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Abstract
Information about community structure can be useful in a va-
riety of mobile web applications. For instance, it has been
shown that community-based methods can be more effective
than alternatives for routing messages in delay-tolerant net-
works. In this paper we present initial research that shows that
information on hierarchical structures in communities can
further improve the effectiveness of message routing. This is
interesting because despite much previous work on the topic,
there have been few concrete applications which exploit hier-
archical community structure.

Introduction
It is well established that knowledge of community struc-
ture is useful for information routing in mobile social net-
works (Nazir, Ma, and Seneviratne 2009; Hui, Crowcroft,
and Yoneki 2010; Vallina-Rodriguez, Hui, and Crowcroft
2009). Information about the community to which the in-
tended recipient of the message belongs provides a larger
target to guide routing. In this paper we explore the idea
that if communities have a hierarchical organization then in-
formation about that hierarchical structure can further help
message routing. We describe an algorithm that exploits
hierarchical community structure for message routing and
present a preliminary evaluation that suggests that this algo-
rithm improves routing efficiency.

While earlier research on community-based methods for
message routing has emphasized distributed rather than cen-
tralized algorithms for community discovery and centrality
(Hui, Crowcroft, and Yoneki 2010; Vallina-Rodriguez, Hui,
and Crowcroft 2009) we feel that a combined approach is
possible, as modern mobile devices have the storage and
processing capacity to run the community finding algo-
rithms that have been considered, if a mechanism for sharing
the network structure exists.

In the next section we provide an overview of existing
research on community-based message routing and present
our algorithm, BubbleH, that exploits hierarchical commu-
nity structure. Next, we present the algorithm we use to un-
cover hierarchical community structure, H-GCE, and then
present an evaluation of the performance of the BubbleH al-
gorithm.
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Message Routing
Research into Delay Tolerant Networking (DTN) protocols
is concerned with the delivery of messages between nodes
within some dynamical, possibly mobile network, in a way
that is tolerant to intermittant connections, disconnections
and failures. This could be within networks of animals, hu-
mans, sensors, satellites or any other system of interacting
devices, objects, beings or things. Such systems are often
characterised by a sparse network of connections between
individuals that change over time. Pocket Switched Net-
works (PSN) (Hui et al. 2005) which are a sub-set of DTNs,
best describe our interests, PSN deal with human networks,
specifically, networks created by mobile devices carried by
people, for example, mobile phones. In this case, humans
interact with each other over time, and their mobile phones
communicate via radio antennae (e.g. Bluetooth or WiFi).

There are a number of approaches to delivering mes-
sages within DTNs; flooding based approaches, flood the
network with copies of messages between any nodes that
meet; epidemic-like protocols behave similarly, for example
Epidemic Routing (Vahdat and Becker 2000) transmits mes-
sages to other nodes with some probability, but limits mes-
sages by hop count to reduce overhead. These are perhaps
the most effective, but the large number of message copies
generated and sent, mean a large overhead in message trans-
mission between nodes. More conservative approaches in-
clude Spray and Wait (Spyropoulos, Psounis, and Raghaven-
dra 2005), where a limited number of messages are dis-
tributed before a phase where nodes keep the messages until
meeting the destination. Other approaches involve probab-
listic, or opportunistic mechanisms to predict future inter-
actions, such as PROPHET (Lindgren, Doria, and Schelén
2003) and Context-Aware Adaptive Routing (CAR) (Mu-
solesi and Mascolo 2009) which use knowledge about pre-
vious contacts to fuel predictions about co-locations which
are used to decide next-hop routes.

The measures for success of a DTN algorithm can be en-
capsulated by three metrics; most often the goal is to have
high delivery ratio, a low overhead cost and low delivery
latency (Crowcroft et al. 2008).

Community-Based Routing
The BUBBLERap (Hui, Crowcroft, and Yoneki 2010) pro-
tocol uses community structure to inform routing decisions,
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On node n connection to encountered node p
for all messages m held by n for destination d do

if p == d then
p← m

else if |BC(p, d)| < |BC(n, d)| then
p← m

else if BC(p, d) == BC(n, d) and
LocalRank(p) > LocalRank(n) then
p← m

else
n keeps m

end if
end for

Figure 1: BubbleH Algorithm, where BC(p, d) is the set of
all nodes which represent the smallest community, or Bridg-
ing Community containing both node p and node d.

it uses K-CLIQUE clustering (Palla et al. 2005) to gener-
ate overlapping community structure from a graph formed
from contact between nodes. An edge between two nodes is
formed when a contact occurs, and the edge weight is incre-
mented with the duration of the contact at every subsequent
meeting. Each node is given a global rank, and a rank within
each community to which they belong. Ranks are based on
their betweenness centrality globally and within each com-
munity. To take into account the dynamic nature of contact
networks, the authors also threshold edges based on the con-
nected time between nodes, edges where nodes have been
connected for less than 4.5 days are removed before the K-
CLIQUE algorithm is applied.

Incorporating Community Hierarchy in Routing
Here we present the algorithm that exploits community hier-
archical structure, which we call BubbleH. BubbleH is based
on the BUBBLERap algorithm (Hui, Crowcroft, and Yoneki
2010), which uses the notion of local and global node rank-
ing to make decisions about message passing. Node rank
is based on the betweenness centrality of each node in the
global network (global rank) and each community the node
belongs to (local rank). As with the BUBBLERap algorithm,
we calculate local rankings based on betweenness centrality,
however, we do not use global rank. Instead, we use the hi-
erarchy generated by Hierarchical Greedy Clique Expansion
(H-GCE, discussed in the appendix) to drive the mobility of
messages within the network. When a node encounters an-
other, it considers whether to pass the message on based on
how close the other node is in the network structure to the
destination node.

