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Abstract

Locating timely, useful information during crises and
mass emergencies is critical for those forced to make
potentially life-altering decisions. As the use of Twitter
to broadcast useful information during such situations
becomes more widespread, the problem of finding it be-
comes more difficult. We describe an approach toward
improving the recall in the sampling of Twitter commu-
nications that can lead to greater situational awareness
during crisis situations. First, we create a lexicon of
crisis-related terms that frequently appear in relevant
messages posted during different types of crisis situa-
tions. Next, we demonstrate how we use the lexicon to
automatically identify new terms that describe a given
crisis. Finally, we explain how to efficiently query Twit-
ter to extract crisis-related messages during emergency
events. In our experiments, using a crisis lexicon leads to
substantial improvements in terms of recall when added
to a set of crisis-specific keywords manually chosen by
experts; it also helps to preserve the original distribution
of message types.

1 Introduction
The popular microblogging platform Twitter is a frequent
destination for affected populations during mass emergencies.
Twitter is a place to exchange information, ask questions,
offer advice, and otherwise stay informed about the event.
Those affected require timely, relevant information; recent
research shows that information broadcast on Twitter can lead
to enhanced situational awareness, and help those faced with
an emergency to gain valuable information (Vieweg 2012).

The velocity and volume of messages (tweets) in Twitter
during mass emergencies makes it difficult to locate situa-
tional awareness information, such as road closure locations,
or where people need water. Users often employ conven-
tional markers known as hashtags to bring attention to spe-
cific tweets. The idea is that those looking for emergency
information will search for specific hashtags, and tweets that
contain the hashtag will be located. In crisis, hashtags are
often adopted by an information propagation process (Star-
bird and Palen 2011), but in some cases, they are suggested
by emergency response agencies or other authorities. Alas,
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even with several dozen such hashtags, only a fraction of the
information broadcast on Twitter during mass emergencies
is covered (Bruns et al. 2012). Therefore, automatic meth-
ods are necessary to help humans cull through the masses of
Twitter data to find useful information.

Here, we tackle the problem of how to locate tweets that
contain crisis-relevant information during mass emergency
situations: our goal is to improve query methods, and return
more relevant results than is possible using conventional
manually-edited keywords or location-based searches.
Problem definition. Given a crisis situation that occurs
within a geographical boundary, automatically determine
a query of up to K terms that can be used to sample a large
set of crisis-related messages from Twitter.
Our approach. Create a crisis lexicon consisting of crisis-
related terms that tend to frequently appear across various
crisis situations. This lexicon has two main applications:

1. Increase the recall in the sampling of crisis-related mes-
sages (particularly at the start of the event), without incur-
ring a significant loss in terms of precision.

2. Automatically identify the terms used to describe a crisis
by employing pseudo-relevance feedback mechanisms.

Our approach is presented with respect to crises, but it can
be applied to any domain. We describe a systematic method
to build the lexicon using existing data samples and crowd-
sourced labeling; the method is general and can be applied to
other tasks (e.g. to build a sports-related or a health-related
lexicon). The lexicon, along with the data and the code we
used to build it are available at http://crisislex.org/.

2 Related Work
Mining social media in crises. During crises, numerous
disaster-related messages are posted to microblogging sites,
which has led to research on understanding social media use
in disasters (Starbird and Palen 2010; Qu et al. 2011), and
extracting useful information (Imran et al. 2013).

The first challenge in using microblog data is to retrieve
comprehensive sets of disaster-related tweets (Bruns and
Liang 2012). This is due to Twitter’s public API limitations
(described in §3.1) that make this type of data collection
difficult. To the best of our knowledge, data collection during
crises usually falls in two categories: keyword-based and
location-based, with the former being more common. In a
keyword-based collection, a handful of terms and/or hashtags
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are used to retrieve tweets containing those terms (Hughes
and Palen 2009) ignoring other posts (Bruns and Liang 2012).
While the resulting samples might have little noise (Vieweg et
al. 2010), they are typically constructed around visible topical
hashtags and might omit a significant number of disaster-
related tweets (Bruns et al. 2012). Furthermore, keywords
are only as responsive as the humans curating them and this
method may lose relevant tweets due to latency. Location-
based sampling, on the other hand, is limited to tweets that
are either geo-tagged or mention the places affected by the
disaster; both of these conditions occur in a small portion of
tweets.

Once collected, it is necessary to process the data in a
meaningful way. Imran et al. (2013) automatically identify
tweets contributing to situational awareness and classify them
according to several types of information. Yin et al. (2012)
designed a system for leveraging microblog data during dis-
asters; their data capture module is close in scope with our
work, yet it makes no distinction between disasters and other
events. In turn, our lexicon could enhance their burst detec-
tion mechanisms to better identify disasters.
Query generation and expansion. Our problem resembles
deep-web crawling, the process by which web crawlers ac-
cess public data (belonging to large online retailers, libraries,
etc.) on the web that is not accessible by following links,
but only by filling in search forms. To this end, it performs
query generation: identify a set of keywords that are en-
tered in search forms to return such data (Wu et al. 2006;
Ntoulas, Pzerfos, and Cho 2005).

The goal of exhaustively retrieving documents hidden
behind web interfaces has been approached as a mini-
mum weighted dominating set and set-covering graph prob-
lem (Ntoulas, Pzerfos, and Cho 2005; Wu et al. 2006).
We reuse the idea of representing document or term co-
occurrences as a graph, but we formalize our problem as
finding the maximum weighted independent set as we look
for discriminative queries that maximize only the volume of
retrieved documents relevant to given topics (§4.1). In web
search, reformulating the initial query such that it returns
documents from the domain of interest is known as vertical
selection & aggregation (Arguello, Diaz, and Paiement 2010).
Arguello et al. reuse past knowledge to predict models for
new domains by focusing on portability and adaptability.
We use their idea of supervision and use knowledge on past
crises to generate queries for future ones.

