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Abstract

Twitter is a social media giant famous for the exchange
of short, 140-character messages called “tweets”. In the
scientific community, the microblogging site is known
for openness in sharing its data. It provides a glance
into its millions of users and billions of tweets through a
“Streaming API” which provides a sample of all tweets
matching some parameters preset by the API user. The
API service has been used by many researchers, compa-
nies, and governmental institutions that want to extract
knowledge in accordance with a diverse array of ques-
tions pertaining to social media. The essential drawback
of the Twitter API is the lack of documentation concern-
ing what and how much data users get. This leads re-
searchers to question whether the sampled data is a valid
representation of the overall activity on Twitter. In this
work we embark on answering this question by compar-
ing data collected using Twitter’s sampled API service
with data collected using the full, albeit costly, Firehose
stream that includes every single published tweet. We
compare both datasets using common statistical metrics
as well as metrics that allow us to compare topics, net-
works, and locations of tweets. The results of our work
will help researchers and practitioners understand the
implications of using the Streaming API.

Introduction

Twitter is a microblogging site where users exchange short,
140-character messages called “tweets”. Ranking as the 10th
most popular site in the world by the Alexa rank in January
of 20131, the site boasts 500 million registered users pub-
lishing 400 million tweets per day. Twitter’s platform for
rapid communication is said to be a vital communication
platform in recent events including Hurricane Sandy2, the
Arab Spring of 2011 (Campbell 2011), and several political
campaigns (Tumasjan et al. 2010; Gayo-Avello, Metaxas,
and Mustafaraj 2011). As a result, Twitter’s data has been
coveted by both computer and social scientists to better un-
derstand human behavior and dynamics.

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.alexa.com/topsites
2http://www.nytimes.com/interactive/2012/10/28/nyregion/hurricane-

sandy.html

Social media data is often difficult to obtain, with most so-
cial media sites restricting access to their data. Twitter’s poli-
cies lie opposite to this. The “Twitter Streaming API”3 is a
capability provided by Twitter that allows anyone to retrieve
at most a 1% sample of all the data by providing some pa-
rameters. According to the documentation, the sample will
return at most 1% of all the tweets produced on Twitter at a
given time. Once the number of tweets matching the given
parameters eclipses 1% of all the tweets on Twitter, Twit-
ter will begin to sample the data returned to the user. The
methods that Twitter employs to sample this data is currently
unknown. The Streaming API takes three parameters: key-
words (words, phrases, or hashtags), geographical boundary
boxes, and user ID.

One way to overcome the 1% limitation is to use the Twit-
ter Firehose—a feed provided by Twitter that allows access
to 100% of all public tweets. A very substantial drawback of
the Firehose data is the restrictive cost. Another drawback is
the sheer amount of resources required to retain the Firehose
data (servers, network availability, and disk space). Conse-
quently, researchers as well as decision makers in compa-
nies and government institutions are forced to decide be-
tween two versions of the API: the freely-available but lim-
ited Streaming, and the very expensive but comprehensive
Firehose version. To the best of our knowledge, no research
has been done to assist those researchers and decision mak-
ers by answering the following: How does the use of the
Streaming API affect common measures and metrics per-
formed on the data? In this article we answer this question
from different perspectives.

We begin the analysis by employing classic statistical
measures commonly used to compare two sets of data.
Based on unique characteristics of tweets, we design and
conduct additional comparative analysis. By extracting top-
ics using a frequently used algorithm, we compare how top-
ics differ between the two datasets. As tweets are linked
data, we perform network measures of the two datasets. Be-
cause tweets can be geo-tagged, we compare the geograph-
ical distribution of geolocated tweets to better understand
how sampling affects aggregated geographic information.

3https://dev.twitter.com/docs/streaming-apis
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(a) Firehose (b) Streaming API

Figure 1: Tag cloud of top terms from each dataset.

