
Trendminer: An Architecture for
Real Time Analysis of Social Media Text

Daniel Preoţiuc-Pietro
Department of Computer Science

University of Sheffield, S1 4DP, UK
daniel@dcs.shef.ac.uk

Sina Samangooei
School of Electronics and Computer Science
University of Southampton, SO17 1BJ, UK

ss@ecs.soton.ac.uk

Trevor Cohn
Department of Computer Science

University of Sheffield, S1 4DP, UK
t.cohn@dcs.shef.ac.uk

Nicholas Gibbins and Mahesan Niranjan
School of Electronics and Computer Science
University of Southampton, SO17 1BJ, UK

{nmg,mn}@ecs.soton.ac.uk

Abstract

The emergence of online social networks (OSNs) and the
accompanying availability of large amounts of data, pose a
number of new natural language processing (NLP) and com-
putational challenges. Data from OSNs is different to data
from traditional sources (e.g. newswire). The texts are short,
noisy and conversational. Another important issue is that data
occurs in a real-time streams, needing immediate analysis that
is grounded in time and context.
In this paper we describe a new open-source framework for
efficient text processing of streaming OSN data (available at
www.trendminer-project.eu). Whilst researchers have made
progress in adapting or creating text analysis tools for OSN
data, a system to unify these tasks has yet to be built. Our sys-
tem is focused on a real world scenario where fast processing
and accuracy is paramount. We use the MapReduce frame-
work for distributed computing and present running times for
our system in order to show that scaling to online scenarios is
feasible. We describe the components of the system and eval-
uate their accuracy. Our system supports easy integration of
future modules in order to extend its functionality.

1 Introduction
Online social networks (OSNs) have seen a rapid rise in
number of users and activity in the past years. Microblogs
or OSNs that focus on the sharing of short text messages are
amongst the most interesting and challenging for linguistic
analysis.

Example use cases of such analysis include: political par-
ties who are interested in monitoring microblogging plat-
forms. They may want to track in real-time elements like
user sentiment towards their cause. They may also be inter-
ested in frequencies of certain terms (e.g. politician names),
emerging topics and the volume of discussion on a subject.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Also, they can use these or other features in order to predict
poll or election outcomes or to estimate the impact that a
certain policy would have on the public.

For the last few years there has been a great deal of re-
search interest in OSN data. Previous applications include
predicting real world events like political polls (O’Connor et
al. 2010) or financial markets (Bollen, Mao, and Zeng 2011).
We expect our system to become a valuable resource for cor-
porate users and researchers alike.

There are several challenges for a text processing tools
when faced with OSN data. These include the short length of
messages, inconsistent capitalization patterns, ad-hoc abbre-
viations, uncommon grammar constructions and threaded
discussions of friends in a network structure. When standard
text processing tools, like part-of-speech taggers or named
entity recognition systems, have been applied to OSN data
their results have shown a significant drop in accuracy (Gim-
pel et al. 2011; Ritter et al. 2011), making their use in a
pipeline untenable. Several researchers have addressed some
of these problems in the past years, creating specific text pro-
cessing tools for OSN data. However, all of these tools were
developed separately and with no explicit emphasis on how
they would adapt to real life scenarios that include process-
ing batches of millions of items or online data processing.

We propose a framework that can combine existing tools
whilst being extensible to allow the addition of future com-
ponents. Moreover, the system is built in as pipeline with
interchangeable modules which gives the end user control
over what processing steps are required for their given ap-
plication. In order to achieve this, we keep the format of the
original data and at each step of the pipeline we augment
the output of the previous steps with extra fields correspond-
ing to the results of preceding steps. The system is built us-
ing Twitter data and the JSON data format, but can be eas-
ily adapted to data from other OSNs (e.g.Facebook/Google+
status updates) that share similar features.

AAAI Technical Report WS-12-02
Real-Time Analysis and Mining of Social Streams

38

Due to the challenges posed by massive datasets and by
the I/O bound nature of the analysis our setting lends itself
perfectly to using in the MapReduce distributed framework.
Text analysis tasks can mostly be done in parallel in the map
part while the aggregation into feature vectors, which will
form an essential part of the system in the future, is achieved
in the reduce part of the framework.