The query generation step can be followed by query expan-
sion that after searching with an initial query adds to it new
terms (Croft and Harper 1979). For this, pseudo-relevance
feedback (PRF) is typically used. It scores and selects new
terms according to their distribution in the feedback docu-
ments (i.e., those retrieved with the initial query), or accord-
ing to the comparison of their distribution in these documents
and the entire collection (Xu and Croft 2000). Re-sampling
PRF terms by combining PRF results from several query
sub-samples downturns the chance of adding noisy terms
to the query (Collins-Thompson and Callan 2007). Twitter
API terms do not allow us to run similar queries simultane-
ously; running them sequentially might lead to data loss at
the beginning of the crisis. Hence, we cluster tweets based on

which terms matched them, treating each term as a different
query (Xu and Croft 2000).
Adaptive information filtering. Unlike classic query gen-
eration and expansion on static collections, the data stream
relevant to crisis events evolves over time. Our query is main-
tained over long periods, performs a binary selection rather
than compiling a ranked list of documents, and is limited
in size – akin to information filtering over streams of docu-
ments (Allan 1996; Lanquillon and Renz 1999).

In contrast to current approaches that exploit the time
dimension of a static microblog collection (Metzler, Cai, and
Hovy 2012; Miyanishi, Seki, and Uehara 2013), we collect
data as it is produced, rather than searching in a historical
repository. Wang et al. (2013) expands a user-provided query
with new hashtags to retrieve more microblog data related
to given events. We automate the entire retrieval process
by exploiting knowledge on past crises to generate a query,
which is then expanded with terms specific to new crises.
Lexicon building. We exploit the fact of having a single do-
main by creating a lexicon that captures crisis-relevant terms
frequently used in crises tweets, which is then adapted to a
specific event (§4). Typically there are two design decisions
regarding lexicons: categorize terms in a number of prede-
fined categories (e.g., WordNet, VerbNet), and/or weight
terms across one or more dimensions (e.g., SentiWordNet).
The former is adopted for building broad linguistic resources
with numerous dimensions. If the application domain is more
focused (e.g., sentiment extraction) the later is used (Kaji and
Kitsuregawa 2007), which we also adopt.

3 Datasets and Evaluation Framework
In this section we describe the input datasets we use, and
the evaluation method and metrics by which we compare
different alternatives.

3.1 API limits
Twitter’s API for accessing tweets in real-time (the streaming
API) has several limitations. The two that are most relevant
for our work are the following.

First, tweets can be queried by content or by geographical
location. Specifically, if both content and geographical cri-
teria are specified, the query is interpreted as a disjunction
(logical OR) of both. The content criterion is specified as
the disjunction of up to 400 terms, in which each term is
a case-insensitive conjunction of words without preserving
order. The location criterion is specified as the disjunction of
a set of up to 25 rectangles in coordinate space.

Second, independently of the method used to query, the
resulting set is limited to 1% of the stream data. If the query
matches more than 1% of the data, then the data is sub-
sampled uniformly at random. As a result, even if we use a
“blank” query (collect everything), we never obtain more than
a sample of 1% of tweets. As a query becomes broader (i.e, by
including more terms or a larger geographical region) at some
point we start losing tweets because of this limitation. This
means that “collecting everything and then post-filtering” is
an ineffective sampling method: at least part of the selection
must be done at query time.
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Name / Start / Keyword-based sampling # of Location-based sampling # of
Type Duration (# of terms): Examples of terms tweets Region(s) tweets

Sandy
Hurricane

2012-10-28
3 days

4: hurricane, hurricane sandy, frankenstorm, #sandy 2,775,812

NY City; Bergen, Ocean,
Union, Atlantic, Essex, Cape
May, Hudson, Middlesex &
Monmouth County, NJ, US

279,454

Boston
Bombings

2013-04-15
5 days

17: boston explosion, BostonMarathon, boston blast, boston terrorist,
boston bomb, boston tragedy, PrayForBoston, boston attack, boston tragic

3,375,076
Suffolk and Norfolk Counties,
Massachusetts, US

88,931

Oklahoma
Tornado

2013-05-20
11 days

36: oklahoma tornado, oklahoma storm, oklahoma relief, oklahoma volun-
teer, oklahoma disaster, #moore, moore relief, moore storm, #ok, #okc

2,742,588
long. ∈ [−98.25,−96.75]
∧ lat. ∈ [34.5, 35.75]

62,237

West Texas
Explosion

2013-04-17
11 days

9: #westexplosion, #westtx, west explosion, waco explosion, texas explo-
sion, tx explosion, texas fertilizer, #prayfortexas, #prayforwest

508,333
long. ∈ [−97.5,−96.5] ∧
lat. ∈ [31.5, 32]

16,033

Alberta
Floods

2013-06-21
11 days

13: alberta flood, #abflood, canada flood, alberta flooding, alberta floods,
canada flooding, canada floods, #yycflood, #yycfloods, #yycflooding

370,762 Alberta, Canada 166,012

Queensland
Floods

2013-01-27
6 days

4: #qldflood, #bigwet, queensland flood, australia flood 5,393 Queensland, Australia 27,000

Table 1: Summary statistics of the six disasters and the two data samples (keyword-based and location-based).

3.2 Datasets
We use data from 6 disasters between October 2012 and July
2013, occurring in English-speaking countries (USA, Canada,
and Australia) which affected up to several million people.
Crisis keywords were defined by two research groups: Aron
Culotta’s “Data Science for Social Good” team (Ashktorab et
al. 2014), and the NSF SoCS project group at Kno.e.sis using
the Twitris tool (Sheth et al. 2014), who shared partial lists of
tweet-ids with us. Location-based data was partially collected
using Topsy analytics. As detailed in Table 1, for each disaster
we use two sets of data collected from Twitter: (1) a keyword-
based sample1 and (2) a location-based sample. We note
that filtering by a conjunction of keywords and locations
is not possible using Twitter’s current streaming APIs. In
addition, both of these conditions occur in only a fraction of
the relevant tweets (§3.3).