Related Work

Twitter’s Streaming API has been used throughout the do-
main of social media and network analysis to generate un-
derstanding of how users behave on these platforms. It has
been used to collect data for topic modeling (Hong and Davi-
son 2010; Pozdnoukhov and Kaiser 2011), network analy-
sis (Sofean and Smith 2012), and statistical analysis of con-
tent (Mathioudakis and Koudas 2010), among others. Re-
searchers’ reliance upon this data source is significant, and
these examples only provide a cursory glance at the tip of
the iceberg. Due to the widespread use of Twitter’s Stream-
ing API in various scientific fields, it is important that we
understand how using a sub-sample of the data generated
affects these results.

From a statistical point of view, the “law of large num-
bers” (mean of a sample converges to the mean of the en-
tire population) and the Glivenko-Cantelli theorem (the un-
known distribution X of an attribute in a population can be
approximated with the observed distribution x) guarantee
satisfactory results from sampled data when the randomly
selected sub-sample is big enough. From network algorith-
mic (Wasserman and Faust 1994) perspective the question
is more complicated. Previous efforts have delved into the
topic of network sampling and how working with a restricted
set of data can affect common network measures. The prob-
lem was studied earlier in (Granovetter 1976), where the au-
thor proposes an algorithm to sample networks in a way that
allows one to estimate basic network properties. More re-
cently, (Costenbader and Valente 2003) and (Borgatti, Car-
ley, and Krackhardt 2006) have studied the affect of data
error on common network centrality measures by randomly
deleting and adding nodes and edges. The authors discover
that centrality measures are usually most resilient on dense
networks. In (Kossinets 2006), the authors study global
properties of simulated random graphs to better understand
data error in social networks. (Leskovec and Faloutsos 2006)

proposes a strategy for sampling large graphs to preserve
network measures.

In this work we compare the datasets by analyzing facets
commonly used in the literature. We start by comparing the
top hashtags found in the tweets, a feature of the text com-
monly used for analysis. In (Tsur and Rappoport 2012), the
authors try to predict the magnitude of the number of tweets
mentioning a particular hashtag. Using a regression model
trained with features extracted from the text, the authors find
that the content of the idea behind the tag is vital to the count
of the tweets employing it. Tweeting a hashtag automatically
adds a tweet to a page showing tweets published by other
tweeters containing that hashtag. In (Yang et al. 2012), the
authors find that this communal property of hashtags along
with the meaning of the tag itself drive the adoption of hash-
tags on Twitter. (De Choudhury et al. 2010) studies the prop-
agation patterns of URLs on sampled Twitter data.

Topic analysis can also be used to better understand the
content of tweets. (Kireyev, Palen, and Anderson 2009)
drills the problem down to disaster-related tweets, discover-
ing two main types of topics: informational and emotional.
Finally, (Yin et al. 2011; Hong et al. 2012; Pozdnoukhov
and Kaiser 2011) all study the problem of identifying topics
in geographical Twitter datasets, proposing models to ex-
tract topics relevant to different geographical areas in the
data. (Joseph, Tan, and Carley 2012) studies how the topics
users discuss drive their geolocation.

Geolocation has become a prominent area in the study of
social media data. In (Wakamiya, Lee, and Sumiya 2011)
the authors try to classify towns based upon the content
of the geotagged tweets that originate from within the
town. (De Longueville, Smith, and Luraschi 2009) studies
Twitter’s use as a sensor for disaster information by study-
ing the geographical properties of users tweets. The authors
discover that Twitter’s information is accurate in the later
stages of a crisis for information dissemination and retrieval.
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Figure 2: Raw tweet counts for each day from both the
Streaming API and the Firehose.

The Data

From December 14th, 2011 - January 10th, 2012 we col-
lected tweets from the Twitter Firehose matching any of the
keywords, geographical bounding boxes, and users in Ta-
ble 1. During the same time period, we collected tweets
from the Streaming API using TweetTracker (Kumar et al.
2011) with exactly the same parameters. During the time
we collected 528,592 tweets from the Streaming API and
1,280,344 tweets from the Firehose. The raw counts of
tweets we received each day from both sources are shown in
Figure 2. One of the more interesting results in this dataset
is that as the data in the Firehose spikes, the Streaming API
coverage is reduced. One possible explanation for this phe-
nomenon could be that due to the Western holidays observed
at this time, activity on Twitter may have reduced causing
the 1% threshold to go down.

