
Distilling Massive Amounts of Data into Simple Visualizations:
Twitter Case Studies

Miguel Rios and Jimmy Lin
Twitter, Inc.

@miguelrios @lintool

Introduction
Twitter is a communications platform on which users can
send short, 140-character messages, called “tweets”, to their
“followers” via a number of mechanisms, including web
clients, mobile clients, and SMS. As of March 2012, Twit-
ter has over 140 million active users worldwide, who col-
lectively post over 340 million tweets per day. Particularly
salient is the real-time nature of these global conversations,
which rapidly evolve to reflect breaking events such as major
earthquakes (e.g., Japan, March 2011) and deaths of promi-
nent figures (e.g., Steve Jobs, October 2011).

From this large user base we gather tens of terabytes of
data per day, containing records of what users tweet (and
when and where), which tweets they interact with, and a host
of other activities. How do we derive insights from these
massive amounts of data? This responsibility falls primarily
to the data analytics group within the company. Organiza-
tionally, the group is divided into two logical, but tightly-
coupled teams: one handles the infrastructure necessary to
manage massive data warehouses, the other consists mostly
of “data scientists”, a new breed of engineers charged with
generating insights from the data.

Ultimately, the data scientist’s job is to analyze massive
amounts of data, interpret “what the data say”, and distill
the bits into actionable insights that steer the direction of the
company: what web site elements to refine, what features to
develop, what markets to pursue, etc. To accomplish this,
data visualization is an indispensable tool. At a mundane
level, the group provides dashboards to enable stakeholders
to browse through large amounts of multi-dimensional data,
including interactive “drill downs” and “roll ups”, overlaid
with projections and other derived data. This is quite sim-
ilar to cube materialization in online analytical processing
(OLAP) tasks for business intelligence, and is supported by
a number of commercial off-the-shelf packages (although
for tight integration with our infrastructure, our system is
entirely developed in-house).

Beyond simple dashboards, data scientists often build
one-off visualizations that are the result of a specific task,
usually a business question. For example, in 2010 when
Twitter was outgrowing its datacenter footprint, we created a
custom visualization that let engineers interactively examine
server utilization statistics along with network bandwidth
usage in order to better optimize resource allocation.

Finally, we occasionally produce visualizations intended
for public consumption, which are presented on Twitter’s
blog. These are less intended to generate insights for the
business; rather, their primary purpose is to highlight the
“pulse” of the global conversation on Twitter, often in re-
action to major news events around the world.

All these visualizations, from simple line graphs to com-
plex interactive browsing interfaces, share one common fea-
ture: although the ultimate product consists only of a few
hundred to a few thousand data points, they are the distilla-
tion of gigabytes, and in some cases, terabytes of raw data.
When viewing or interacting with a visualization, it is easy
to forget all the “data crunching” that went into creating it.
Giving the reader a sense of how this happens is the purpose
of this paper. We begin with a brief overview of the analyt-
ics infrastructure that supports these tasks, and present three
case studies describing how visualizations are created.

Twitter’s Analytics Stack
Twitter’s analytics infrastructure is built around Hadoop,
the open-source implementation of MapReduce (Dean and
Ghemawat 2004), which is a popular framework for large-
scale distributed data processing. Our central data ware-
house is built around a large Hadoop cluster. Data arrive in
the Hadoop Distributed File System (HDFS) via a number
of real-time and batch processes: bulk exports from frontend
databases, application logs, and many other sources.

Although Hadoop is implemented in Java, analytics is
largely performed using Pig, a high-level dataflow lan-
guage that compiles into physical plans that are executed on
Hadoop (Olston et al. 2008). Pig provides concise primitives
for expressing common operations such as projection, selec-
tion, group, join, etc. This conciseness comes at low cost:
Pig scripts approach the performance of programs directly
written in Hadoop Java. Yet, the full expressiveness of Java
is retained through a library of custom user-defined func-
tions that expose core Twitter libraries (e.g., for extracting
and manipulating parts of tweets).