The keywords-based samples use keywords chosen by the
data providers following standard practices for this type of
data collection. This typically includes hashtags suggested
by news media and response agencies,2 terms that combine
proper names with the canonical name of the disaster (e.g.,
oklahoma tornado), or the proper names given to meteoro-
logical phenomena (e.g., typhoon pablo).

The location-based samples are obtained by collecting all
the postings containing geographical coordinates inside the
affected areas. Geographical coordinates are typically added
automatically by mobile devices that have a GPS sensor, in
which their users have allowed this information to be attached
to tweets. Location-based samples were obtained through
two data providers: GNIP,3 which allows to specify a region
through a rectangle defined by geographical coordinates, or
Topsy, which additionally allows to indicate the names of the
places of interest (counties, states, etc.)

1The West Texas explosion keyword-collection was obtained
from GNIP, which allows more expressive query formulation than
the Twitter API. We used an estimated query that approximates this
collection with a precision and recall higher than 98%.

2http://irevolution.net/2012/12/04/catch-22/
3http://www.gnip.com/

3.3 Evaluation Framework
Our filtering task can be seen as a binary classification task.
The positive class corresponds to messages that are related to
a crisis situation, while the negative class corresponds to the
remaining messages. This is a broader, more inclusive defini-
tion than being informative (Imran et al. 2013), or enhancing
situational awareness (Vieweg 2012).
Labeling crisis messages. The labeling of messages was
done through the crowdsourcing platform Crowdflower4. For
efficiency and to improve the quality of data we use to train
our models, we perform a pre-filtering step. We first eliminate
messages that contain less than 5 words as we deem them too
short for training our lexicon. Next, we eliminate messages
that are unlikely to be in English by checking that at least
66% of the words were in an English dictionary5.

The task is designed to encourage workers to be inclusive,
which is aligned with the goal of having high recall. We
present workers a tweet and ask if it is in English and (A)
directly related to a disaster, (B) indirectly related, (C) not
related, or (D) not in English or not understandable. For
purposes of our evaluation, the positive class is the union of
tweets found to be directly and indirectly related, and the
negative class is the set of tweets found to be not related.

For clarity, we include the type of disaster in the ques-
tion. Example instructions appear in Figure 1. We showed
15 tweets at a time; one tweet was labeled by the authors,
and used to control the quality of crowdworkers. Given the
subjectivity of the task, tweets used to control quality were
selected to be obvious cases.

From each crisis we labeled 10,050 tweets selected uni-
formly at random from the keyword-based sample (50% of
labels) and location-based sample (50% of the labels). On
average, about 100 workers participated in each crowd-task.
We asked for 3 labels per tweet and kept the majority label.
On average, 31.5% tweets were labeled as directly related,
22.2% as indirectly related, 45.8% as not-related, and 0.5%
as not in English, etc.

4http://www.crowdflower.com/
5NLTK’s English dictionary and the English database WordNet

378



Categorize tweets posted during the 2013 Oklahoma Tornado:
Read carefully the tweets and categorize them as:
A. In English and directly related to the tornado.
– “The tornado in Oklahoma was at least a mile wide”
B. In English and indirectly related to the tornado.
– “The nature power is unimaginable. Praying for all those affected.”
C. In English and not related to the tornado.
– “Oklahoma played well soccer this night”
D. Not in English, too short, not readable, or other issues.
– “El tornado en Oklahoma ...”

“Seeing everyone support #Oklahoma makes my heart smile!#oklahomatornado”
This tweet is:
A. In English and directly related to the tornado.
B. In English and indirectly related to the tornado.
C. In English and not related to the tornado.
D. Not in English, too short, not readable, or other issues.

Figure 1: Example instructions (top) and example crowd-
sourcing task (bottom) used for labeling crisis messages.

Keyword-based Location-based
Disaster Prec. Recall Prec. Recall

West Texas Explosion 98.0% 29.0% 6.7% (100.0%)
Alberta Floods 96.0% 41.9% 8.0% (100.0%)
Boston Bombings 86.3% 25.3% 15.9% (100.0%)
Sandy Hurricane 92.1% 39.3% 26.1% (100.0%)
Queensland Floods 71.2% 17.9% 8.8% (100.0%)
Oklahoma Tornado 66.2% 45.4% 9.0% (100.0%)

Average 85.0% 33.1% 12.4% (100.0%)

Table 2: Precision and recall of keyword-based and location-
based sampling. The task is finding crisis-related messages.

Measuring precision and recall. Evaluating precision is
straightforward, as it corresponds to the probability that a
message included in a sample belongs to the positive class.
Evaluating recall is more difficult as it requires a complete
collection containing all the crisis-related messages for each
disaster. Yet, such a collection may require to label up to
300K messages to cover a single minute of Twitter activity.6

Since our methods rely on selecting tweets based on key-
words, we evaluate them on the location-based sample. Ac-
cording to this definition, the recall of a keyword-based sam-
pling method is the probability that a positive element in the
location-based sample matches its keywords.

