ LEh to all its related entities ek, taking
into account the relatedness between them. Formally, we up-
date Wh as follows: Wh[k] = Wh[j] × rel(ek, ej) for all
entities ej ∈ LEh and for all entities ek ∈ REej . This way,
even if two hashtags have possibly distinct co-occurring en-
tities, namely LEh1∩LEh2 = ∅, this spreading could make
the cosine similarity of the expanded vectors non null, pro-
vided that entities in LEh1 are related to entities in LEh2.
This strongly exploits the semantic space modeled by GE .

Top-k Relatedness (TopkPairs). In order to be less sensi-
tive to entity outliers, which could be introduced in the ex-
pansion step above, we decided to investigate a third new
measure which estimates the relatedness between the hash-
tags h1 and h2 by considering the relatedness in a sub-
set of the pairs of entities in LEh1 and LEh2. Let k =
max (|LEh1|, |LEh2|) and consider the k pairs (e, e′) ∈
LEh1 × LEh2 having the biggest relatedness values. Then

TopkPairs(h1, h2) is the average between these top-k re-
latedness values. This measure can be seen as a faster
and empowered variant of SimRank (Jeh and Widom 2002;
Quattrone et al. 2011) in which we are deploying the power-
ful semantic dimension provided by the edges in Ee−e.
Personalized PageRank Relatedness (CosPPR). Our
fourth and last proposal is based on a random walk over
the graph GE . Given a hashtag h we compute the Per-
sonalized PageRank vector over a directed version of GE

with prior probabilities equal to a properly normalized Wh.
The subgraph GE is made directed by replacing each undi-
rected edge (ej , ek) ∈ Ee−e with two directed edges whose
weight is equal to rel(ej , ek) divided by the out-degree of
each source node. So the weight of (ej , ek) may be dif-
ferent from the weight of (ek, ej), because the two source
nodes might have different forward stars. Then we create the
Personalized PageRank vector PPRh for the hashtag h, of
|Ve| components, which is computed over the directed GE

with teleportation probability 0.15 and executing 10 itera-
tions (which were enough to reach convergence). We notice
that the choice of the normalized Wh as teleportation proba-
bility forces the random jump to come back more frequently
to entities in LEh, namely the ones related to h. Finally,
we define the relatedness function CosPPR between two
hashtags by calculating the cosine similarity between their
PPR vectors. We remark that this relatedness function ex-
ploits not only the connection between entities in GE , but
also their “volume” and strength, as indeed random-walks
approaches are suitable to do.

In Section 7.1 we will experiment these relatedness func-
tions, thus testing the efficacy of the three dimensions (lexi-
cal, co-occurrence, semantic) suitably encoded in GHE .

5 Hashtag Classification
The problem we address in this section consists in label-
ing a given hashtag h with a category topic c ∈ C (e.g.,
C = {sports,movies, · · ·}). Albeit the methodology is gen-
eral enough to handle multi-label classification, we delib-
erately chose to study single-label classification in order to
simplify the construction of the classification dataset by our
human judges and to be in line with the works of (Romero,
Meeder, and Kleinberg 2011; Posch et al. 2013).

Our approach hinges on two main ingredients: the HE-
graph GHE and the category information available for each
entity e ∈ Ve in the Wikipedia Category graph, a directed
graph in which the edge (x, y) indicates that x is a sub-
category of y (x is more specific than y).

Our classification algorithm works as follows. Given a
hashtag h that we wish to classify, the algorithm performs
a BFS traversal of the Wikipedia Category graph for each
entity e ∈ LEh (i.e., h is linked to e in GHE). The BFS
stops after visiting l levels (the value of l will be discussed
in Section 7.2) in the Wikipedia Category graph. During the
BFS traversals, the algorithm keeps track in an array CVh
of the number of times each Wikipedia category page is en-
countered. 3 The rationale behind this simple scheme is to

3Other scoring mechanisms, such as scaling by the average ρ of
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promote categories that are shared by the vast majority of
entities in LEh by giving them a greater score. This way we
are focusing on a set of category pages that best describe the
hashtag h under classification.

After the BFS traversals of all e ∈ LEh have been com-
pleted, the counter-array CVh is rescaled (by dividing each
element by max(CVh)) and given in input to a SVM clas-
sifier with linear kernel. The SVM will be trained/tested via
proper ground-truth datasets (more details in Section 7.2).

