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Abstract

In marketing and advertising, developing and manag-
ing brands value represent the core activities performed
by companies. Successful brands attract buyers and
adopters, which in turn increase the companies’ value.
Given a set of user-item adoption data, can we infer
brand effects from users adopting items? To answer
this question, we develop the Brand Item Topic Model
(BITM) that incorporates users’ brand preferences in
the process of item adoption by the users. We evaluate
our model using synthetic and two real world datasets
against baseline models which do not consider brand ef-
fects. The results show that BITM can determine users
who demonstrate brand preferences and predict item
adoptions more accurately.

1 Introduction
1.1 Motivation
Our behaviors of adopting items are complex. They are de-
termined by a number of factors including personal interests,
features of items to be adopted, budget constraints and, in
most of the cases, by brands of the items. In this paper, we
focus on item adoptions that can be attributed to user pref-
erence of item topics and item brands. Item topic refers to
the latent item group an item can be associated with. Item
brand refers to the person, trademark, or business that the
item can be identified with so as to make the item distin-
guishable from other items. For example, the topic of a KFC
restaurant is fast food while KFC is a brand. In the case of
movie, brand may refer to the director and lead actors in a
movie.

In marketing and advertising, developing and managing
brand value represent the core activities. A successful brand
attracts buyers and adopters, which in turn increases the
company’s value. An important and relevant question to ask
is: can we model brand effect in user adopting items? The
answer to this question is important for a number of reasons.
Firstly, we want to know if a brand is preferred by users who
care about brand. If so, it will be easier to sell items under the
brand and the marketing strategy for such items may focus
more on highlighting the brand rather than the item features.
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Secondly, we want to know if a user actually adopts items
based on brand, i.e., is brand conscious. A user is considered
to be brand conscious if a large portion of his/her adoption
decisions is based on brands. These brand-conscious users
are likely to be more loyal. They are also more willing to
pay or advocate more for items of a preferred brand. Once
a user is known to be brand conscious, he may be the prime
target of marketing and advertising for the reason that he can
bring more value to a brand.

1.2 Objective and Contributions
To answer the above important questions, we propose a
graphical model called Brand Item Topic Model (BITM).
BITM extends the well known Latent Dirichlet Allocation
(LDA) model by modeling brands and decisions of item
adoptions, in addition to modeling the latent topics of users
and items. The major goal is thus to discover latent variables
(topic, brand and decision) from the observed item adoption
data.

BITM, to the best of our knowledge, is the first topic
model that explicitly examines the brand factor in users’
adoption. There are several research challenges in formu-
lating this model. Firstly, we do not assume the price tags
of items to be available. We thus cannot determine exclu-
sive brands simply by their high price items compared with
the price of similar items under other brands. Not relying on
price information however allows us to design a model that
can be applied even when price information is not available
or when the assumption of exclusive brands having expen-
sive items is not true.

Secondly, it is not trivial to evaluate models that infer
brand effects from item adoption data due to a lack of ground
truth data. It is possible to solicit user input about their item
adoption decisions but this evaluation approach has several
drawbacks. It is clearly not scalable. Either users find it in-
trusive or they may not recall their adoption decisions. We
thus have to evaluate BITM using alternative approaches.

This paper addresses the above challenges by offering the
following contributions.

• We propose a novel topic model BITM for inferring brand
and topic latent variables that generate a set of observed
item adoptions without price information. The model in-
troduces a richer structure of adoption process.
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• To evaluate BITM, we generate a synthetic dataset where
exclusive brands and brand conscious users are injected
and controlled by a set of parameters. We show that BITM
outperforms baselines in learning the ground truth vari-
ables and it also achieves reasonable accuracy in recover-
ing brand conscious users and exclusive brands.

• We also evaluate BITM using two real datasets from
FourSquare and ACM Digital Library. The exclusive food
outlet brands learnt from the Foursquare data by BITM
are shown to be more pricey than the non-exclusive ones.
We also show that the exclusive authors learnt from
the latter dataset have higher h-index than those non-
exclusive ones.

1.3 Paper Outline
The rest of this paper is organized as follows. We cover the
related works in Section 2. Our proposed BITM model and
its learning formulae are given in Section 3. The evaluations
of BITM on synthetic data and real data are covered in Sec-
tions 4 and 5 respectively. We also evaluate the ability of
BITM predicting item adoptions in Section 6. Finally, we
conclude in Section 7.

2 Related Works
2.1 Item Adoption using Latent Factors
When modeling users adopting items, most of the previous
research focused on modeling the user and item latent fac-
tors corresponding to item topics, item features and user
preferences that generate the adoptions (Hofmann 2001),
(Hofmann 2003), (Hofmann 2004), (Liu, Zhao, and Yang
2009). Jin et al. performed an empirical study and showed
that the rating patterns of users could be separated from
the users preferences (Jin, Si, and Zhai 2002). For exam-
ple, among users with similar preferences, some users tend
to give higher ratings than others. This suggests that there
is an alternative process in how users like or adopt items. In
our work, we study such an alternative process by assuming
that users tend to adopt based on the brand factor.