Table 2 evaluates the keyword-based and location-based
samples using the crowdworker labels. Both precision and
recall vary significantly across crises. In general, the pre-
cision of keyword-based sampling (66% to 98%) is higher
than that of location-based sampling (7% to 26%). We note
that the average recall of about 33% that we observe in the
keyword-based samples means that about two thirds of the
crisis-related messages in the location-based samples do not
contain the specified keywords – that is the main motivation
for the methods we describe in §4.
Further metrics. We regard the problem of collecting crisis

6https://blog.twitter.com/2013/new-tweets-per-second
-record-and-how

Data source

Location-based
collections

Expert-provided
keywords (*)

Expert-provided
location(s)

Crisis lexicon + feedback 
terms

Search + 
pseudo-relevance
feedback

Crisis lexicon + feedback 
terms + expert keywords

Add expert-provided
keywords (*)

T(L)i +F+K

T(L)i +F

    

Keywords-based
collections

Crisis-related 
messages

Other 
messages

Crowdsourcing

Chi-squared test

Crowdsourcing Names of places,
people, etc.

Crowdsourcing Non-crisis terms

Discriminative terms

Discrim. non-name 
terms

Discrim. non-name crisis 
terms

Discrim. non-name 
strong crisis terms

Crowdsourcing Non strongly crisis-
related terms

L0

L1

L2

L3

Figure 2: Steps in the lexicon construction (left), and in the
evaluation of the lexicon combination with pseudo-relevance
feedback and expert-provided keywords (right). T (·) selects
the highest-scoring terms: top(·), or the highest-scoring
terms ensuring diversity: topdiv(·)

messages as a recall-oriented task. Our solution should accept
messages when in doubt, without accepting all messages
which yields a trivial 100% recall.

There is a significant imbalance between the positive and
negative classes, as seen in Table 2. So we use the metric
G-mean – the geometric mean of the recall of the positive
class and the recall of the negative class – often used to assess
the classification performance on imbalanced data (Sun et
al. 2007). Further, we measure the F2 and F1 scores, where
Fk is (1+k2)PR

k2P+R with P and R being precision and recall,
with emphasis on the F2 score which weights the recall more
heavily for reasons we explained.

We also evaluate the proportion of different classes of
messages (e.g. related to donations, warnings) in each sample.
We defer the explanation of that evaluation to §5.2.

4 Proposed Method
Our method is based on creating a generic crisis lexicon: a
list of terms to be used instead of a manual query to sample
crisis-related messages. This crisis lexicon can be expanded
with terms specific to a given crisis, either manually, or by
using a mechanism similar to pseudo-relevance feedback.

4.1 Building the Lexicon
Figure 2 depicts the steps we take to construct the lexicon.
We start by selecting the set of terms that discriminate crisis-
related messages (L0). Next, we refine this set by performing
a series of curation steps filtering out both contextual and
general terms as decided by crowdworkers (L1...3). Finally,
we filter out terms that frequently co-occur to maximize recall
for a limited sized lexicon (topdiv(·)).

Candidate Generation Step (L0) Term selection. Our
candidate terms are word unigrams and bigrams. We start
with tweets from the positive and negative classes described
in §3. We remove URLs and user mentions (@username).
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After tokenizing, we discard tokens that are too short (2 char-
acters or less), too long (16 characters or more, typically
corresponding to joined strings of words), or that correspond
to punctuation, numbers, or stopwords. The remaining words
are stemmed using Porter’s stemmer.7 Word unigram and
bigrams are then extracted, and kept if they appear in at least
0.5% of the tweets.
Term scoring. Each term is then scored by two well-known
statistical tests: chi-squared (χ2) and point-wise mutual in-
formation (PMI), used in the past for lexicon creation (Kaji
and Kitsuregawa 2007). Details are in Appendix A.

We refer to the result of a statistical test of discrimina-
tive value for a term t on a crisis c as its discriminative
score discr(c, t). We rank terms according to this score, di-
vide them in n-quantiles of one term each, and score each
term t belonging to the k-th quantile according to the quantile
probability ( kn ). We can use this score directly, or combine it
with the term’s frequency in the crisis-related tweets (γ) by
multiplying it with the probability of the quantile to which t
belongs when the ranking is done according to γ instead of
discr(c, t). We map scores to quantiles to give equal weight
to the term’s discr(c, t) and its frequency. The outcome is a
per-crisis score of a term s(c, t).

For our lexicon to be general, we look for terms that work
well across a variety of crises. We tested multiple aggrega-
tions of scores across crises including median, mean, and
harmonic mean. The best result was obtained when comput-
ing the mean crisis score of a term across crises, and then
multiplying it by a sigmoid function to favor terms that appear
in (at least 0.5% of the tweets of) several crises:

sagg(t) =
1

1 + e−
|Ct|
2

1

|Ct|
∑
c∈Ct

s(c, t) (1)

Where Ct is the set of crises in which t appears. If Ct is large
enough the sigmoid function converges to 1 (> 0.9 when
|Ct| > 4), while when the term appears to be discriminative
in only one crisis, this factor is around 0.6.
Curation Steps (L1...3). After identifying and scoring the
set of candidate terms L0, we perform a series of curation
steps depicted in Figure 2 which yield increasingly filtered
sets L1 through L3.

Removal of names (L1). We remove terms that name
contextual elements unique to a crisis. Such terms mainly fall
within three categories: (a) the names of affected areas; (b)
the names of individuals involved in the disaster; and (c) the
names used to refer to a disaster. We ask evaluators if a term
contains such proper nouns, which filtered out about 25% of
the terms. The task description is in Figure 3 (top).

Removal of non-crisis terms (L2 and L3). Next, we fil-
ter out those words that are not specific to disasters. We
consider three levels of crisis relevance: (1) strongly crisis-
specific: the term is likely to appear more often during dis-
asters; (2) weakly crisis-specific: the term could appear fre-
quently during disasters; and (3) not crisis-specific: the term
should not appear more often during disasters.