In section 2 we discuss the architecture of our system.
We are developing the system for two different use cases:
one focused on batch processing of collections of millions
of tweets and the other focused on online processing. In sec-
tion 3 we present our existing modules and suggest a list of
the modules to be integrated in our future work. We evalu-
ate the accuracy of our modules and their running times in
section 4 and we present plans for future work in section 5.

2 Architecture
The main goal in this work is the creation of a pipeline of
preprocessing tools which we have identified as being useful
in many Twitter analysis activities. We identified two main
use cases. Firstly, the batch analysis of several terabytes of
tweets and applying filters for keywords, language, etc in
order to compute aggregate counts of features, sentiment, etc
over them when dealing with archival scenarios. Secondly,
the analysis of millions of tweets per hour when dealing with
real time analysis scenarios. To address these concerns, we
propose a set of command line tools. The tools implement
the stages of our preprocessing pipeline, the stages of which
we explore in more detail in Section 3.

We expect that any particular task in the pipeline ap-
plied to an individual tweet will have little processing re-
quirements as compared to the I/O requirements of read-
ing, preprocessing and outputting in a useable format sev-
eral terabytes of compressed tweets. This I/O bound nature
of twitter analysis has been addressed in the past (both by
various authors as well as Twitter’s own in house develop-
ment team1) with the use of clusters of machines with shared
access to distributed tweets using the MapReduce frame-
work and distributed filesystem. MapReduce is a software
framework for distributed computation. MapReduce was in-
troduced by Google in 2004 to support distributed process-
ing of massive datasets on commodity server clusters. Log-
ically, the MapReduce computational model consists of two
steps, Map and Reduce, which are both defined in terms of
< key, value > pairs. The dataset being processed is also
considered to consist of < key, value > pairs. In the case of
processing twitter data, our keys are null and our values are
individual twitter statuses held in the standard Twitter JSON
format, augmented with an extra analysis map. We discuss
the data format consistency considerations in greater detail
below.

We take advantage of the relatively mature Apache
Hadoop2 MapReduce framework to apply distributed pro-
cessing to tweets. When interacting with Hadoop it is pos-
sible to dictate the map and reduce functions using either

1http://engineering.twitter.com/2010/04/hadoop-at-
twitter.html

2http://hadoop.apache.org/

Hadoop Streaming3 or writing custom Java tools interacting
with the underlying Hadoop Java libraries. Hadoop stream-
ing allows the specification of the mappers and reducers
through POSIX like standard in and standard out enabled
command line utilities. This allows for quick prototyping
using any language the user wishes, but doesn’t provide the
flexibility exposed when using Hadoop as a library in Java.
Instead we choose to implement a Hadoop enabled prepro-
cessing tool written in Java. This tool exposes the various
stages of our preprocessing pipeline as modes. The inner
components of the tool are shared between two separate
tools: a local command line utility (primarily for local test-
ing purposes) and a Hadoop processing utility. The individ-
ual stages of the preprocessing pipeline are implemented in
pure Java and exposed as modes in the tools. In the local util-
ity, individual tweets are loaded one at a time and each se-
lected pipeline stage is applied to each tweet as it is loaded.
In the Hadoop implementation the map stage is used to load
each tweet wherein each preprocessing step is applied to an
individual tweet and emitted by the Mapper and the Null re-
ducer is used as no further processing needs to occur after
map. The key consideration in the design of these tools are:

Modularity Our tools are engineered for extensibility.
Firstly, the Hadoop and Local tools are both driven
through the same “mode” specifications and implemen-
tations. To implement a new mode which works in both
tools, a simple Java interface is implemented which spec-
ifies a single function which accepts a twitter status and
adds analysis to the status’s analysis field. Furthermore,
multiple implemented modes can be executed in a single
invocation of the tool. Concretely, this results in multi-
ple analysis being performed on a single tweet while it is
in memory (in the Local tool) or multiple analysis being
performed in the single map task (in the Hadoop tool).