One of the key questions we ask in this work is how the
amount of coverage affects measures commonly performed
on Twitter data. Here we define coverage as the ratio of data
from the Streaming API to data from the Firehose. To better
understand the coverage of the Streaming API for each day,
we construct a box-and-whisker plot to visualize the distri-
bution of daily coverage, shown in Figure 3. In this period
of time the Streaming API receives, on average, 43.5% of
the data available on the Firehose on any given day. While
this is much better than just 1% of the tweets promised by
the Streaming API, we have no reference point for the data
in the tweets we received.

The most striking observation is the range of coverage
rates (see Figure 3). Increase of absolute importance (more
global awareness) or relative importance (the overall num-
ber of tweets decreases) result in lower coverage as well as
fewer tweets. To give the reader a sense for the top words in
both datasets, we include tag clouds for the top words in the
Streaming API and the Firehose, shown in Figure 1.

Table 1: Parameters used to collect data from Syria. Coor-
dinates below the boundary box indicate the Southwest and
Northeast corner, respectively.

Keywords Geoboxes Users
#syria, #assad,
#aleppovolcano,
#alawite, #homs,
#hama, #tartous,
#idlib, #damascus,
#daraa, #aleppo,
# *, #houla

@SyrianRevo

(32.8, 35.9), (37.3, 42.3)
* Arabic word for “Syria”

Figure 3: Distribution of coverage for the Streaming data by
day. Whiskers indicate extreme values.

Statistical Measures

We investigate the statistical properties of the two datasets
with the intent of understanding how well the characteris-
tics of the sampled data match those of the Firehose. We
begin first by comparing the top hashtags in the tweets for
different levels of coverage using a rank correlation statistic.
We continue to extract topics from the text, matching topical
content and comparing topical distribution to better under-
stand how sampling affects the results of this common pro-
cess performed on Twitter data. In both cases we compare
our streaming data to random datasets obtained by sampling
the data obtained through the Firehose.

Top Hashtag Analysis

Hashtags are an important communication device on Twitter.
Users employ them to annotate the content they produce,
allowing for other users to find their tweets and to facilitate
interaction on the platform. Also, adding a hashtag to a tweet
is equivalent to joining a community of users discussing the
same topic (Yang et al. 2012). In addition, hashtags are also
used by Twitter to calculate the trending topics of the day,
which encourages the user to post in these communities.

Recently, hashtags have become an important part of
Twitter analysis (Efron 2010; Tsur and Rappoport 2012;
Recuero and Araujo 2012). For both the purpose of com-
munity formation and trend analysis it is important that our
Streaming dataset convey the same importance for hashtags
as the Firehose data. Here we compare the top hashtags in
the two datasets using Kendall’s τ rank correlation coeffi-
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Figure 4: Relationship between n - number of top hashtags,
and the correlation coefficient, τβ .

cient (Agresti 2010).

Kendall’s τ of Top Hashtags Kendall’s τ is a statistic
which measures the correlation of two ordered lists by an-
alyzing the number of concordant pairs between them. Con-
sider two hashtags, #A and #B. If both lists rank #A higher
than #B, then this is considered a concordant pair, otherwise
it is counted as a discordant pair. Ties are handled using the
τβ statistic as follows:

τβ =
|PC | − |PD|�

(|PC |+ |PD|+ |TF |)(|PC |+ |PD|+ |TS |)
(1)

where PC is the set of concordant pairs, PD is the set of
discordant pairs, TF is the set of ties in the Firehose data,
but not in the Streaming data, TS is the number of ties found
in the Streaming data, but not in the Firehose, and n is the
number of pairs in total. The τβ value ranges from -1, perfect
negative correlation, to 1, perfect positive correlation.