We ask evaluators to label each term with one of these
categories. This task is depicted in Figure 3 (bottom). Of the
terms that pass the previous filtering step (L1), around 50%

7http://tartarus.org/∼martin/PorterStemmer/

Indicate if the term is specific to a particular disaster: it contains the name of
a place, the name of a person, or the name of a disaster:
A. YES, it contains a place name or it refers to the name of a region, city, etc.
– “Jersey flood”; “California people”; “okc tornado”
B. YES, it contains a person name or it refers to the name of a politician, etc.
– “Obama”; “Kevin donate”; “John hurt”
C. YES, it contains a reference to the name given to a disaster
– “Sandy hurricane”; “abfloods”; “yycfloods”
D. NO.
– “tornado”; “hurricanes”; “help rebuild”; “firefighter”; “rise”; “flame”; “ev-
ery”

Indicate if the term is more likely to appear in Twitter during hazards:
A. YES, it is likely to appear more often during hazards/disasters.
– “tornado”; “donate help”; “people killed”; “state emergency”
B. NO, but could appear frequently during hazards/disasters as well.
– “power”; “water”; “nursing”; “recover”
C. NO, it shouldn’t appear more often during hazards/disasters.
– “children”; “latest”; “south”; “voted”

Figure 3: Crowdtask for filtering name terms (top) and iden-
tifying strong and weak crisis-related terms (bottom).

of them are filtered out by weak filtering (L2) and around
65% by strong filtering (L3).

Top-terms selection step. Twitter’s API allows us to track
up to K = 400 keywords, making this the maximum size
of our lexicon. To use this allocation effectively, we test two
strategies: top(·) and topdiv(·). The first strategy selects the
top terms according to their crisis score. The second also
selects the top terms according to crisis scores, but removes
terms with lower crisis scores that frequently co-occur with
higher score terms, as they match on a similar set of tweets.
To find such a subset of terms, we compute the independent
set on the term co-occurrence graph thresholded at a given
level8. Given a set of queries (keywords- and location-based)
and a collection of relevant tweets for each query, we build
a graph G in which nodes are terms weighted by their crisis
score, and between each pair of terms that co-occur in more
than 50% of the tweets, we draw an unweighted edge. Then,
we determine the maximum weighted independent set (MWIS)
of G, which represents a subset of terms with high scores
that rarely co-occur. Intuitively, this improves recall (since
the lexicon has a limited number of terms).

The maximum independent set problem is NP-complete
(Tarjan and Trojanowski 1977). We compared the approxima-
tion method in (Bar-Yehuda and Even 1985) with a simple
greedy algorithm (GMWIS) that keeps the most discrimina-
tive terms that rarely co-occur. Since the latter obtains slightly
higher recall scores, we present only those results obtained
with GMWIS.

4.2 Applying the Lexicon
Pseudo-relevance feedback. We adapt the generic lexicon
with terms specific to the targeted crisis. To identify such
terms we employ pseudo-relevance feedback (PRF) mecha-
nisms with the following framework:

8The idea of mapping terms co-occurrences on a graph is in-
spired by (Ntoulas, Pzerfos, and Cho 2005; Wu et al. 2006)
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• Given a lexicon lex containing at most 400 terms, retrieve
crisis relevant tweets in the first ∆t hours of the event. We
refer to these tweets as pseudo-relevant.

• From these tweets, extract and sort the terms (unigrams
and bigrams) – which do not already belong to the lexicon
– by their PRF score (explained below). Return the top k
terms to be added to the lexicon.

Similar methodology has showed effectiveness in other
Twitter-related search tasks (Efron et al. 2012).

PRF term scoring. PRF terms are usually scored according
to their distribution in the feedback tweets, or according to the
comparison of the distribution in the feedback tweets and the
entire collection (Xu and Croft 2000). Due to having only the
extracted PRF tweets, the scoring strategies we implement
fall within the former category:

• Frequency-based scoring ranks PRF terms according to
their frequency in the feedback tweets: sprf (t) = fr(t).

• Label propagation-based scoring propagates the scores
from the query terms to PRF terms based on their co-
occurrence in the feedback tweets:
sprf (t) =

∑
q∈lex co(q,t)sagg(q)∑

q∈lex co(q,t)
, where co(q, t) is the num-

ber of co-occurrences between query term q and PRF term
t, and sagg(q) the crisis score of q as defined in Eq. 1.

PRF term selection. To select the top PRF terms we test
again the two strategies described in (§4.1): top(·) and
topdiv(·). For topdiv(·), we compute the MWIS based on
the co-occurrence graph formed by only PRF terms.

Terms sampling. Some of the selected terms might be harm-
ful (Cao et al. 2008). A workaround is to resample the terms
based on their co-occurrence with sub-samples of the orig-
inal query (Collins-Thompson and Callan 2007). The main
hypotheses are that feedback documents form clusters accord-
ing to the query terms that matched them, and that good PRF
terms occur in multiple such clusters (Xu and Croft 2000).
Yet, in contrast with Xu and Croft, we cannot make assump-
tions about terms distribution in the whole collection, since
we only have the pseudo-relevant tweets; given the short na-
ture of tweets we do not attempt to model their language. We
use the sigmoid function to favor the PRF terms that co-occur

with multiple query terms: sprf (t)/(1 + e−
|Tprf (t)|

2 ), where
Tprf (t) is the number of terms co-occurring with term t and
fr(t) is t’s frequency in PRF documents.

Hashtags. Hashtags are topical markers for tweets (Tsur
and Rappoport 2012), used to learn about events and join
the conversation (Starbird and Palen 2011). During crises,
specific hashtags emerge from the start, with some quickly
fading away, while others are widely adopted (Potts et al.
2011). Kamath et al. 2013 found that hashtags can reach
their usage peak many hours after initial use. Thus, even if
they are scarce in the beginning, if widely adopted later on,
hashtags improve recall; on the other hand, if not adopted they
have little impact on the retrieved data. Therefore, we lower
the selection barrier for hashtags by employing a dedicated
PRF-step: we add the top k hashtags (appearing in at least 3
tweets) to the query according to their frequency in the PRF
documents, similar to Wang et al. 2013.