To better understand the algorithm, consider the hash-
tag #iphone, which co-occurs with many entities such as
“Apple Inc” and “iPhone”, so that their BFS traver-
sals will pass through the “Smartphone” category node many
times, thus increasing its score. On the other hand, less re-
lated category nodes such as “New York” will possibly re-
ceive a non-zero score which will be nonetheless low (e.g.,
some tweets could talk about queues at the Apple store in
NY); the score should thus have very little influence on the
final decision of the SVM classifier.

This simple scheme mimics the way in which BoW clas-
sifiers work, where the basic feature is the presence or fre-
quency of a word in a text. However the Bow-approach suf-
fers from the sparsity of the tweet representation given their
short and poor composition, and from the independent role
of each term. Conversely, our classification algorithm sur-
passes these limitations because each entity is connected
to many different category pages whose aggregated scores
reasonably describe the semantic meaning of those entities.
This way the interconnections in the Wikipedia category
graph and the entity-annotation performed by TagME can
be used to derive a descriptive fingerprint of the semantic
meaning of h.

These considerations will be further explored in the fol-
lowing Experimental Section, where we will analyze and
compare the performance of a SVM classifier built upon
lexical features (BoW), semantic features (Wikipedia Cat-
egories) and both of them together (mixed model).

6 Datasets

Posch dataset. This is the dataset described in (Posch et al.
2013): it is organized in three parts (T0, T1, T2), each ac-
counting for about 95k tweets crawled in four weeks starting
March 4th (T0), April 1st (T1) and April 29th, 2012 (T2).
It is composed of 64 hashtags divided in 7 categories (be-
tween brackets their sizes) as follows: Technology (10), Po-
litical (10), Sports (10), Movies (10), Idioms (10), Music (8),
Games (6). This dataset presents two main issues: it is small
and it includes a peculiar category, i.e. “Idioms”, whose
hashtags are often ambiguous (consider #iloveit and
#MusicMonday) or detectable by simple parsing rules4.
We stick to experimenting on this dataset because it allows
to compare our classification results with the state-of-the-art
algorithms introduced in (Posch et al. 2013).

(h, e), were tested but reported worse performance.
4In (Romero, Meeder, and Kleinberg 2011) it is stated that an

idioms-hashtag represents a conversational theme on Twitter, con-
sisting of a concatenation of at least two common words.

A larger classification dataset. In order to evaluate the ro-
bustness of our approach, we constructed a larger dataset
which uses eight categories: food, games, health, tv/movies,
music, politics, sport, technology. The category idioms was
removed (see issues above), and two other classic categories
were added, that is food and health.

The hashtags in this dataset have been derived by first
downloading the timeline of each verified Twitter user (i.e.
about 54k timelines), and then by extracting from those
tweets the list of hashtags with frequency > 50. We only
considered English tweets, identified via the language at-
tribute returned by the Twitter API. The same extraction pro-
cess was repeated on a collection of tweets coming from the
public stream of Twitter, crawled in November 2013. The
two lists of hashtags have then been merged into a set con-
taining more than 91k hashtags.

For each hashtag, we independently asked three human
judges to label it with the appropriate category (among the
8 above), if pertinent, using as reference the Twitter Search
web page and the definitions coming from Tagdef.5 In or-
der to reduce the workload of our judges and select poten-
tially interesting and statistically significant hashtags, we re-
stricted the analysis to hashtags which in the timeline co-
occur with at least 20 distinct entities and occur in at least
100 tweets. Judges were left with 28k hashtags; only 5245
got a full agreement among the judges’ classification. These
hashtags form the new classification dataset. It is about two
orders of magnitude larger than Posch’s dataset and it is
cleaner because the selection process avoided/reduced poly-
semous hashtags or erroneous classifications, which instead
sometimes occur in Posch dataset as we verified by hand.6
Details about the class sizes follow:

Food Games Health Music
834 242 549 634

Politics Sport Technology TV/Movies
566 609 911 900

Relatedness dataset. Starting from our larger classification
dataset, we built an additional dataset that was used to as-
sess the efficacy and robustness of our relatedness functions
with respect to the co-occurrence feature. More precisely we
wished to investigate the common issue that two hashtags
may co-occur in tweets but this does not necessarily imply
that they are related. This analysis is important to assess the
robustness of our relatedness functions because techniques
based only on hashtag co-occurrence fail to detect such sit-
uation. Therefore, we designed a dataset consisting of 911
hashtag pairs, organized in four different parts:

No hashtag pairs Co-Occurring Related?
D1 285 Highly Yes
D2 268 Lowly Yes
D3 119 Frequently No
D4 239 Never No