To understand the relationship between n and the result-
ing correlation, τβ , we construct a chart showing the value
of τβ for n between 10 and 1000 in steps of 10. To get an ac-
curate representation of the differences in correlation at each
level of Streaming coverage, we select five days with differ-
ent levels of coverage as motivated by Figure 3: The mini-
mum (December 27th), lower quartile (December 24th), me-
dian (December 29th), upper quartile (December 18th), and
the maximum (December 19th). The results of this exper-
iment are shown in Figure 4. Here we see mixed results at
small values of n, indicating that the Streaming data may not
be good for finding the top hashtags. At larger values of n,
we see that the Streaming API does a better job of estimating
the top hashtags in the Firehose data.

Comparison with Random Samples After seeing the re-
sults from the previous section, we are left to wonder if the
results are an artifact of using the Streaming API or if we
could have obtained the same results by any random sam-
pling. Would we obtain the same results with a random sam-
ple of equal size from the Firehose data, or does the Stream-

Figure 5: Random sampling of Firehose data. Relationship
between n - number of top hashtags, and τβ - the correlation
coefficient for different levels of coverage.

ing API’s filtering mechanism give us an advantage? To an-
swer this question we repeat the experiments for each day
in the previous section. This time, instead of using Stream-
ing API data, we select tweets uniformly at random (with-
out replacement) until we have amassed the same number of
tweets as we collected from the Streaming API for that day.
We repeat this process 100 times and obtain results as shown
in Figure 5. Here we see that the levels of coverage in the
random and Streaming data have comparable τβ values for
large n, however at smaller n we see a much different pic-
ture. The random data gets very high τβ scores for n = 10,
showing a good capacity for finding the top hashtags in the
dataset. The Streaming API data does not consistently find
the top hashtags, in some cases revealing reverse correlation
with the Firehose data at smaller n. This could be indica-
tive of a filtering process in Twitter’s Streaming API which
causes a misrepresentation of top hashtags in the data.

Topic Analysis

Topic models are statistical models which discover topics in
a corpus. Topic modeling is especially useful in large data,
where it is too cumbersome to extract the topics manually.
Due to the large volume of tweets published on Twitter, topic
modeling has become central to many content-based stud-
ies using Twitter data (Kireyev, Palen, and Anderson 2009;
Pozdnoukhov and Kaiser 2011; Hong et al. 2012; Yin et al.
2011; Chae et al. 2012). We compare the topics drawn from
the Streaming data with those drawn from the Firehose data
using a widely-used topic modeling algorithm, latent Dirich-
let allocation (LDA) (Blei, Ng, and Jordan 2003). Latent
Dirichlet allocation is an algorithm for the automated dis-
covery of topics. LDA treats documents as a mixture of top-
ics, and topics as a mixture of words. Each topic discovered
by LDA is represented by a probability distribution which
conveys the affinity for a given word to that particular topic.
We analyze these distributions to understand the differences
between the topics discovered in the two datasets. To get a
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sense of how the topics found in the Streaming data com-
pare with those found with random samples, we compare
with topics found by running LDA on random subsamples
of the Firehose data.

Topic Discovery Here we compare the topics generated
using the Firehose corpus with those generated using the
Streaming corpus. LDA takes, in addition to the corpus,
three parameters as its input: K - the number of topics, α
- a hyperparameter for the Dirichlet prior topic distribution,
and η - a hyperparameter for the Dirichlet prior word distri-
bution. Choosing optimal parameters is a very challenging
problem, and is not the focus of this work. Instead we focus
on the similarity of the results given by LDA using identical
parameters on both the Streaming and Firehose corpus. We
set K = 100 as suggested by (Dumais et al. 1988) and use
priors of α = 50/K, and η = 0.01. The software we used to
discover the topics is the gensim software package (Řehůřek
and Sojka 2010). To get an understanding of the topics dis-
covered at each level of Streaming coverage, we select the
same days as we did for the comparison of Kendall’s τ .