5 Experimental Evaluation
We compare against two standard practices: sampling using
a manually pre-selected set of keywords, and sampling using
a geographical region. The goal of the lexicon is to sample a
large set of crisis-related messages; this is what we evaluate
first (§5.1). Next, we see if our method introduces biases in
the collection compared to existing methods (§5.2).

In both cases, we perform cross-validation across disasters:
(1) leave one disaster dataset out; (2) build the crisis lexicon
(L0...3) using data from the remaining disasters; (3) evaluate
on the excluded disaster dataset; (4) repeat the process for
each of the 6 disasters, averaging the results.

5.1 Precision and Recall
We evaluate the precision and recall for sampling crisis-
related messages. We also incorporate other metrics, par-
ticularly those that emphasize recall, described in §3.3.
Lexicon generation. First, we identify the best versions of
our lexicon along the analyzed metrics. There are several
design choices that we exhaustively explore:
• The term scoring method (§4.1): χ2, PMI, χ2 + γ, PMI +
γ, and γ.

• The curation steps executed (§4.1): no curation (L0), re-
moving names (L1), keeping weak and strong crisis terms
(L2) and keeping strong crisis terms only (L3).
• Whether to select the top scoring terms: top(·), or the top

scoring terms removing co-occurring terms: topdiv(·).
This yields 40 configurations that we test along the two exist-
ing methods. Figure 4 highlights the skyline configurations,
i.e., those for which there is no other configuration that simul-
taneously leads to higher recall and higher precision. Further,
given that points with similar properties tend to cluster along
the skyline, we keep only the points with the highest pre-
cision when they are within 5 percentage points from each
other in terms of both precision and recall.

We notice that different methods have different precision-
recall trade-offs. The term-scoring method appears to in-
fluence these trade-offs the most. Specifically, the scoring
methods that penalize more a term’s appearance in non-crisis
tweets lead to high precision at the cost of recall (e.g., PMI);
those methods that put more weight on the absolute frequency
of terms in the crisis tweets lead to high recall at the cost of
precision (e.g. γ). χ2 and the combination of PMI and χ2

with γ lead to better precision-recall trade-offs, i.e., higher
Fk scores.

We do curation to improve precision (by removing terms
that are too general) and recall (by removing terms that are
too specific). Yet, curating the lexicon by removing proper
nouns (L1) lowers both the recall and precision. This effect
is less pronounced when we remove terms with lower crisis
scores that often co-occur with more discriminative terms
(topdiv(·)). The next curation steps (L2 and L3) also allevi-
ate this effect leading to higher precision overall. However,
keeping only strong crisis-related terms (L3) heavily impacts
recall (the points clustered around 40% recall and precision
in Figure 4).

9For brevity, in the rest of the paper we refer to the lexicons
corresponding to these configurations by this code.

381



30 50 70 90 100

Recall (%)

10

30

50

70

90
P

re
ci

si
on

(%
)

Keywords

PMI+L0

PMI+L2

PMI+γ+L0
PMI+γ+L0+div

χ2+L0
χ2+γ+L0+div

γ+L0
Location

Code9 Config. Prec. Rec. GMean F1 F2

- Keywords 85.2 32.5 56.1 45.5 36.6
- Location 11.8 100.0 0.0 20.5 37.6

1 PMI L0 top 57.8 33.7 57.6 42.0 36.5
2 PMI L2 top 50.9 37.5 60.5 41.1 38.6

3 PMI+γ L0 top 43.7 53.0 72.7 46.9 50.0
4 PMI+γ L0 topdiv 39.9 64.4 80.2 48.0 56.2

5 χ2 L0 top 30.4 72.3 85.0 41.6 55.0
6 χ2 + γ L0 topdiv 25.2 77.0 87.7 36.6 52.3

7 γ L0 top 16.4 86.4 93.0 26.5 43.6

Figure 4: Averaged performance of existing methods and our
lexicon. Among 40 tested (small dots), the table includes the
skyline configurations (large dots).

Lexicon expansion. With the parameter combinations from
Figure 4 (7 options), we test the performance of our lexi-
con when using various pseudo-relevance feedback (PRF)
mechanisms (§4.2). We explore the following design choices:
• PRF term scoring (§4.2): frequency (Fr) and label propa-

gation (Lp).
• Whether to select the top scoring terms: top(·), or the top

scoring terms removing co-occurring terms: topdiv(·).
• Whether to favor terms that co-occur with more query

terms (§4.2): sp, or not: ¬ sp.
• Whether to use only a hashtag (#) dedicated PRF, com-

bine it with the PRF for terms (as defined by the previous
choices), or use the later alone (§4.2).

We also combine lexicons by first running PRF with Li, se-
lect the PRF terms, and then add them to Lj , where Li, Lj
are lexicons obtained with the skyline configurations of Fig-
ure 4; combination denoted (Li)Lj . This yields about 700
configurations to test. For these tests we set the number of
PRF terms to 30, and PRF interval to ∆t = 3 hours. We
assume the data collection, and the PRF, start simultaneously
with the keywords-based collection. Results are in Figure 5.

We notice that PRF boosts recall, but has little impact
on precision. Further, the lexicon combinations with the #-
dedicated PRF lead to better precision-recall trade-offs when
Li has high recall and Lj has high precision.
Expert-defined terms. To analyze how the expert-defined
crisis-specific terms and the lexicon complement each other,
we add the former to the queries corresponding to the top
skyline configurations depicted in Figure 5.