To provide the reader with a flavor of what Pig scripts look
like, here is a (simplified) script for counting the distribution
of terms in tweets (say, all tweets in 2011):

A = load ‘/tweets/2011’ using TweetLoader();

B = foreach A generate

AAAI Technical Report WS-12-03 
Social Media Visualization

22



Figure 1: Twitter buzz during the 2010 FIFA World Cup. Background (in grey): time series of tweets per second. Foreground:
a streamgraph of tweet volume based on hashtags, showing only the four teams that reached the semi-finals: Spain (#esp),
Netherlands (#ned), Germany (#ger) and Uruguay (#uru) and the two teams with most activity during the tournament: United
States (#usa) and Brazil (#bra). From this visualization we clearly get a sense of the “ebb and flow” of the global conversation.

flatten(Tokenize(tweet)) as word;

C = group B by word;

D = foreach C generate COUNT(B), group;

store D into ‘/tmp/wordcount’;

Pig specifies an abstract dataflow, where “nodes” are as-
signed variable names (e.g., A through D). We first load
tweets using a custom loader, which transparently handles
deserializing data and reconstructing records (A). Next, we
parse out the terms, invoking the Tokenize() UDF (user-
defined function) that wraps our internal Java library for to-
kenizing tweets (B). Thus, via UDFs we can encapsulate ar-
bitrarily complex data manipulations (e.g., special handling
of non-English hashtags). Next, words are grouped together
(C), and the count for each word (group) is generated (D).
Finally, output is stored to HDFS.

Twitter Buzz: 2010 FIFA World Cup
In summer 2010, Twitter users shared their experiences in
real-time as they watched games during the FIFA World
Cup. During the final match, users from 172 countries
tweeted in more than 20 different languages; a record of
3,283 tweets posted in a single second was established dur-
ing the match between Japan and Denmark (a record unbro-
ken for 6 months). We wanted to share how people tweeted
during the games, in a way that highlights both the volume
of the conversations but also the competition between dif-
ferent teams. This was captured in a streamgraph, where the
width of the stream is proportional to the volume of conver-
sation; cf. (Dörk et al. 2010). This visualization is shown in
Figure 1; see also the corresponding blog post.1

1blog.twitter.com/2010/07/2010-world-cup-global-conversation.html

This visualization takes advantage of the fact that users
“annotated” their tweets with #hashtags to denote teams;
Twitter specifically encouraged the use of a predetermined
set of #hashtags to facilitate conversation, so that fans of a
team could better communicate with each other. To gather
the raw data, we wrote Pig scripts to retain only those that
contain the relevant #hashtags, and then grouped by both the
team and day. These scripts distilled tens of gigabytes into a
few hundred records.

The resulting data were converted into JSON and visual-
ized with an open source tool, streamgraph.js.2 A static ren-
dering was generated and post-processed with Photoshop to
generate the final image (adding the labels, flags, etc.).

Tweet Flow: 2011 Tohoku Earthquake
Our second case study is an animation of how the global
conversation evolves in response to a major world event, in
this case, the 2011 Tohoku Earthquake in Japan. A still from
the animation is shown in Figure 2; the full video is available
in a Twitter blog post.3

Since tweets are primarily a broadcast mechanism, it is
easier to pinpoint the source (e.g., via IP address) than the
destination. However, in the case of @-replies (directed at
another user), we are able to explicitly reconstruct both the
source and destination, since the intent and directionality of
the communication is unmistakable. These are mechanisms
through which users worldwide participate in a “global con-
versation”. The animation shows the flow of such tweets:
before the earthquake hits, we see the normal pattern of con-
servation between users in Japan and users outside Japan.

2github.com/jsundram/streamgraph.js
3blog.twitter.com/2011/06/global-pulse.html

23



Figure 2: Tweet flow during the 2011 Tohoku Earthquake. Green lines represent tweets posted by Japanese users and blue
lines represent tweets addressed to Japanese users. Together, these define the global lines of communication via which news is
shared. See the animated version at http://bit.ly/jp quake viz

Figure 3: Seasonal variation of tweeting patterns for users in four different cities. The gradient from white to yellow to red
indicates amount of activity (light to heavy). Each tile in the heatmap represents five minutes of a given day and colors are
normalized by day.

24



Once the earthquake occurs, we see a 500% spike in traffic
as users share the news with friends around the world.

Once again, raw data for creating this animation came
from the output of Pig scripts. First, tweets were filtered to
retain only the @-replies. These were then joined with user
data, which contain locations (based on IP addresses). From
this, we arrived at a distilled dataset with source and destina-
tion locations for the tweets. Joins are a primitive operation
in Pig, and is as easy as specifying the left and right relations
and the join attribute.

These intermediate data were then exported and processed
using Javascript to create a browser-based visualization with
processing.js.4 A static map was embedded in the back-
ground to help users understand the origins and destinations
of the tweets. In the foreground, circles representing groups
of tweets navigate from the locations where the tweets were
posted to their destinations. In the animation, each circle
leaves a trail behind it when it moves, and in aggregate, these
trails define the global lines of communication.