Topic Comparison To understand the differences be-
tween the topics generated by LDA, we compute the dis-
tance in their probability distribution using the Jensen-
Shannon divergence metric (Lin Jan). Since LDA’s topics
have no implicit orderings we first must match them based
upon the similarity of the words in the distribution. To do the
matching we construct a weighted bipartite graph between
the topics from the Streaming API and the Firehose. Treat-
ing each topic as a bag of words, we use the Jaccard score
between the words in a Streaming topic TS

i and a Firehose
topic TF

j as the weight of the edges in the graph,

d(TS
i , TF

j ) =
|TS

i ∩ TF
j |

|TS
i ∪ TF

j |
. (2)

After constructing the graph we use the maximum weight
matching algorithm proposed in (Galil 1986) to find the best
matches between topics from the Streaming and Firehose
data. After making the ideal matches, we then compute the
Jensen-Shannon divergence between the two topics. Treat-
ing each topic as a probability distribution, we compute this
as follows:

JS(TS
i ||TF

j ) =
1

2
[KL(TS

i ||M) +KL(TF
j ||M)], (3)

where M = 1
2 (T

S
i + TF

j ) and KL is the Kullback-Liebler
divergence (Cover and Thomas 2006). We compute the
Jensen-Shannon divergence for each matched pair and plot a
histogram of the values in Figure 6. We see a trend of higher
divergence with lower coverage, and lower divergence with
higher coverage. This shows that decreased coverage in the
Streaming data causes variance in the discovered topics.

Comparison with Random Samples In order to get ad-
ditional perspective on the accuracy of the topics discov-
ered in the Streaming data, we compare the Streaming data
with data sampled randomly from the Firehose, as we did
earlier to compare the correlation. First, we compute the

average of the Jensen-Shannon scores from the Streaming
data in Figure 6, S. We then repeat this process for each of
the 100 runs with random data, each run called xi. Next,
we use maximum-likelihood estimation (Casella and Berger
2001) to estimate the parameters of the Gaussian distribu-
tion from which these points originate, µ̂ = 1

100

�100
i=1 xi,

and σ̂ =
�

1
100

�100
i=1(xi − µ̂)2. Finally, we compute the z-

Score for S, z = S−µ̂
σ̂ . This score gives us a concrete mea-

sure of the difference between the Streaming API data and
the random samples. Results of this experiment, including
z-Scores are shown in Figure 7. Nonetheless, we are still
able to get topics from the Streaming API that are close
to those found in random data with higher levels of cover-
age. A threshold of 3-sigma is often used in the literature to
indicate extreme values (Filliben and Others 2002, Section
6.3.1). With this threshold, we see that overall we are able
to get significantly better topics with the random data than
with the Streaming API on 4 of the 5 days.

Network Measures

Because Twitter is a social network, Twitter data can be ana-
lyzed with methods from Social Network Analysis (Wasser-
man and Faust 1994) in addition to statistical measures.
Possible 1-mode and 2-mode networks are: User × User
retweet networks, User × Hashtag content networks, Hash-
tag × Hashtag co-occurrence networks. For the purpose
of this article we focus on User × User retweet networks.
Users who send tweets within a certain time period are the
nodes in the network. Furthermore, users that are retweeted
within this time period are also nodes in this network, re-
gardless of the time their original tweet was tweeted. The
networks created by this procedure are directed and not sym-
metric by design, however, bi-directional links are possible
in case a → b and b → a. We ignore line weight created
by multiple a → b retweets and self-loops (yes, some user
retweet themselves). For the network metrics, the compari-
son is done on both the network, and the node levels. Net-
works are analyzed using ORA (Carley et al. 2012).