In our work, we also represent user’s topic preferences
by distributions i.e. different topics occupy a user’s inter-
est with different proportions. However, we differentiate our
BITM model from these prior works by introducing a differ-
ent process in how users adopt items. This process assumes
that users adopt items not only because of topic preferences
but also their preference for certain brands. Usually, for an
item co-created by multiple brands, only a small subset of
the brands are considered in a user’s adoption decision. In
this paper, we assume that he will use only one brand for
the decision. Generally, for an item associated with multi-
ple brands, it is interesting but challenging to discover the
actual latent brand from which a user chooses to adopt the
item. We design BITM model such that it will recover the
actual latent brands in brand-based adoption decisions.

2.2 Role of brands in adoption process
In traditional offline markets, the importance of brands,
more precisely brand loyalty, has been recognized in mar-
keting literature in numerous studies such as (Jacoby and

Chestnut 1978), (Dick and Basu 1994), (Chaudhuri and Hol-
brook 2001), (Aaker 2012). Brands play a major role in
adoption process since they help to shape consumer percep-
tions and tastes, thus inspire adoption behavior. In this way,
strong brands not only create demand but also continuity of
demand into the future by leveraging consumer’s loyalty to
the brands. Moreover, (Dick and Basu 1994), (Aaker 2012)
noted that brand loyalty leads to other marketing advantages
such as favorable word of mouth, reduced marketing cost.
These studies confirm the importance of determining strong
brands and users who are loyal to those brands; which justi-
fies contribution of our BITM model.

In online markets, brands continue to prove their impor-
tance (Erdem and Keane 1996), (Erdem et al. 1999), (Smith
and Brynjolfsson 2001). By comparing the effects of pricing
in online shopbots (i.e. internet services that compare prices
of similar consumer goods sold on different online web-
sites), Smith and Brynjolfsson conclude that higher prices
on well-known websites do not affect the sales of products
because of the brand effect carried by the well-known web-
sites (Smith and Brynjolfsson 2001). Erdem and Keane per-
formed a temporal analysis of branding effects and found
that advertising intensity has only weak short run effects on
brand adoption, but has a strong cumulative effect in the long
run (Erdem and Keane 1996).

These studies suggest that brand does play an important
role in user item adoptions. Our work here combines the
body of work on using topic distributions with additional
brand latent variables for modeling user adoptions. Such
kind of models have not been studied before in the market-
ing science and recommendation literature.

3 Brand Item Topic Model
3.1 Topic Model and BITM
Before elaborating our Brand-Item Topic Model, we would
like to briefly present a well-known topic model, Latent
Dirichlet Allocation (LDA). LDA is a generative Bayesian
model in which each document of a collection is modelled
as a finite mixture over an underlying set of topics (Blei,
Ng, and Jordan 2003). Each document is associated with a
topic distribution. Each topic is in turn modeled as a distri-
bution over terms. In the context of item adoption, LDA can
be adapted as follows.
• Each topic can be considered as a category of items. Thus,

a topic is characterized by a distribution over items.
• Each user is modelled as a “document” e.g. we can model

his/her preference as a topic distribution. More precisely,
the adoption history of a user can be considered as a “doc-
ument of adopted items” where each item is generated un-
der some favorite topic of the user.
Our proposed model, Brand-Item Topic Model (BITM),

incorporates brand preference into the topic model. To
choose an item for adoption, a user first chooses a topic z
that she is interested in. Then the user chooses the item to
adopt based on either one of the following methods:

1. Topic-based Adoption: With the chosen topic z, the user
adopts one of the many items under z. For example, when
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(b) Simplified Brand-Item Topic Model
(sBITM)

Figure 1: Bayesian network for BITM and sBITM

the user buys a novel, a topic-based adoption will have the
user first selects a genre (e.g. sci-fi) among his topic pref-
erences and selects a novel based on its popularity under
the genre.

2. Brand-based Adoption: The user chooses a brand b from
topic z, then selects an item from the item distribution of
brand b. For example, when user buys a novel, the user
first selects a genre, then a preferred author under the se-
lected genre, follow by selecting a novel written by the
preferred author.

It can be seen that for a given user, the choice of method
for adoption reveals the importance of brand to her. If she
usually prefers to adopt based on popular brands, we may
say that she has a brand-preference. Understanding users’
brand preferences allows us to utilize more information for
making better recommendations to them.

3.2 Generative Process
We illustrate the generative process of our Brand-Item Topic
Model (BITM) using the graphical model in Figure 1a and
its corresponding notations in Table 1a. From Figure 1a the
generative process is as follows:

1. (Generating distributions from priors):

(a) For each user u, we sample a multinomial topic distri-
bution ϑu and a decision distribution δu.

ϑu ∼ Dir(.|θ), δu ∼ Dir(.|γ)

(b) For each topic k, we sample an item distributionϕk and
a brand distribution ψk. For each topic, its brand dis-
tribution represents how exclusive each brand is. More
exclusive brands should have larger values.