5http://tagdef.com/
6E.g. #avatar is classified in movies, but it is also used in Twit-

ter to refer to a user graphical representation in games and social
networks, while #wow is classified in games but most of the time
is used as an exclamation.
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The pairs were generated by randomly sampling hashtags
contained in the classification dataset, taking into account
the frequency of occurrences of the pairs in the tweets of
T . More specifically, the second class was built by looking
at pairs of hashtags co-occurring only once, while the third
class was created using pairs of hashtags co-occurring 10-20
times. We followed the considerations in (Budanitsky and
Hirst 2006) as guidelines for collecting human judgments
of semantic relatedness. Three judges were asked to catego-
rize the hashtag pairs as related, unrelated, or “Skip” (if the
judge does not know the meaning of a hashtag or thinks that
the relatedness strongly depends on a subjective facet). In
the case of a polysemous hashtag, the judges were instructed
to choose the most pertinent meaning. Pairs with full agree-
ment were the only ones selected; as a consequence, the final
dataset contains only pairs having a clear relatedness char-
acterization.
The HE-graph. A comprehensive HE-graph is needed to
run our algorithms. We constructed this large GHE by
crawling, via the Twitter search API, 200 tweets for each
hashtag in our original dataset of 91k hashtags. This got
about 10M tweets which were parsed with TagME to extract
the occurring hashtags and the “robustly-annotated” entities,
i.e. having ρ-score ≥ 0.15 (as suggested in (Ferragina and
Scaiella 2010)). The resulting graph is quite interesting in
size and structure, as the Table below points out.

HE-Graph statistics
No hashtags 348 597
No entities 176 626
No edges in Eh−e 3 995 025
No edges in Ee−e 17 472 182
No zero-degree vertices in GE 17 577
Avg. Vh out-degree 11.46
Avg. Ve in-degree (without Ee−e) 22.62
Avg. Ve degree restricted to GE 219.71
Avg. |ρi,j | 6.8
No conn. compo. in GHE (undir.) 27
No conn. components in GE 645
Maximal component in GE 158 992 nodes

This table shows that the HE-graph is well connected, it
basically consists of one huge component and very few other
small connected components. The average node eccentricity
in the maximal component ofGE is about 7 and the diameter
is 9: therefore, not many hops are required to reach any other
entity node in that component. The degree distribution of
nodes is reported in the following pictures. We notice that
three out of four figures remind of a power law, but the last
one referring to entity nodes in GE does not.

7 Experimental results
7.1 Hashtag relatedness
Before analyzing the results, it is important to point out how
the pairs of related hashtags (data-subsetsD1 and D2) differ
with respect to relatedness “strength”: we go from pairs rep-
resenting the same concept (e.g. #doctorwho - #drwho) to
pairs expressing a “weaker” relation (e.g. #hansolo - #yoda,
#ramen - #tofu). Therefore, even relatively low values (e.g.,
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Figure 2: Degree distribution in the HE-graph.

0.3) might be reasonable for related hashtags, depending on
the pair.

Function τ No Errors % Errors ARI Index
ExpCosEntity 0.31 4 1% 0.8092
TopkPairs 0.62 28 4% 0.6408
CosPPR 0.06 43 6% 0.6490
CosEntity 0.02 73 10% 0.5375
CosText 0.03 82 11% 0.0010
CosLLDA 0.04 86 12% 0.0008

Table 1: Optimal τ values (728 pairs in the test set)

That said, we want to find a threshold τ for each related-
ness function such that two hashtags are considered related
only if the value returned by the function is ≥ τ . We used a
small part of the data (20% of each subset) as training set to
find the best τ , then tested the relatedness function using the
rest of the dataset. Results are reported in Table 1. The best
results are obtained by our novel functions which exploit in-
formation in GE . We also point out that CosLLDA does
not bring any improvement with respect to our baseline.

CosPPR deserves a special comment because, although
sophisticate, it achieves worse results than ExpCosEntity and
TopkPairs. Given Wh, the random walk on GE boosts the
most “semantically” important entities related to h. If h is
polysemous or used in a variety of different contexts,7 then
Wh is spread over several topically different entities so that
all possible semantic areas for h are correctly taken into ac-
count, according to their relative importance given by Wh.
Conversely, TopkPairs would possibly drop some interest-
ing areas by restricting its computation to the top-k most
related pairs, which could come from few areas indeed. This
is a very nice property of CosPPR which, however, is not
fully exploited in this setting. So we envision a system that,
given two hashtags, is able to recognize if they are strongly,
weakly or not related. We made a test in this respect which

7e.g. consider #apple or #montecarlo
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has given very promising results by simply considering the
outputs of ExpCosEntity and CosPPR: if they are both high
(low), then the two hashtags are related (unrelated); if the
output of CosPPR is significantly lower than the one of Ex-
pCosEntity, then they are weakly related. We plan to further
investigate this task in the future.