Node-Level Measures

The node-level comparison is accomplished by calculat-
ing measures at the user-level and comparing these results.
We calculate three different centrality measures at the node
level, two of which—Degree Centrality and Betweenness
Centrality—were defined by Freeman as “distinct intuitive
conceptions of centrality” (Freeman 1979, p. 215). Degree
Centrality counts the number of neighbors in unweighted
networks. In particular, we are interested in In-Degree Cen-
trality as this reveals highly respected sources of informa-
tion in the retweet network (where directed edges point to
the source). Betweenness Centrality (Freeman 1979) identi-
fies brokerage positions in the Twitter networks that connect
different communities with each other or funnel different in-
formation sources. Furthermore, we calculate the Potential
Reach which counts the number of nodes that are reachable
in the network weighted with the path distance. In our Twit-
ter networks this is equivalent to the inverse in-distance of
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(a) Min. µ = 0.024,
σ = 0.019.

(b) Q1. µ = 0.018,
σ = 0.018.

(c) Median. µ = 0.018,
σ = 0.020.

(d) Q3. µ = 0.014,
σ = 0.016.

(e) Max. µ = 0.016,
σ = 0.018.

Figure 6: The Jensen-Shannon divergence of the matched topics at different levels of coverage. The x-axis is the binned diver-
gence. No divergence was > 0.15. The y-axis is the count of each bin. µ is the average divergence of the matched topics, σ is
the standard deviation.

(a) Min. S = 0.024,
µ̂ = 0.017,
σ̂ = 0.002,
z = 3.500.

(b) Q1. S = 0.018,
µ̂ = 0.012,
σ̂ = 0.001,
z = 6.000.

(c) Median. S = 0.018,
µ̂ = 0.013,
σ̂ = 0.001,
z = 5.000.

(d) Q3. S = 0.014,
µ̂ = 0.013,
σ̂ = 0.001,
z = 1.000.

(e) Max. S = 0.016,
µ̂ = 0.013,
σ̂ = 0.001,
z = 3.000.

Figure 7: The distribution of average Jensen-Shannon divergences in the random data (blue curve), with the single average
obtained through the Streaming data (red, vertical line). z indicates the number of standard deviations the Streaming data is
from the mean of the random samples.

Table 2: Average centrality measures for Twitter retweet net-
works for 28 daily networks. “All” is all 28 days together.

Measure k = Top−k
(min-max)

All

In-Degree 10 4.21 (0–9) 4
In-Degree 100 53.4 (36–82) 73

Potential Reach 100 59.2 (32–83) 80
Betweenness 100 54.8 (41–81) 55

reachable nodes (Sabidussi 1966). This approach results in
a metric that finds sources of information (users) that poten-
tially can reach many other nodes on short path distances.
Before calculating these measures, we extract the main com-
ponent and delete all other nodes (see next sub-section). In
general, centrality measures are used to identify important
nodes. Therefore, we calculate the number of top 10 and top
100 nodes that can be correctly identified with the Stream-
ing data. Table 2 shows the results for the average of 28 daily
networks, the min-max range, as well as the aggregated net-
work including all 28 days.

Although, we know from previous studies (Borgatti, Car-
ley, and Krackhardt 2006) that there is a very low likelihood
that the ranking will be correct when handling networks with
missing data, the accuracy of the daily results is not very sat-

isfying. When we look at the results of the individual days,
we can see that the matches have, once again, a broad range
as a function of the data coverage rate. In (Borgatti, Carley,
and Krackhardt 2006) the authors argue that network mea-
sures are stable for denser networks. Twitter data, being very
sparse, causes the network metrics’ accuracy to be rather low
in the case when the data sub-sample is smaller. However,
identifying ∼50% key-players correctly for a single day is
reasonable, and accuracy can be increased by using longer
observation periods. Even more, the Potential Reach metrics
are quite stable for some days in the aggregated data.

Network-Level Measures

We complement our node-level analysis by comparing vari-
ous metrics at the network level. These metrics are reported
in Table 3 and are calculated as follows. Since retweet net-
works create a lot of small disconnected components, we
focus only on the size of the largest component. The size
of the main component and the fact that all smaller compo-
nents contain less than 1% of the nodes justify our focus on
the main component for this data. Therefore, we reduce the
networks to their largest component before we proceed with
the calculations. To describe the structure of the retweet net-
works we calculate the clustering coefficient, a measure for
local density (Watts and Strogatz 1998). We do not take all
possible triads of directed networks into account, but treat
the networks as undirected when calculating the clustering
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Table 3: Comparison of Network-Level Social Network
Analysis Metrics.