ϕk ∼ Dir(.|φ), ψk ∼ Dir(.|α)

(c) For each brand b, we sample an item distribution ωb
from Dirichlet distribution with prior parameter β.

ωb ∼ Dir(.|β)

2. (Generating adoptions):
(a) User u makes n-th item adoption by first sampling a

topic zu,n = k from his topic distribution ϑu,

zu,n = k ∼Multi(ϑu)

(b) User u then decides whether this adoption should be
based on topic or brand using a decision variable du,n,
sampled from her decision distribution δu.

du,n ∼ Bernoulli(δu)

(c) User u then either adopts item v from the topic-item
distribution ϕk if du,n = T or chooses a brand b from
the topic-brand distribution ψk if du,n = B. If a brand
is chosen, item v is sampled from the brand-item distri-
bution ωb.

iu,n = v ∼
{
ϕk when du,n = T

ωb when du,n = B

b ∼Multi(ψk) if du,n = T

We would like to note some important features of our model.
• All Dirichlet priors are symmetric.
• The brand-item distribution wb is not observable from

data since the brand b is latent.
It can also be seen that when all adoption decisions are

topic-based, the BITM generative process degenerates to
that of LDA. Hence, LDA can be considered as a special
case of BITM. On the other hand, if all decisions are brand-
based, we have a simplified version of BITM, denoted as
sBITM (see Figure 1b), which can be used as another base-
line in evaluating BITM.

Training BITM requires extensive computation cost as we
have five distributions to be learned. Thus, instead of using
variational methods (Blei, Ng, and Jordan 2003), (Hoffman,
Bach, and Blei 2010), and the Expectation-Maximization al-
gorithm (Dempster, Laird, and Rubin 1977), (Redner and
Walker 1984) we adopt Gibbs sampling (Gelfand and Smith
1990), (Casella and George 1992).
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Notation Description
iu,n Item at n-th adoption of user u
zu,n Latent topic of iu,n

bu,n Latent brand of iu,n

du,n Latent decision variable of this adoption
ωb Parameters for the item distribution of brand b
β Hyperparameter for Dirichlet prior of ωb

ψk Parameters for the brand distribution of topic k
α Hyperparameters for Dirichlet prior ofψk

ϑu Parameters for the topic distribution of user u
θ Hyperparameters for Dirichlet prior of ϑu

ϕz Parameters for the title distribution of topic z
φ Hyper parameters for Dirichlet prior ofϕz’s
δu Parameters for binomial distribution of du,n

γ Hyper parameter for sampling Λ

U,B,Z Set of users, set of brands and set of topics resp.

(a) For generative process of BITM

Notation Description
iu = {iu,1, . . . , iu,n} Vector of adoptions by user u.
zu = {zu,1, . . . , zu,n} Corresponding latent topics.
bu = {bu,1, . . . , bu,n} Corresponding latent brands.
du = {du,1, . . . , du,n} Corresponding latent decisions.
I = {i1, . . . , iN} Vector of item adoptions by all users.
Z = {z1, . . . , zN} Vector of latent topics of adoptions.
B = {b1, . . . , bN} Vector of latent brands of adoptions.
D = {d1, . . . ,dN} Vector of latent decisions of adoptions.

ntu = (ntu,1, . . . , ntu,K) Topic counts for a user u.

nitpk =
(
nitpk,1 , . . . , ni

tp
k,|I|

)
Item counts for adoptions by topic k.

nibrb =
(
nibrb,1 , . . . , ni

br
b,|I|

)
Item counts for adoptions by brand b.

nbbr
k =

(
nbbrk,1 , . . . , nb

br
k,|B|

)
Brand counts for brand-based adop-
tions.

ndu =
(
ndtpu , nd

br
u

)
Decision counts for user u.

(b) For learning BITM

Table 1: All notations related to BITM

3.3 Learning latent variables
Using the approach of Gibbs sampling, we can learn latent
topics, brands and decisions by an alternating update pro-
cess. We start from an initial guess for the variables and re-
peat the following update process until convergence.
• Using current values of latent decisions Dc, latent topics
Zc and latent brands Bc, we sample new latent decisions
Dn.

• Using Dn,Zc,Bc, we sample new latent topics Zn.
• Using Dn,Zn,Bc, we sample new latent brands Bn

Due to space constraints, detailed propositions for the
update process together with their proofs are not included
here. Interested readers can find it in the technical note (Luu
2013a).

3.4 Learning distributions
Once we have learned all latent variables, they can be used to
estimate five distributions ϑu, δu,ψk,ϕk,ωb which we are
interested in. Similar to LDA, the conjugacy of Dirichlet and
Multinomial distributions can be used to show that all the
parameters ϑu, δu,ψk,ϕk,ωb follow Dirichlet posteriors.
All notations in the proposition follow Table 1b.
Proposition 1 (Learning distributions) The five interested
distributions can be learned as follows.