Tweeting Patterns: Seasonal Variations
In the last case study, we show a visualization of daily
tweeting patterns for 2011, focusing on four locations (New
York City, Tokyo, Istanbul, and São Paulo). This was devel-
oped internally to understand why growth patterns in tweet-
production experience seasonal variations. As usual, raw
data came from Pig output. Tweets were filtered based on
location and then bucketed by day and time into 5-minute
intervals. Finally, counts for each bucket were generated, re-
sulting in a raw dataset containing, day, time bucket, and
the number of tweets that were published. We visualized the
data using R, since the visualization did not require any ani-
mation or user interaction, and R’s ggplot2 has good support
for heatmaps using geom tiles.5

The final output is shown in Figure 3. We see different
patterns of activity between the four cities. For example,
waking/sleeping times are relatively constant throughout the
year in Tokyo, but the other cities exhibit seasonal varia-
tions. We see that Japanese users’ activities are concentrated
in the evening, whereas in the other cities there is more usage
during the day. In Istanbul, nights get shorter during August;
São Paulo shows a time interval during the afternoon when
tweet volume goes down, and also longer nights during the
entire year compared to the other three cities.

These observations are not conclusive, but they suggest
further lines of exploration: for example, why do these pat-
terns differ? Is it a cultural effect? This might, in turn, trig-
ger more analyses to help us better understand user behavior.
Understanding these seasonal patterns help us predict future
activity and also help us prepare for growth and strategic in-
vestments in international markets.

Visualization Meets Big Data
At a high level, our strategy for data visualization can be
divided into three main steps: high-level planning, gather-
ing raw data, and creating the visualization itself. The first

4www.processingjs.org
5had.co.nz/ggplot2/geom tile.html

step depends on the creativity of the data scientist and the
question at hand. The second step involves analyzing mas-
sive amounts of data—usually with Pig in the datacenter. Pig
scripts are executed in batch mode, which means that results
are not available immediately (job latency is dependent on
data size and cluster load). In contrast, the third step of cre-
ating the visualization is usually performed on a laptop and
thus benefits from a rapid development cycle (i.e., a browser
refresh when working with web-based tools). This creates
an impedance mismatch: waiting for Pig output, copying re-
sults out of the datacenter. Furthermore, this transfer often
involves burdensome conversion between data formats (e.g.,
from delimited files to JSON and back).

Naturally, refining visualizations require repeated itera-
tions between the second and third steps (e.g., we often
don’t know about data processing errors until we visualize
the data). Thus, transitioning between datacenter- and local-
processing is a source of friction: we identify this as a large
gap in the state of the art and thus represents an opportunity
for research. In short, how do we marry big data and visual-
ization? This challenge applies to both the development cy-
cle and particularly for interactive visualizations. The stan-
dard strategy is to pre-materialize all data that one could po-
tentially imagine visualizing, but this places an upper bound
on the amount of data possible (megabytes in browser-based
toolkits with current technologies). Furthermore, what if the
user requests data that has not been pre-materialized? Going
back to Pig to generate more results will yield long latencies,
creating a subpar user experience. This challenge cannot be
solved by simply trying to improve the speed of backend
data processing components, but requires genuine coordina-
tion between the local client and the remote data warehouse
to hide the inevitable latencies.

A natural consequence of the above arguments, we be-
lieve, is that “big data” skills are now critical for both re-
searchers and practitioners of data visualization. Data sci-
entists need an eye for how to “tell stories” with data, but
since data warehouses today are measured in petabytes, to
be effective they must also be able to manipulate raw data
themselves. This requires not only a background in human-
computer interaction, some feel for distributed processing,
but also competence in statistics and machine learning. The
ideal data scientist is part engineer, part artist—but in our
experience, an individual with this combination of skills is
difficult to find, primarily because no existing curriculum
trains students in all these areas adequately. Nevertheless,
such individuals will become increasingly valuable to orga-
nizations that struggle with ever-growing amounts of data.

References
Dean, J., and Ghemawat, S. 2004. MapReduce: Simplified data
processing on large clusters. In OSDI.

Dörk, M.; Gruen, D.; Williamson, C.; and Carpendale, S. 2010.
A visual backchannel for large-scale events. IEEE Transaction on
Visualization and Computer Graphics 16(6): 11291138.

Olston, C.; Reed, B.; Srivastava, U.; Kumar, R.; and Tomkins, A.
2008. Pig Latin: A not-so-foreign language for data processing. In
SIGMOD.

25