As shown on Table 3, such combinations generally lead
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Code9 Config. Prec. Rec. GMean F1 F2

- Kw. - # - 75.5 36.2 59.4 47.9 40.0

p1 (4)1 - # - 59.7 48.8 69.6 53.2 50.4
p2 (5)2 - # - 53.9 51.2 70.9 50.6 50.6
p3 (4)3 - # - 46.3 62.9 79.2 52.3 57.8
p4 (5)4 - # - 41.5 70.0 83.6 50.6 60.0

- 4 Lp # ¬ sp 32.4 76.9 87.6 43.1 56.8
- (4)5 - # - 25.9 82.3 90.7 37.9 54.5
- 5 Fr # sp 21.7 87.9 93.7 33.2 51.0
- 7 Lp # sp 16.4 95.9 95.7 26.6 44.5

Figure 5: Averaged performance of existing methods and our
lexicon with PRF. From about 700 tested (small dots), the
table includes the skyline configurations (large dots). The
gray area marks the configurations with precision below 35%
and places the corresponding skyline points at the end of
the table. (Li)Lj means that we run PRF with Li and then
add the PRF terms to Lj , where Li is a lexicon code from
Figure 4.

to improvements over both the keywords and the lexicon
(e.g., up to 40 percentage points recall over the crisis-specific
keywords). The only metric we do not improve on is the
precision of the keyword collection, yet this is an upper bound
for precision as the expert-edited keywords are chosen to be
specific only to a given disaster. Further, though the precision
decreases, the combination leads to better precision-recall
trade-offs, as it improves over the F-score metrics. p2 leads
to the highest gains over the lexicon-based approach and
over the F1-score of the keyword-based approach; meaning
that the samples obtained with p2 and those obtain with the
crisis-specific keywords overlap the least.
Performance over time. Finally, to analyze the performance
variation over time, we test two design decisions: running
PRF only one time at the beginning of the crisis (one-time
PRF), or re-running PRF after every 24 hours (online PRF).
We measure the average performance’s variation across the
first three days from the start of the keyword-collections.10

Figure 8 shows the performance of the lexicon with both
one-time PRF and online PRF in terms of recall and F1-score
relative to the crisis-specific keywords, which is the reference
values. We omit the corresponding precision plots, but note
that an increase in recall with no improvement in F1-score

10We restrict this analysis to the first three days for two reasons:
all collections span across at least three days, and, typically, the
largest volumes of tweets happen in the first days of the event.
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BC(keywords) = 0.994, BC(p1) = 0.995, BC(p2) = 0.996, BC(p3) = 0.998, BC(p4) = 0.999
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Figure 7: Tweet distribution per type of source for each sampling method. The average BC coefficient between the distribution
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BC(keywords) = 0.984, BC(p1) = 0.993, BC(p2) = 0.996, BC(p3) = 0.997, BC(p4) = 0.999

indicates a loss in precision.
In our experiments, the lexicon based approaches do better

on average (in the range of 20 to 40 percentage points for
recall and 9 to 13 percentage points for F1-score) towards
the beginning of the crisis compared to the crisis specific
keywords. Then we see a drop in the performance relative to
the keywords which might be due to more users conforming
to keywords use as the event gets global coverage, followed
by an increase when the event loses coverage. Finally, al-
though employing online PRF leads to better recall values
later on in the crisis, it’s improvement in terms of F1-score
over one-time PRF is only marginal.

5.2 Distribution of message types
We measure changes in the distribution of tweets of different
types, as sampling by keywords may introduce biases that
favor one class of tweets at the expense of another. We eval-
uate by asking crowdworkers to categorize tweets, and then
measure the divergence between the distribution of tweets
into categories across the sampling methods. We repeat this
twice using three categorizations: informativeness, informa-
tion type and information source (details in Appendix B).

First we check if any sampling method biases the collec-
tion towards the tweets deemed informative by crowdwork-
ers. With one exception, we find only marginal differences
across crises; looking at crisis-relevant tweets, we find that
between the lexicon and the crisis-specific keywords there is
a difference of less than 10 percentage points regarding the
proportion of informative tweets. The (reference) location-
based samples have lower proportions of informative tweets
than the lexicon and keywords-based samples. The exception
is Hurricane Sandy, for which the p2 configuration collects
more informative tweets (about 18 percentage points) than
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Figure 8: Relative performance over time of our lexicon with
one-time PRF and online PRF re: crisis-specific keywords.
The table contains the reference performance by the keywords
– represented by the (red) horizontal line.

the keywords sample.
Figures 6 and 7 depict the tweets distribution according

to the type and source of information. We also show the
Bhattacharyya coefficient (BC) which quantifies the overlap
between the reference location-based collection and lexicon
and keyword-based samples in terms of information type and
source; high values indicate high similarity.

We notice large variations in tweet distributions according
to both the information type and source across crises; yet it
has little to no impact on the sampling methods’ ability to
preserve the distributions. Generally, high-precision methods
diverge more from the reference sample, with the keywords
being the least representative, e.g., it collects more tweets
coming from news organizations and fewer eyewitness re-
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ports (Figure 7). In contrast, our lexicon better preserves the
reference distribution, with a BC close to 1.

6 Conclusions

We have described a methodology for constructing an ef-
fective, general lexicon for monitoring crisis events. Our
experiments demonstrate a range of precision and recall oper-
ating points previously not well understood when using only
keyword or location-based sampling. This work provides
researchers an informed strategy for assembling a set of rele-
vant tweets. This is a fundamental technology for automatic
linguistic analysis tools such as temporal summarization.

The impact of these results goes beyond an algorithmic
understanding. We show that the amount of data that it is
currently mined represents only a fraction of the data posted
during disasters. We believe that such lexicons can support
others interested in increasing recall, but who may not have
the ability to finely tune their lexicons.