1. Given a user u, his/her topic distribution ϑu and decision
distribution δu follow Dirichlet posteriors parameterized
by θ1+ ntu and γ1+ ndu respectively. Thus, we have:

P (ϑu|Z, θ) = Dir(ϑu|θ1+ ntu) (1)
P (δu|D, γ) = Dir(δu|γ1+ ndu) (2)

2. Given a topic k, its item distribution ϕk and brand dis-
tributionψk follow Dirichlet posteriors parameterized by
φ1+ nitpk and α1+ nbbrk respectively. Thus, we have:

P (ϕk|I, Z,D, φ) = Dir(ϕk|φ1+ nitpk ) (3)

P (ψk| I, Z,D, α) = Dir(ψk|α1+ nbbrk ) (4)

3. Given a brand b, its item distribution follows Dirichlet
posterior parameterized by β1+ nibrb . Thus, we have

P (ωb|I,B, D, β) = Dir(ωb|β1+ nibrb ) (5)

Since all the parameters follow Dirichlet posteriors, the
expectation of Dirichlet posteriors can be used to estimate
them. We skip the details here but interested readers can eas-
ily find them in any standard reference on Dirichlet posterior
e.g. (Heinrich 2005).

4 Experiments on Synthetic Data
To evaluate BITM against two baselines LDA and sBITM,
we first conduct experiments using synthetic adoption data
that contains ground truth labels, i.e., item’s topic la-
bel, adopter’s brand-consciousness, brand’s topic label, and
brand’s exclusiveness. We also vary the dataset parameters
to study how BITM performs under different data settings.

4.1 Synthetic data generation

Table 2: Parameters for Synthetic Data Generation

Symbols Description Value Range
(Default Value)

Nuser # users 10K
Nbrand # brands 100
Nitem # items 1K
Ntopic # topics {5, 10, 15} (10)
Radopt # adoptions/user [50,200] (100)
P % adoptions in favorite topics 90
Q % brand lovers [0, 100] (20)
X % exclusive brands/topic 10

The set of parameters used in synthetic data generation is
given in Table 2. For simplicity, every brand is assigned to
only one topic. Each item is associated with Rbrand brands,
and thus Rbrand topics. Every user is assigned K favorite
topics and Ntopic − K non-favorite topics where Ntopic is

328



the total number of topics. P% (P > 50) of adoptions are
reserved for items in the user’s favorite topics leaving the re-
maining 100 − P% to those in non-favorite topics. Q% of
users are brand-conscious and they adopt items based on ex-
clusive brands. X% of brands for each topic are designated
as exclusive brands. We also impose the constraint that each
brand has at least 10 items. This ensures enough brand-based
adoption data for each brand.

Using the parameters as listed in Table 2, we generate the
synthetic data as follows: 1) For each brand, randomly as-
sign a topic label while ensuring that every topic has simi-
lar number of brands. 2) For each topic, randomly designate
X% of these brands to be exclusive. 3) For each brand, ran-
domly assign 10 items to ensure that each brand later will
have at least 10 items. 4) For each item, randomly assign two
brands. 4) For each user, randomly assign two topics as his
favorites. 5) Randomly assign Q% of users to be brand con-
scious and they will always adopt items of exclusive brands.
6) Every user u is assigned the same number of adoptions
Radopt and to generate each adoption of u, first select one
of two favorite topics of the user. If he is brand conscious,
randomly select an exclusive brand under the topic followed
by randomly selecting an item under the exclusive brand.
Otherwise (i.e., the user is non brand conscious), randomly
select an item under the favorite topic.

4.2 Results
Topic-item distribution error: All three models BITM,
sBITM and LDA learn the topic assignments of item adop-
tions. We aim to evaluate the accuracy of models’ topic
assignments with respect to the ground truth topic assign-
ments. Since all models are instances of unsupervised learn-
ing, we will not be able to exactly recover the ground truth
topics after learning. We first have to match the learned top-
ics with the ground truth topics and examine how accurate
the matching is. For each model, the matching procedure is
described below.
• Given a topic z (either ground-truth or learned), denote

its item distribution as I(z). For each ground-truth topic
kt, we first determine kl, its best matched learned topic,
to be the one whose item distribution is closest to that of
the true topic kt. The closeness is measured by Jensen-
Shannon (JS) distance. Thus kl and the corresponding er-
ror in recovering ground-truth topic kt can be defined as
following.

kl := argmin
zl

JS [I(zl), I(kt)]

Err(kt) := JS [I(kl), I(kt)]

• By taking average of all Err(kt), we can define error
TopicErr in learning topics for each model as

TopicErr := avgktErr(kt) (6)

Figure 2a shows the errors obtained by the three models
on learning topic-item distribution where we fix the number
of topics as 10 while varying % of brand conscious users Q
from 0 to 100. As expected, BITM and LDA produce the
same error values when Q = 0 whereas BITM and sBITM

Q t-test sBITM LDA
0% BITM 2.8E-14∗ 1.5E-01

25% BITM 6.3E-10∗ 1.7E-04∗
50% BITM 2.0E-09∗ 1.2E-06∗
75% BITM 1.7E-08∗ 9.2E-08∗
100% BITM 6.6E-01 5.7E-12∗

Table 3: p values from paired t-tests (2-tail) on errors in
learning topics. Note: ∗p < 0.01.

performs the same when Q = 100. As Q increases, both
BITM and sBITM show that they can learn the topic labels
more accurately when there are more brand conscious users.
LDA, on the other hand, generates larger error when Q in-
creases. Finally, the performance of sBITM is worse than
LDA if less than 50% of users are brand conscious; which
is reasonable since more than 50% of adoption decisions are
now topic-based. We also performed paired t-tests (see Ta-
ble 3) to check if these results are statistically significant. It
can be seen that BITM improves significantly over sBITM
(LDA) when Q < 100 (Q > 0) respectively.