Data Consistency Related to modularity is the notion of
data consistency. Components of the pipeline may run in
isolation, or as a chain of preprocessing tasks. To this end
each component must be able to predict what data is avail-
able and be able to reuse or reproduce the output of pre-
ceding stages it relies upon. Concretely this means that the
original twitter status data must remain unchanged and in-
stead the Twitter status JSON map is augmented with an
“analysis” entry which is itself a map that holds all the
output of the pipeline’s stages. Implemented components
of the pipeline use this analysis map to retrieve the output
of previous stages4 and they also add their own analysis
to this map.

Reusability To guarantee the repeatability of all our ex-
periments, we will make each stage of our preprocess-
ing pipeline available to the wider community in a form
which can be easily used to reproduce our results or
achieve novel results in different experiments. To these
ends the current versions of the both tools are made avail-

3http://hadoop.apache.org/common/docs/r0.15.2/streaming.
html

4A stage has a unique name which it uses to store data.

39

able in the OpenIMAJ multimedia library5. In doing so
we allow third parties to access future releases and mod-
ule extensions, as well as complete source code access and
the ability to preprocess tweets following our methodolo-
gies.

3 Modules
As of the writing of this paper we have implemented and
tested 3 components of our preprocessing pipeline in our
analysis tools. All three stages are implemented in pure
Java. These are: Twitter specific tokenization, short text
language detection and stemming. We present a brief de-
scription of all these modules in the next subsections while
a list of planned extensions to be added in the future to our
system is presented in section 3.4.

3.1 Tokenization
Tokenization is an essential part in any text analysis system
and is normally amongst the first steps to be performed in
a preprocessing pipeline. Its goal is to divide the input text
into units called tokens, with each of these being a word, a
punctuation mark or some other sequence of characters that
holds a meaning of its own.

Tokenization of OSN data and in particular of Twitter data
poses some extra challenges than for traditional sources (e.g.
newswire). In particular, we must handle URLs, sequences
of punctuation marks, emoticons, Twitter conventions (e.g.
hashtags, @-replies, retweets), abbreviations and dates. Our
system handles all of these challenges as we show in the
qualitative evaluation. Note that the current version only
works with latin scripted languages and their conventions
(e.g. delimitation between words by punctuation or whites-
pace) and an extension to other languages (e.g. Asian lan-
guages) is planned for future versions.

3.2 Language Detection
There are many language detection systems readily avail-
able to be used for this task. The main challenge for these
when faced with OSN data is the short number of tokens
(10 tokens/tweet on average) and the noisy nature of the
words (abbreviations, misspellings). Due to the length of the
text, we can make the assumption that one tweet is written
in only one language. Most language detection tools work
by building n-gram language models for each language and
then assigning the text to the most probable language from
the trained model.

We choose to use the language detection method pre-
sented in (Lui and Baldwin 2011) which we have reimple-
mented in Java. We choose this method over others for the
following reasons: it is reported as being the fastest, it is
standalone and comes pre-trained on 97 languages, it works
at a character level without using the script information (this
way we need to feed only the text field) and it was used by
other researchers with good results (Han and Baldwin 2011).

5http://openimaj.org

3.3 Stemming
We use the traditional Porter Stemmer, which is the standard
stemmer used in NLP and Information Retrieval tasks. We
use the Snowball stemmer backed by the Terrier Snowball
stemmer implementation.

3.4 Planned modules
In addition to the modules in the previous subsections, we
have identified other tools that would be useful for users in
order to analyze OSN data and build further analysis or sys-
tems based on this. We present a list of modules to be added
in the future to our system, as well as available tools that can
be integrated in case they exist.

Location detection is the process of assigning a tweet to a
specific location. While some tweets are annotated with
geolocation information, for most this information lacks.
The main approach is trying to assign each user a home
location, each tweet being thus assigned to the location
of its author. Location detection is not trivial because
most users don’t disclose this type of information and this
has to be inferred. There are two major approaches: ei-
ther content analysis with probabilistic language models
(Cheng, Caverlee, and Lee 2010) or inference from social
relations (Backstrom, Sun, and Marlow 2010).