Firehose Streaming API
Metrics avg.day 28 days avg.day 28 days
nodes 6,590 73,719 2,466

(37.4%)
30,894
(41.9%)

links 10,173 204,022 3,667
(36.0%)

76,750
(37.6%)

Din > 0 25.1% 19.3% 32.4% 20.5%
max(Din) 341 2,956 167.3 1,252
main comp. 5,609 70,383 2,069 28,701

main comp. % 84.6% 95.5% 82.5% 92.9%
Clust.Coef. 0.029 0.053 0.033 0.050
DCin Centr. 0.059 0.042 0.085 0.043
BC Centr. 0.010 0.053 0.010 0.050

PReach Centr. 0.130 0.240 0.156 0.205

coefficient. Din > 0 shows the proportion of nodes in the
largest component that are retweeted and max(Din) shows
the value of the highest unscaled In-Degree value, i.e., num-
ber of unique users retweeting the same single user. The
final three lines of Table 3 are network centralization in-
dexes based on the node-level measures that have been intro-
duced in the previous paragraph. Freeman (Freeman 1979)
describes the centralization CX of a network for any given
metric as the difference of the value CX(p∗) of the most cen-
tral node to all other node values compared to the maximum
possible difference:

CX =

�
i = 1n[CX(p∗)− CX(pi)]

max
�

i = 1n[CX(p∗)− CX(pi)]
(4)

High centralization indicates a network with some nodes
having very high node-level values and many nodes with
low values while low centralization is the result of evenly
distributed node-level measures.

We do not discuss all details of the individual results but
focus on the differences between the two data sources. First,
the coverage of nodes and links is similar to the coverage
of tweets. This is a good indicator that the sub-sample is
not biased to the specific Twitter user (e.g. high activity).
The smaller proportion of nodes with non-zero In-Degree
for the Firehose shows us that the larger number of nodes
includes many more peripheral nodes. A low Clustering Co-
efficient implies that networks are hierarchical rather than
interacting communities. Even though the centralization in-
dexes are rather similar, there is one very interesting result
when looking at the individual days: The range of values is
much higher for the Streaming data as a result of the high
coverage fluctuation. Further research will analyze whether
we can use network metrics to better estimate how sufficient
the sampled Streaming data is.

Geographic Measures

The final facet of the Twitter data we compare is the geolo-
cation of the tweets. Geolocation is an important part of a

Table 4: Geotagged Tweet Location by Continent. Excluding
boundary box from parameters.

Continent Firehose Streaming Error
Africa 156 (5.74%) 33 (3.10%) -2.64%

Antarctica 0 (0.00%) 0 (0.00%) ±0.00%
Asia 932 (34.26%) 321 (30.11%) -4.15%

Europe 300 (11.03%) 139 (13.04%) +2.01%
Mid-Ocean 765 (28.12%) 295 (27.67%) -0.45%
N. America 607 (22.32%) 293 (27.49%) +5.17%

Oceania 54 (1.98%) 15 (1.41%) -0.57%
S. America 3 (0.11%) 2 (0.19%) +0.08%

Total 2720 (100.00%) 1066 (100.00%) ±0.00%

tweet, and the study of the location of content and users is
currently an active area of research (Cheng, Caverlee, and
Lee 2010; Wakamiya, Lee, and Sumiya 2011). We study
how the geographic distribution of the geolocated tweets is
affected by the sampling performed by the Streaming API.

The number of geotagged tweets is low, with only 16,739
geotagged tweets in the Streaming data (3.17%) and 18,579
in the Firehose data (1.45%). We notice that despite the dif-
ference in tweets collected on the whole we get 90.10%
coverage of geotagged tweets. We start by grouping the lo-
cations of tweets by continent and can find a strong Asian
bias due to the boundary box we used to collect the data
from both sources, shown in Table 1. To better understand
the distribution of geotagged tweets we repeat the same pro-
cess, this time excluding tweets originating in the bound-
ary box set in the parameters. After removing these tweets,
more than 90% of geotagged Tweets from both sources are
excluded from the data and the Streaming coverage level is
reduced to 39.19%. The distribution of tweets by continent
is shown in Table 4. Here we see a more even representation
of the tweets’ locations in Asia and North America.