To verify if the improvement by BITM is consistent we
vary the number of topics as 5, 10 and 15 respectively. For
all settings, we examine topic-item distribution error ratios
between BITM and sBITM (Figure 2b); between BITM and
LDA (Figure 2c). Figure 2b shows that BITM outperforms
sBITM in learning topic-item distribution when Q < 100%
whereas Figure 2c shows that BITM outperforms LDA
when Q > 0. Moreover, given the same Q, the error ratios
for three settings of number of topics are also similar. These
results again confirm that BITM is the best among the three
models.

Accuracy of brand conscious user prediction: Every
user is assigned to be either brand conscious or not brand
conscious. We use Uq to denote the set of brand conscious
users in the ground truth data, and U ′q to denote the set of
brand conscious users learned (or predicted) using BITM.
Ideally, we want Uq = U ′q . To measure how accurate are
the brand conscious users predicted by BITM, we utilize the
Accuracy measure as defined:

Accq(Q) =
|Uq ∩ U ′q|+ |(U − Uq) ∩ (U − U ′q)|

|U |

Figure 3 shows that the accuracy of predicted brand con-
scious users improves with increasing Q%. Compared with
a random 50-50 guess which has a 0.5 accuracy, BITM can
predict brand conscious users quite well with mostly 0.8 ac-
curacy when Q% is larger than 20%.

Topic-brand distribution error: In the synthetic data,
each brand is assigned a ground truth topic. Using the topic-
item distributions, we determine the best matched ground
truth topic k′l for each learned topic kl. Let the topic-brand
distribution of kl and k′l among item adoptions by brand
conscious users be denoted by A(kl) and A(k′l) respec-
tively. We define the topic-brand distribution error (de-
noted by BrandErr) between learned and ground truth
topic-brand distributions using Jensen-Shannon divergence
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(a) TopicErr’s obtained by three models
(# topics = 10) (b)

TopicErrBITM

TopicErrsBITM
(c)

TopicErrBITM

TopicErrLDA

Figure 2: Topic-Item Distribution Errors by various % of Brand Lovers Q

Figure 3: Accuracy of BITM in predicting brand conscious
users

measure similar to that for TopicErr. As shown in Fig-
ure 4, BITM’s topic-brand distribution error improves with
larger Q% of brand conscious users and BITM outperforms
sBITM when Q% is less than 100%. LDA is not involved in
this evaluation as it does not learn the exclusive brands for
each topic.

5 Experiments on Real Data
We conducted a series of experiments on the BITM model
using two real world datasets derived from Foursquare and
ACM Digital Library (ACMDL) (acm 2011). We first derive
subsets of the datasets using a sampling strategy that trims
away users with very few adoptions. The experiments then
seek to uncover the hidden topics and brand preferences in
item adoptions using BITM. We also compare the topics de-
rived from BITM with those from LDA.

5.1 Datasets
Our Foursquare dataset consists of check-in data generated
by Singapore users from October 2012 to April 2013. Each
food outlet is an item, each food outlet chain is a brand and
each check-in is an item adoption by a user. From the raw
dataset, we selected a subset of the data based using top
k = 100 brands and denote the selected data as 4SQDB.
The selection steps will be elaborated shortly.

Figure 4: Topic-Brand Distribution Error

For ACMDL, each citing author is a user, and each publi-
cation is an item. Every publication belongs to one or more
authors who are also treated as brands in our experiments.
Each citation of some publication by some (citing) author
is an item adoption. We used publications in ACMDL from
1998 to 2005 to select a subset using top k = 10 authors.
The selected data is denoted as ACMDB.

We explain the steps of choosing for both datasets 4SQDB
and ACMDB with the aid of Figure 5. First, we selected
top k brands based on the number of item adoptions of the
brands. We denote the set of brands asB1. Then, we selected
all items that belong toB1 and denote this set of items as I1.
Next, we extracted users that have adopted at least one item
in I1. This set of users is denoted by U0. Then we extracted
all other items adopted by U0. We denote the new set of
items as I2. We extracted all brands of items in I0 = I1 ∪ I2
and denote this set as B0. Finally, we filter away users in U0

with less than two item adoptions, items in I0 with less than
two adoptions from users in U0, and brands in B0 that have
no items. We repeat this filtering step until all the remain-
ing users, brands and items satisfy the minimum thresholds.
We denote the final sets of users, brands and items as U , B,
and I . The statistics of two obtained datasets 4SQDB and
ACMDB are shown in Table 4.
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Figure 5: Dataset construction (solid line = adoption, dash
line = brand relationship)

Table 4: Data Statistics

Dataset # users # brands # items # adoptions
4SQDB 5406 622 2444 64,622
ACMDB 356 7520 3790 16,308

5.2 Prior parameters
To determine appropriate prior parameters, we performed
grid search and chose optimal parameters which maximizes
log likelihood function. After grid search, we got the follow-
ing values for priors:

α = β = 0.1; γ = 1; φ = 0.2; θ = 50/K;

where K is the number of topics.