There are many directions in which to take this work.
First, users are often interested in classifications more finely
grained than ‘relevant’ or ‘nonrelevant’: e.g., emergency
responders may be interested in personal or property loss
tweets, each of which will admit its own lexicon. Second,
though our techniques are in principle language-independent
and domain-independent, we want to build lexicons which
demonstrate this. Third, when using a lexicon to collect data
through an API, if the API is more limited or less limited, or
limited on a different way, our results may have to be adapted.
Fourth, we would like to keep human effort to a minimum
–mostly because we may want to build a specialized lexicon
in a short time– and we are working on methods to simplify
the manual steps of the process.

Reproducibility. The crisis lexicon, the list of keywords,
geographical regions, etc. along with the labeled datasets
as sets of (tweet-ids, label, and metadata) are available for
research purposes at http://crisislex.org/.
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providing data corresponding to four geo-collections we ana-
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with us the tweet ids for the rest of the collections.

Config. Prec. Rec. Gmean F1 F2

p1
60.8
(-24.4/1.1)

55.7
(23.1/6.9)

74.2
(18.2/4.5)

56.1
(11.7/4.1)

57.3
(19.5/5.6)

p2
56.9
(-28.3/3.1)

60.7
(28.4/8.4)

77.7
(21.7/6.0)

57.7
(12.2/6.8)

59.2
(22.7/7.8)

p3
47.7
(-37.4/1.6)

66.6
(34.1/3.7)

81.5
(25.5/2.2)

54.8
(9.3/2.7)

61.0
(24.5/3.3)

p4
42.3
(-42.8/1.0)

73.5
(41.0/3.5)

85.7
(29.6/1.8)

52.4
(6.9/2.3)

62.7
(26.2/2.7)

Table 3: Average performance of our lexicon when combined
with crisis-specific keywords. We also report (the improve-
ment over such keywords/the improvement over the method
without these keywords) as percentage points.

A Statistical tests for terms
For each term t we compute the following contingency table:

related not related
t n(t, rel) n(t,¬ rel)
¬ t n(¬ t, rel) n(¬ t,¬ rel)

where n(t, c) is the number of tweets belonging to class
c in which term t appears, n(¬ t, rel) the number of tweets
in which term t does not appear and c ∈ {rel,¬ rel}. Then,
similarly with (Kaji and Kitsuregawa 2007), we use two
popular statistical measures to estimate how strong the asso-
ciation between a term and the crisis-related tweets is (the
discriminative score): Chi-square (χ2) and Pointwise Mutual
Information (PMI).
χ2-based crisis score. The statistical measure χ2 tests

whether a term t occurrence is independent of the tweet
being about a disaster or not; and is defined as follows:

χ2 =
∑

x∈{t,¬ t}

∑
c∈{rel,¬ rel}

(n(x, c)− E[n(x, c)])2

E[n(x, c)]

where E[n(x, c)] is the expected value for n(x, c).
Although χ2 estimates the discriminative power of a term

t towards one of the classes, it does not indicate if t is dis-
criminative for the crisis-related tweets. So we ignore the χ2

when t appears more often in the non-crisis-related tweets
and define the crisis score as follows:

csχ2(t) =

{
χ2 if n(t, rel) > n(t,¬ rel)

0 otherwise
PMI-based crisis score. PMI measure the relatedness be-

tween term t and a certain class c and it is defined as (Church
and Hanks 1990):

PMI(t, c) = log2

P (t, c)

P (t)P (c)
where P (t, c) is the joint probability of t and c, and P (t) and
P (c) are the marginal probability of t and c.

Even if PMI measures how strongly associated term t and
class c are, it does not account for how strongly associated t
and the other class are. So we compute the crisis score as the
difference between the association strength with crisis-related
tweets and the association strength with non-crisis-related
tweets (Kaji and Kitsuregawa 2007):

csPMI(t) = PMI(t, rel)− PMI(t,¬ rel) = log2

p(t | rel)

p(t |¬ rel)

where p(t | rel) and p(t |¬ rel) are the probabilities of t to ap-
pear in crisis-related, respectively non-crisis-related tweets:

p(t | rel) =
n(t, rel)

n(t, rel) + n(¬ t, rel)

p(t |¬ rel) =
n(t,¬ rel)

n(t,¬ rel) + n(¬ t,¬ rel)

This yields positive scores when t has a higher probability
of appearing in crisis tweets than in non-crisis tweets, and
negative otherwise. Therefore, we consider only positive
values.

B Message Types Categorization
We label crisis-relevant tweets distribution along two main
categorizations: information type, and information source.
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For each, we present workers a tweet and ask them to label it
with the likeliest category (see Figure 9). For quality control,
one of every 10 tweets presented to a worker was labeled by
one of the authors and was chosen to be an obvious case.

Indicate if the tweet is informative for decision makers and emergency respon-
ders:
“RT @Boston Police: Despite various reports, there has not been an arrest ”
Choose the best one: The tweet is . . .
A. Informative about negative consequences of the bombings
B. Informative about donations or volunteering
C. Informative about advice, warnings and/or preparation
D. Other informative messages related to the bombings
E. Not informative: messages of gratitude, prayer, jokes, etc.
F. Not understandable because it is not readable, too short, etc.

Indicate the information source for tweets posted during a crisis situation:
“family & friends are bruised & slightly damaged but ALIVE. now i can rest..”
Choose the best one: This information seems to come from . . .
A. News organizations or journalists: TV, radio, news organizations, or jour-
nalists
B. Eyewitness: people directly witnessing the event
C. Government: local or national administration departments
D. Non-governmental organizations (not for profit)
E. Companies, business, or for-profit corporations (except news organiza-
tions)
F. Other sources: e.g, friends or relatives of eyewitnesses
G. Not sure

Figure 9: Crowd-tasks for categorizing tweets according to
informativeness and type (top), and source (bottom).
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