Conclusion and Future Work

In this work we ask whether data obtained through Twit-
ter’s sampled Streaming API is a sufficient representation of
activity on Twitter as a whole. To answer this question we
collected data with exactly the same parameters from both
the free, but limited, Streaming API and the unlimited, but
costly, Firehose. We provide a methodology for comparing
the two multifaceted sets of data and results of our analysis.

We started our analysis by understanding the coverage of
the Streaming API data, finding that when the number of
tweets matching the set of parameters increases, the Stream-
ing API’s coverage is reduced. One way to mitigate this
might be to create more specific parameter sets with dif-
ferent users, bounding boxes, and keywords. This way we
might be able to extract more data from the Streaming API.

Next, we studied the statistical differences between the
two datasets. We used a common correlation coefficient to
understand the differences between the top n hashtags in the
two datasets. We find that the Streaming API data estimates
the top hashtags for a large n well, but is often misleading
when n is small. We also employed LDA to extract topics
from the text. We compare the probability distribution of the
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words from the most closely-matched topics and find that
they are most similar when the coverage of the Streaming
API is greatest. That is, topical analysis is most accurate
when we get more data from the Streaming API.

The Streaming API provides just one example of how
sampling Twitter data affects measures. We leverage the
Firehose data to get additional samples to better understand
the results from the Streaming API. In both of the above ex-
periments we compare the Streaming data with 100 datasets
sampled randomly from the Firehose data. We compare the
statistical properties to find that the Streaming API performs
worse than randomly sampled data, especially at low cov-
erage. We find that in the case of top hashtag analysis, the
Streaming API sometimes reveals negative correlation in the
top hashtags, while the randomly sampled data exhibits very
high positive correlation with the Firehose data. In the case
of LDA we find a significant increase in the accuracy of
LDA with the randomly sampled data over the data from
the Streaming API. Both of these results indicate some bias
in the way that the Streaming API provides data to the user.

By analyzing retweet User × User networks we were able
to show that we can identify, on average, 50–60% of the top
100 key-players when creating the networks based on one
day of Streaming API data. Aggregating some days of data
can increase the accuracy substantially. For network level
measures, first in-depth analysis revealed interesting corre-
lation between network centralization indexes and the pro-
portion of data covered by the Streaming API.

Finally, we inspect the properties of the geotagged tweets
from both sources. Surprisingly, we find that the Streaming
API almost returns the complete set of the geotagged tweets
despite sampling. We attribute this to the geographic bound-
ary box. Although the number of geotagged tweets is still
very small in general (∼1%), researchers using this informa-
tion can be confident that they work with an almost complete
sample of Twitter data when geographic boundary boxes are
used for data collection. When we remove the tweets col-
lected this way, we see a much larger disparity in the tweets
from both datasets. Even with this disparity, we see a similar
distribution based on continent.

Overall, we find that the results of using the Streaming
API depend strongly on the coverage and the type of anal-
ysis that the researcher wishes to perform. This leads to the
next question concerning the estimation of how much data
we actually get in a certain time period. We suggest that we
found first evidence in different types of analysis that can
help us to estimate the Streaming API coverage. Uncovering
the nuances of the Streaming API will help researchers, busi-
ness analysts, and governmental institutions to better ground
their scientific results based on Twitter data.

Looking forward, we hope to find methods to compensate
for the biases in the Streaming API to provide a more accu-
rate picture of Twitter activity to researchers. Provided fur-
ther access to Twitter’s Firehose, we will determine whether
the methodology presented here will yield similar results for
Twitter data collected from other domains, such as natural
disaster, protest, and elections.
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