5.3 Topic Analysis
We first determine the appropriate number of topics for
analysing each dataset by running LDA on them. The results
in Figure 6 show that the log likelihoods reach maximum at
12 and 9 topics for 4SQDB and ACMDB respectively. Thus,
in training models, we empirically used 12 and 9 topics for
4SQDB and ACMDB respectively.

4SQDB: We compare the item distributions of topics dis-
covered by BITM and LDA as shown in Table 5. ALn (ABn)
represents the nth topic learnt by LDA (BITM). The simi-
larity between item distributions of two topics is given by
the Jensen-Shannon (JS) divergence where smaller JS diver-
gence values indicate higher similarity. From Table 5, we
observed that the two models learned quite similar topics as
most values in the diagonals of Table 5 are relatively smaller
compared to the non-diagonals.

Contrary to our intuition, the learned topics are not about
cuisine types (e.g., Chinese food, Indian food) but are clus-

(a) 4SQDB (b) ACMDB

Figure 6: Log likelihood upon training LDA on two datasets.
Here l(K) is the log likelihood w.r.t. the number of topicsK.

Table 7: Matching learnt topics

Topics (LDA) Topics (BITM) Topic Label
4SQDB

AL1 AB1 Tampines
AL2 AB2 Chua Chu Kang
AL3 AB3 Ang Mo Kio
AL4 AB4 Orchard
AL5 AB5 Pasir Ris
AL6 AB6 Punggol
AL7 AB7 Toa Payoh
AL8 AB8 Hougang
AL9 AB9 Sembawang
AL10 AB10 Jurong
AL11 AB11 Compass Point
AL12 AB12 Bukit Panjang

ACMDB
TL1 TB1 DB+DM
TL2 TB2 PO
TL3 TB3 SE
TL4 TB4 WWW
TL5 TB5 Systems
TL6 TB6 Security
TL7 TB7 WN
TL8 TB8 CA

ters of food outlets in 12 different location areas of Singa-
pore as shown in Table 7.

ACMDB: We manually determined each topic based on
keywords in top-20 titles of that topic. Due to space con-
straint, the topics discovered and their top-20 paper titles
are not provided here but interested readers can find them
at extended result (Luu 2013b). We then compare the top-
ics found by BITM and LDA using JS divergence (Table
6). TLn (TBn) represents the nth topic learnt by BITM
(LDA) for ACMDB. In Table 6, the columns (rows) show
topics learned by LDA (BITM) respectively. Given that
smaller JS divergence implies higher similarity, we found
that among 9 topics, BITM and LDA agree on 8 topics
shown by the bolded diagonal entries of Table 6. These top-
ics are Databases and Data Mining (DB+DM), Power Op-
timization (PO), Software Engineering (SE), World Wide
Web (WWW), System, Security, Wireless Network (WN),
Computer Architecture (CA). But LDA discovered the topic
information retrieval (IR) which BITM did not. Instead,
BITM discovered two sub-topics of software engineering:
SE1 (Algorithms and Programming) and SE2 (Fault Local-
ization).

5.4 Brand Preference Analysis
As demonstrated in synthetic experiment, BITM can learn
brand preferences of users. It can help to determine whether
a user is brand conscious or not. In our experiments, a user
is considered as brand conscious if at least 80% of his/her
adoptions are brand-based. Once the set of brand conscious
users is determined, it can be used to identify exclusive
brands for each topic. This is a major gain provided by
BITM as previous models do not help to identify exclusive
brands. More specifically, we can identify exclusive brands
based on the quantities defined below.
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Table 5: 4SQDB: JS divergence between topic-item distributions learned by BITM and LDA

AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 AL9 AL10 AL11 AL12
AB1 0.701 0.915 0.927 0.852 0.940 0.838 0.859 0.756 0.805 0.778 0.728 0.843
AB2 0.967 0.530 0.976 0.971 0.671 0.835 0.689 0.974 0.855 0.971 0.947 0.870
AB3 0.934 0.916 0.675 0.891 0.870 0.842 0.770 0.955 0.702 0.902 0.905 0.965
AB4 0.933 0.954 0.855 0.717 0.941 0.794 0.806 0.905 0.838 0.733 0.924 0.932
AB5 0.883 0.889 0.931 0.910 0.580 0.962 0.858 0.937 0.770 0.893 0.881 0.931
AB6 0.877 0.905 0.910 0.903 0.871 0.516 0.906 0.893 0.802 0.820 0.816 0.879
AB7 0.889 0.906 0.870 0.877 0.903 0.816 0.552 0.878 0.810 0.853 0.874 0.873
AB8 0.935 0.936 0.917 0.950 0.944 0.831 0.794 0.546 0.870 0.890 0.944 0.812
AB9 0.885 0.908 0.909 0.924 0.858 0.937 0.829 0.879 0.611 0.871 0.854 0.913
AB10 0.958 0.944 0.968 0.917 0.871 0.924 0.819 0.829 0.908 0.717 0.945 0.869
AB11 0.894 0.942 0.705 0.949 0.958 0.867 0.807 0.913 0.819 0.964 0.675 0.862
AB12 0.898 0.898 0.890 0.914 0.921 0.838 0.841 0.920 0.829 0.928 0.919 0.697