POS Tagging is the task of labeling each word in a text with
its appropriate part of speech (e.g. noun, verb). Research
has showed that state-of-the-art algorithms for texts de-
crease significantly in accuracy when faced with OSN
data. A tool created for this type of data was developed
in (Gimpel et al. 2011) and is freely available.

Named entity recognition is the task that extracts and clas-
sifies some of the tokens into categories like names of
persons, organizations, locations, etc. (Ritter et al. 2011)
presents the results of standard NER systems on OSN data
and builds an improved freely available tool.

Normalizer for out-of-vocabulary words. Because of the
noisy nature of the words in tweets there are many out-of-
vocabulary words (abbreviations, misspellings of existing
words) that can be mapped to vocabulary words. (Han and
Baldwin 2011) presents an attempt to solve this problem.

Spam detection is the process by which we eliminate re-
peated texts used for promotion or that have irelevant con-
tent. Including these in our analysis can skew the feature
distributions and bias future analysis.

Retrieval of messages related to a query that don’t neces-
sarily include the original query keywords. This is nec-
essary on OSN data because of their short length and
grounding in context, where users don’t repeat all the in-
formation about a topic when expressing a point of view.

User influence can be established by the number of users
receive one’s message or how well their messages are
spread. Services like Klout offer influence ratings for each
user and we can make use of the public Klout API 6 to in-
clude these scores.
6http://developer.klout.com/api˙gallery

40

Table 1: Example tweet tokenisations
Tweet A “@janecds RT badbristal np VYBZ KARTEL

- TURN & WINE< WE DANCEN TO THIS
LOL? http://blity.ax.lt/63HPL”

Tokens A [@janecds, RT, badbristal, np, VYBZ, KAR-
TEL, -, TURN, &, WINE, <, WE, DANCEN,
TO, THIS, LOL, ?, http://blity.ax.lt/63HPL]

Tweet B “RT @BThompsonWRITEZ: @libbyabrego
honored?! Everybody knows the libster is nice
with it...lol...(thankkkks a bunch;))”

Tokens B [RT, @BThompsonWRITEZ, :, @libbyabrego,
honored, ?!, Everybody, knows, the, libster, is,
nice, with, it, ..., lol, ..., (, thankkkks, a, bunch,
;))]

Sentiment can be computed using simple words lists like
MPQA (Wiebe, Wilson, and Cardie 2005).

Aggregators into feature vectors for sentiment, named en-
tities, tokens, etc. for varying time intervals.

4 Evaluation
In this section we focus on testing the accuracy of our im-
plemented components of the system. In order to produce
useful results, our system needs to perform its tasks both
quickly and with high accuracy.

4.1 Tokenization
For the tokenization module we will evaluate the perfor-
mance qualitatively by presenting some tweets that pose to-
kenization problems specific to microblogging text. Some
representative examples are presented in Table 1 and we can
conclude that our tokenizer handles OSN text very well.

4.2 Language Detection
Language detection of short and noisy text has been shown
to be a challenging problem. (Baldwin and Lui 2010) re-
port a decrease in performance from around 90-95% down
to around 70% with state-of-the-art language detection algo-
rithms when restricting the input text’s length.

We test the method that we integrated to our pipeline on
the same microblog dataset used by (Carter, Weerkamp, and
Tsagkias 2012). They report an accuracy of 89.5% when
classifying into 5 different languages. Our accuracy is 89.3%
on 2000 tweets using a 97-way classifier. For our setting, in
which we want to assign texts to many languages, we con-
clude that our language identification system performs well,
but with room for future improvement. Improvements are
suggested in (Carter, Weerkamp, and Tsagkias 2012) where
they use microblog specific information to improve accuracy
to up to 97-98% when discriminating between 5 languages.