Function D1 D2 D3 D4

ExpCosEntity 0.00% 1.87 % 0.00 % 0.00%
TopkPairs 0.88% 2.80 % 21.05% 0.00%
CosPPR 0.00% 5.61 % 32.63% 0.00%
CosEntity 0.00% 5.14 % 64.21% 0.52%
CosText 0.00% 7.94 % 67.37% 0.52%
CosLLDA 0.00% 12.62% 55.79% 3.14%

Table 2: Error rates with respect to each data-subset

Table 2 details the error rates of each function on each
data-subset (of course evaluated on the test subsets). The
first thing to point out is that all functions perform well on
D1 and D4, when related (unrelated) hashtags are highly
(not) co-occurrent. Therefore the difference in the overall
performance is due to D2 and D3, where the co-occurrence
is not indicative of relatedness between two hashtags. In par-
ticular, the highest error rates are obtained when the hash-
tags are unrelated but frequently co-occurring, except for
ExpCosEntity which is undoubtedly the most well-behaving
function over all subsets, being robust with respect to the
number of co-occurrences.

Clustering. In order to strengthen our evaluation of the four
relatedness functions introduced in this paper we set up a
clustering experiment, where the aim is to clusterize the
hashtags contained in the relatedness dataset into 8 distinct
clusters, as many as the category topics of our classification
dataset. Suppose we use the relatedness functions as simi-
larity measures between two hashtags that we wish to clus-
ter, and the categories as ground-truth labels. If we cluster
the hashtags in eight clusters, we expect that hashtags be-
longing to the same category will also belong to the same
cluster. The objective of this experiment is to determine how
good the clusters derived using each relatedness function are
with respect to the ground truth category labels. To this end
we choose to run the K-Medoids (Kaufman and Rousseeuw
2009) algorithm with K = 8 because of its properties: (i)
it allows us to specify the number of clusters; (ii) it chooses
data points as centers instead of calculating centroids; (iii) it
is more robust to noise and outliers with respect to K-Means.

We then calculated the ARI (Adjusted Rand Index) in-
dex (Hubert and Arabie 1985) for each relatedness func-
tion 8. The results of this experiment are reported in the last
column of Table 1. We recall that ARI values are in the range
[−1.0; 1.0], where random labelings have an ARI score close
to 0.0 whereas a perfect labeling has a score equal to 1.0. The
worst performing relatedness functions are the two base-
lines, whose ARI score is near to 0. Conversely the functions
exploiting the HE-Graph exhibit much better scores. A point

8Since K-Medoids is a randomized algorithm, the maximum
ARI score is reported, out of 100 randomized runs

worth noting is that functions with higher ARI score are the
ones with lower error rate in the previous experiment. Thus
the results confirm both the significance of our previous ex-
periment and the applicability of our functions in real-world
applications.

7.2 Hashtag classification
Our classification algorithm depends only on the parameter
l, i.e. the maximum level used during the BFS traversal of
the Wikipedia Category graph. After an extensive set of ex-
periments we empirically found that 3 is a good value. Set
this value, we experimentally evaluated the performance of
our classification algorithm on the two available datasets and
got the following results.

Posch dataset. A comparison between our approach and
the best classifier of (Posch et al. 2013) is reported in Fig-
ure 3 for both time periods T1 and T2, using 6-fold cross-
validation as in the original paper.9 Our classifier gets an
average F1 which is from +8% up to +12% better (in abso-
lute terms) than the best lexical classifier reported in (Posch
et al. 2013). It goes without saying that the small size of this
dataset does not allow us to draw conclusions about the ro-
bustness of the tested classifiers. The experiment over our
larger dataset is meant to establish such robustness.

average games idioms movies music political sports technology
0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

posch-t1
he-t1
posch-t2
he-t2

Figure 3: 6-fold cross validation on Posch dataset

Large dataset. We also tested the classifiers on the larger
classification dataset we explicitly built for this task. Since
we were not able to get the original software of (Posch et
al. 2013), we implemented our own version10 following the
details provided in that paper: it consists of a SVM classifier
with a linear kernel trained over a standard BoW feature set,
i.e. term frequencies (TF).