Table 6: ACMDB: JS divergence between topic-item distributions learned by BITM and LDA

TL1(DB + DM) TL2(PO) TL3(SE) TL4(WWW) TL5(System) TL6(Security) TL7(WN) TL8(CA) TL9(IR)
TB1(DB + DM) 0.545 0.937 0.914 0.835 0.914 0.897 0.637 0.899 0.749

TB2(PO) 0.918 0.354 0.845 0.867 0.832 0.853 0.902 0.871 0.918
TB3(SE1) 0.820 0.783 0.673 0.795 0.829 0.827 0.844 0.831 0.822

TB4(WWW) 0.862 0.810 0.821 0.689 0.804 0.763 0.829 0.810 0.837
TB5(System) 0.852 0.806 0.770 0.843 0.685 0.818 0.839 0.829 0.823
TB6(Security) 0.828 0.791 0.815 0.796 0.807 0.758 0.835 0.798 0.822

TB7(WN) 0.813 0.773 0.815 0.805 0.793 0.795 0.432 0.824 0.814
TB8(CA) 0.846 0.814 0.801 0.780 0.784 0.790 0.851 0.763 0.828
TB9(SE2) 0.867 0.832 0.696 0.798 0.787 0.772 0.872 0.776 0.854

(a) 4SQDB (b) ACMDB

Figure 7: Histograms of sb/s derived from brand conscious
users learned by BITM.

1. s = |UBC |
Nusers

where UBC is the set of all brand conscious
users; s can be considered as the average ratio of brand
conscious users.

2. For each brand b, we define the brand-specific ratio sb =
|Ub

BC |
Nb

users
where U bBC (N b

users) is respectively the set of
brand conscious users (the set of all users) who adopted
items of brand b.

Note that on estimating sb, we filtered out brands with
N b
users < 5 to avoid getting brands with large sb by pure

coincidence. After obtaining these quantities, we compare
sb of each brand with average value s using the ratio sb/s.

Based on the distributions of the ratio sb/s shown in Fig-
ure 7, we propose that exclusive brands (of both 4SQDB and
ACMDB) are those for which sb/s ≥ 2. This is an appropri-
ate threshold as an exclusive brand should have its sb much
higher than the average value s.

4SQDB: Recall that Nusers = 5406 and BITM learned
that |UBC | = 1319, thus s = 0.24. There are 29 brands
which satisfies sb/s ≥ 2. Thus, we can say that BITM
learned 29 exclusive brands. In Table 8a, we show top-
10 brands with largest sb/s as representatives of exclu-
sive brands for 4SQDB. We further checked the reliabil-
ity of the result by looking at prices of these brands from
sg.openrice.com, a popular website for rating food venues in
Singapore. The prices are shown in the last column of Table
8a. Moreover, on comparing with another 29 less-exclusive
brands (those with highest sb/s < 2), the average price of
exclusive brands is much higher than that of less-exclusive
brands (20.4 SGD compared with 9.8 SGD) while the stan-
dard deviation is comparable (7.2 compared with 6.0).

ACMDB: Recall that Nusers = 356 and |UBC | = 58,
thus s = 0.16. Again, we determined exclusive authors
as those whose sb/s ≥ 2. There are 23 authors satisfy-
ing this. Thus, BITM discovered 23 exclusive authors for
this ACMDB dataset. Table 8b shows top-10 authors with
largest sb/s as representatives of exclusive authors. We fur-
ther checked the reliability of the result by looking at h-
index of these authors provided by Google Scholar. The h-
indices are shown in the last column of Table 8b. Moreover,
on comparing with another 23 less-exclusive authors (those
with highest sb/s < 2), the average h-index of exclusive au-
thors is much higher than that of less-exclusive authors (60.5
compared with 34.5) while the standard deviation is smaller
(14.2 compared with 17.4).
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(a) 4SQDB

Brand Area sb/s Price
(SGD)