4.3 Running time
The results in Table 2 show timings of both our Local and
Hadoop tweet preprocessing tools. Both experiments were
run on tweets generated in one day on October 10th, 2010.
The local tool was run on a single core whilst the Hadoop

Table 2: Number of tweets (in millions) analyzed and cre-
ated in an hour. Analysis performed: tokenization and lan-
guage detection

Time Local Hadoop 10% Twitter Total Twitter
1 hour 0.51 7.6 1 10

tool was run on a Hadoop cluster of 6 machines, totalling 84
virtual cores across 42 physical cores. Our timings show that
on our relatively small Hadoop cluster our tools can prepro-
cess tweets in the order of those created in a single day on
Twitter in total 7, making our tools appropriate for analysing
the tweets we have access to in real time. More importantly
for our purposes, we can easily analyse 10% of the tweets
generated per hour in under 10 minutes. Furthermore, due to
Hadoop’s ability to scale with the addition of new machines,
we believe that the addition of a few machines will allow our
tools to scale easily as Twitter grows in popularity.

5 Conclusions and Future Work
We have presented a novel open source framework for per-
forming text analysis tasks on OSN data. Our framework
presents two modes of processing, batch and online, and is
designed for fast and accurate processing in a distributed en-
vironment.

The preprocessing tools are constructed in a pipeline fash-
ion. We demonstrated a few tools adapted to the specifics of
OSN data and evaluated them, showing that new modules
can easily be added to the pipeline or activated and deac-
tivated based on the users needs. We presented results that
indicate that the system can be scaled for online processing
of streaming data.

Future work will concentrate on adding new modules for
processing data based on the suggestions from 3.4. For both
modes of usage, a future version of our system will contain
a graphical interface with which users can visualize the data
and the outcomes of the analysis. This will make our sys-
tem open to be used not only by researchers, but also for
commercial or home users for online exploratory analysis.

Acknowledgement
This research was funded by the Trendminer project, EU
FP7-ICT Programme, grant agreement no.287863.

References
Backstrom, L.; Sun, E.; and Marlow, C. 2010. Find me if you
can: Improving Geographical Prediction with Social and Spatial
Proximity. In Proc. WWW ’10, 61–70.
Baldwin, T., and Lui, M. 2010. Language Identification: The Long
and the Short of the Matter. In Proc. NAACL HLT ’10, 229–237.
Bollen, J.; Mao, H.; and Zeng, X. 2011. Twitter Mood Predicts the
Stock Market. J. Comp Sci 2(1):1–8.
Carter, S.; Weerkamp, W.; and Tsagkias, E. 2012. Microblog
Language Identification: Overcoming the Limitations of Short,
Unedited and Idiomatic Text. J. LRE.

7http://techcrunch.com/2011/10/17/twitter-is-at-250-million-
tweets-per-day/

41

Cheng, Z.; Caverlee, J.; and Lee, K. 2010. You are where you
Tweet: a Content-Based Approach to Geo-Locating Twitter Users.
In Proc CIKM ’10, 759–768.
Gimpel, K.; Schneider, N.; O’Connor, B.; Das, D.; Mills, D.; Eisen-
stein, J.; Heilman, M.; Yogatama, D.; Flanigan, J.; and Smith, N. A.
2011. Part-of-Speech Tagging for Twitter: Annotation, Features,
and Experiments. In Proc. ACL ’11, 42–47.
Han, B., and Baldwin, T. 2011. Lexical Normalisation of Short
Text Messages: makn sens a #twitter. In Proc. NAACL/HLT ’11,
368–378.
Lui, M., and Baldwin, T. 2011. Cross-domain Feature Selection
for Language Identification. In Proc. IJCNLP ’11, 553–561.
O’Connor, B.; Balasubramanyan, R.; Routledge, B. R.; and Smith,
N. A. 2010. From Tweets to Polls: Linking Text Sentiment to
Public Opinion Time Series. In Proc. ICWSM ’10.
Ritter, A.; Clark, S.; Mausam; and Etzioni, O. 2011. Named Entity
Recognition in Tweets: An Experimental Study. In EMNLP ’11.
Wiebe, J.; Wilson, T.; and Cardie, C. 2005. Annotating Expressions
of Opinions and Emotions in Language. In J. LRE, volume 1.

42