A detailed comparison between our solution and the lex-
ical classifier is summarized in Table 3. In addition to of-
fering a complete overview of the F1 score for each cate-
gory topic, the table provides a side-by-side comparison of
the performance of each classifier when 5%, 25%, 50% and
75% of the dataset is reserved for training. A graphical but

9Figures for (Posch et al. 2013) have been derived from a per-
sonal communication with Lisa Posch.

10We used sklearn: http://scikit-learn.org/
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Name avg food games health movies music polit. sports tech. N. Errors Precision Recall
posch-05% .852 .951 .636 .857 .852 .902 .859 .923 .836 634 .900 .831
mix-05% .939 .970 .885 .945 .912 .966 .941 .956 .940 281 .946 .936
he-05% .940 .968 .885 .944 .913 .966 .942 .958 .941 280 .945 .936
posch-25% .922 .970 .845 .921 .897 .942 .930 .951 .920 282 .935 .913
mix-25% .957 .978 .944 .939 .943 .975 .944 .972 .960 162 .957 .958
he-25% .956 .978 .942 .939 .940 .974 .945 .973 .959 166 .956 .956
posch-50% .943 .977 .921 .934 .920 .947 .933 .970 .944 143 .948 .939
mix-50% .961 .978 .967 .932 .949 .975 .947 .974 .962 102 .959 .963
he-50% .961 .980 .963 .932 .952 .976 .951 .974 .960 101 .959 .963
posch-75% .951 .972 .931 .944 .933 .944 .972 .952 .961 62 .956 .947
mix-75% .966 .976 .975 .938 .963 .972 .968 .970 .965 45 .967 .965
he-75% .965 .979 .975 .934 .958 .972 .968 .970 .965 46 .966 .964

Table 3: F1 comparison between semantic features (he-), lexical features (posch-), semantic + lexical features (mix-)

synthetic representation of the same results is depicted in
Figure 4, that compares the average F1 scores for each clas-
sifier by varying the training set size.
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Figure 4: Classification on different training-set sizes

The table and the figure just introduced also compare the
performance of a mixed classifier, trained over both lexi-
cal (as in (Posch et al. 2013)) and semantic (as in our ap-
proach) features. In the table the best performing F1 scores
are highlighted using the bold typeface. The two classifiers
that use the semantic features have the best performance
overall. This is especially true in the case where only a small
percentage of the training data (i.e., 5%) is used, where a
gain of about 9% in average F1 is obtained by the semantic
classifier. The gain starts diminishing when more training
data is used, and the three classifiers converge to almost the
same F1 score. This is not unexpected at all since the natural
sparsity of each tweet is overcome by using a greater amount
of data. This does not make our methodology less attractive,
but rather shows that our semantic model is better at gen-
eralizing with a very little amount of labeled data available,
while still being able to obtain a very competitive perfor-
mance when training data increases. The last three columns
of Table 3 respectively report the number of incorrectly clas-
sified hashtag, average precision and average recall. As you
can see, the performance of the mixed model suggests that

the lexical features do not bring any significant improvement
to our solution.

The trend is clear: the semantic features derived from
Wikipedia provide robustness with respect to training size, a
property that is especially desirable in the context of Twitter
or other Social Networks, where the amount of information
carried in a tweet is very limited and new hashtags are cre-
ated on a daily basis. This robust performance clearly spurs
from the Wikipedia knowledge plugged into both our HE-
graph and the Wikipedia Category graph.

8 Conclusions

In this paper we introduced the Hashtag-Entity Graph and
proper algorithms to efficaciously solve two IR problems
formulated on Twitter hashtags: relatedness and classifica-
tion. We tested our algorithms over known and new datasets,
drawn from Twitter, whose size is up to two orders of mag-
nitude larger than the existing ones. These large datasets
have been released to the public, together with the HE-
graph we constructed. Our experiments systematically show
improvements over known approaches. We argue that the
HE-graph offers a succinct yet powerful representation for
tweets, nicely mixing semantic relatedness between entities
and co-occurrence information between hashtags and those
entities.

We highlight two important properties of our algorithms:
(i) they are language independent (as long as a semantic an-
notator is available for the target language) and (ii) can be
used in a on-line system, in which the users potentially talk
about new entities (assuming the knowledge base used be-
hind the scene, like Wikipedia, is updated in near-real-time).

We foresee the application of this graph and the proposed
algorithms to other social networks, such as Google+ or
Facebook, and to other problems involving hashtags (such
as hashtag recommendation) or tweets. In this latter case we
argue that the HE-graph could empower the known tools by
deploying information derived from the hashtags occurring
in those tweets.
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