The Halia AB4 2.53 31-50
Ichiban Sushi AB7 2.48 21-30

Sushi Tei AB3 2.39 21-30
Nakhon Kitchen AB8 2.29 11-20

ThaiExpress AB12, AB10 2.19 11-20
Pepper Lunch AB3 2.19 11-20

Pizza Hut AB2 2.19 11-20
Sakae Sushi AB8 2.19 11-20

Uncle Leong Seafood AB5, AB6 2.19 11-20
Astons Specialities AB9 2.18 11-20

Swensen’s AB1, AB11 2.18 11-20

(b) ACMDB

Author (i.e. brand) Topic sb/s h-index
Giovanni de Micheli PO 5.00 73

Jon M. Kleinberg WWW 4.06 69
David Karger SE1 4.03 70

Ion Stoica WWW 3.98 65
Tian Zhang DB + DM 3.87 59

Leslie Lamport System 3.85 57
H. T. Kung WN+ WWW 3.57 55

Jon Louis Bentley SE2 3.33 47
M. Frans Kaashoek CA 3.13 45
John K. Ousterhout SE1 3.13 45

Table 8: Discovered exclusive brands for two datasets

5.5 Summary
Through the above analysis of topics and brand prefer-
ences, we demonstrate the usefulness of BITM model. Ide-
ally, these empirical results should be further compared with
ground truth topic and brand preference labels. In the ab-
sence of ground truth in 4SQDB and ACMDB, we further
evaluate the BITM model in item adoption prediction task
as described in Section 6.

6 Item Adoption Prediction Experiment
We define the item adoption prediction task as follows. For
each user u with at least 4 item adoptions, we randomly hide
p (0 < p < 1) of these adoptions as the test data. The task is
to predict these hidden item adoptions using the remaining
(1− p) of adoptions to train a model.

Unlike in the standard recommendation problem where no
item is rated again by the same user, the same item can be
adopted by the same user in both training and test data. For
example, the same paper can be cited by the same authors
in multiple papers, and the same outlet can be checked-in
multiple times by the same user.

We evaluate the prediction results using average precision
at k (AvgPrec@k) which is defined to be the average of
Prec@k over all users with adoptions to be predicted. Let
Iku be the top k predicted adopted items for user u ordered by
p(ij |u), the probability of user i generating the adoption of
item ij . The precision at k for user u, Prec@k(u), is defined
as:

Prec@k(u) =
|Testu ∩ Iku |

k
where Testu denotes the set of item adoptions of user u to
be predicted.

To ensure the results are robust, we conducted 4-fold and
5-fold cross validation of the training and testing data for
4SQDB and ACMDB respectively, and reported the average
results. We vary k from 2 to 2000 for 4SQDB, and from 1 to
3000 for ACMDB.

Other than BITM and LDA, we also introduce two other
simple baselines, namely:
• Global Popularity (GPOP): Each item is assigned a

global popularity score defined by the number of adop-

tions it has. Usually, GPOP is not appropriate for predic-
tion task that involves items of very different characteris-
tics. In this experiment, however, the items involved are
similar. We therefore include GPOP and also include the
local popularity score below.

• Local Popularity (LPOP): For each user, we assign each
item a local popularity score defined by the number of
adoptions the user has performed on the item. The items
are then ranked by decreasing local popularity score. For
each user, his top ranked items are returned as the pre-
dicted adoptions.

Note that GPOP returns the same adoption predictions for
all users while LPOP returns the frequently adopted items
by the target user.

Figures 8a and 8b show theAvgPrec@k of prediction re-
sults on 4SQDB and ACMDB respectively by varying k and
number of topics. The key observations from these figures
are that:
• BITM is consistently the best performing model and it is

followed by LDA, GPOP and LPOP. We observe this for
both datasets for almost all k’s and all number of topics.
• For 4SQDB, the AvgPrec@k of BITM and LDA de-

creases with increasing k. This suggests that the top
ranked predicted adoptions by the two models are more
accurate than the lower ranked predicted adoptions. For
ACMDB, we however observe that AvgPrec@k in-
creases initially until k reaches about 10. Beyond that,
AvgPrec@k decreases with larger k. This observation
holds for all the models.

• The optimal number of topics for both BITM and LDA
for the 4SQDB dataset is 12 while that for ACMDB is 9.
This observation is consistent with the numbers of topics
determined for the two datasets by likelihood.

To sum up, BITM shows promising prediction results in
this experiment and the results are also consistent for both
datasets under across different settings.

7 Conclusion
Brand-based item adoption decisions are important knowl-
edge that has widespread applications in marketing and ad-
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(a) 4SQDB (b) ACMDB

Figure 8: Prediction results w.r.t different number of topics for two datasets. BITMi (LDAi) are BITM (LDA) trained with
i topics respectively.

vertising. In this paper, we introduce BITM model as a novel
way to learn the hidden user-specific, item specific and brand
specific variables that explain an observed set of item adop-
tions. BITM does not require price information in training
data. Using both synthetic and real datasets, we show that
BITM can effectively learn the hidden variables recover-
ing the exclusive brands and brand conscious users, and can
be used to predict item adoptions more accurately than the
baseline model. As BITM is the first model that considers
brand effects, one can pursue further research based on this
work. In particular, we can extend BITM to consider con-
straints that allow the model to learn different kinds of ex-
clusive brands such as those that are expensive in price, or
those that are adopted by users of some categories. This will
give rise to a range of different models that can be applied
to different adoption scenarios. Finally, further analysis on
BITM results can also reveal customers’ loyalty to any in-
terested brand, which is extremely important for planning
future marketing strategies.
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