Figure 1 shows the BubbleH algorithm, in it we refer
to a Bridging Community (BC(p, d)), this is the smallest
community that contains the node in question, and the re-
cipient, or destination node. To find the Bridging Commu-
nity between two nodes, we find all of the communities that
the nodes share, and pick the shared community that has the
lowest member count. In the case where we have multiple
candidate communities, we choose the last candidate com-
munity found by the H-GCE algorithm. Alternatively, at this
point we could also apply further rules for choosing the com-
munity, for example; summing the weight of edges within

Figure 2: Simplified example of an overlapping hierarchi-
cal community structure. The grouping of nodes in the up-
per section relates to the community hierarchy shown in
the lower section. Communities are identified as C1 to C9,
nodes are identified as A to G. For clarity, edges between
nodes are not shown, but are weighted by the connected time
between the nodes.

the candidate communities and using the highest score or,
considering the relative ranking within each candidate com-
munity, then picking the community where nodes are closest
to each other.

To illustrate the concept, Figure 2 shows a simplified
overlapping community structure, and its associated hier-
archical structure. If we imagine that node F has a mes-
sage destined for node B, the smallest community contain-
ing both F and B is c1, this is the bridging community for
F and B. On encountering another node, F must consider
whether the encountered node has a better bridging commu-
nity than itself. For example, when meeting node C, whose
bridging community with destination node B is c9, it will
find that c9 has less members than c1, and pass the message
to C.

The intended effect of BubbleH, is to continually narrow
down the scope of the message, so that it reaches the smallest
community or target possible. We believe that in doing so, a
message has a better chance of reaching the destination node
than, as with BUBBLERap, considering communities of any
size without structure.

Hierarchical Community Finding
Any hierarchical community finding method can be plugged
into the BubbleH algorithm. Because many community-
finding methods are either divisive (e.g., the betweenness-
based algorithm introduced in (Newman and Girvan
2004)) or agglomerative (e.g., the efficient modularity-
maximization algorithm proposed in (Blondel et al. 2008)),
there is no shortage of algorithms that can produce a den-
drogram as an output. We now discuss two considerations—
community overlap and the significance of hierarchical
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structure—which guided our choice of community detection
method.

It has recently been observed that mobile phone users typ-
ically belong to several network communities, so a suitable
community finding algorithm should be capable of detect-
ing overlapping communities. (Ahn, Bagrow, and Lehmann
2010) We therefore require any community finding algo-
rithm we use for BubbleH to be capable of detecting over-
lapping communities.

Additionally, it is desirable for the hierarchical struture
used by BubbleH to be “significant,” i.e., an inherent part of
the community structure rather than an artifact of the com-
munity detection method. This second requirement is related
to a point that Fortunato made in his recent review of com-
munity detection methods (Fortunato 2010). Although most
methods, given a network, will invariably detect some opti-
mal clustering, an important question remains open:

But is the optimal clustering also significant, i.e., a rel-
evant feature of the graph, or is it just a byproduct of
randomness and basic structural properties like, e.g.,
the degree sequence?

This problem of significance looms larger when the task is
to find hierarchical community structure. For although some
community detection algorithms return a value which indi-
cates the significance of the found communities (such as the
modularity Q), very few of the methods which produce a
dendrogram also return information on which levels of that
hierarchy are significant. The methods which do produce
such values are specified to find only non-overlapping com-
munities (Clauset, Moore, and Newman 2008; Rosvall and
Bergstrom 2010).

For this reason, we developed H-GCE, a hierarchical
community detection method based on GCE (Greedy Clique
Expansion), which has been shown to perform well in net-
works with high levels of community overlap (Lee et al.
2010; Gregory 2011). In addition to producing a dendrogram
of overlapping community structure, it labels each point in
that dendrogram with a sigfinicance value. The significance
value is based on the idea that significant structure is robust
to minor random pertubations to the graph structure, and is
inspired by bootstrap resampling. For details on the algo-
rithm, see the appendix.

Preliminary Evaluation
To evaluate the performance of BubbleH, we have used
ContactSim, a discrete time event simulator designed specif-
ically for evaluating DTN routing. ContactSim is capable of
using contact traces either recorded during real-world exper-
iments or generated synthetically. In addition to BubbleH,
we have also implemented several other routing algorithms.
In order to compare the performance of using hierarchical
community structure versus the original K-CLIQUE algo-
rithm, we have implemented BUBBLERap. PROPHET, as
one of the most well-known and mature DTN routing pro-
tocols, has also been implemented to provide a standard
for comparison. Finally, we also show results for unlim-
ited flooding of messages across the network, this gives us

Figure 3: Average weekly Bluetooth connections between
participants in the MIT Reality dataset. dataset.

bounds on maximum delivery ratio and minimum delivery
latency achievable.

In this experiment, we use Bluetooth proximity traces
from the MIT Reality project (Eagle and Pentland 2005) to
drive contact events within the simulator. The authors have
captured communication, proximity, location, and activity
information from 100 subjects at MIT over the course of the
2004-2005 academic year. This data represents over 350,000
hours of continuous data on human behavior.

The MIT Reality dataset has the most number of connec-
tions between between Oct 2004 and Jan 2005 (Figure 3), so
we chose the period between 10 Nov 2004 and 10 Dec 2004
for community detection and testing, referred to as MIT-
NOV. A weighted edge list is created from MIT-NOV, which
is used by both BUBBLERap’s thresholded K-CLIQUE and
H-GCE to create community structures. For K-CLIQUE the
threshold parameter is 30 minutes which represents 0.07%
of the overall time period, with K = 3, these parameters are
analogous to the optimum settings used in (Hui, Crowcroft,
and Yoneki 2010). This creates 6 communities of average
size 3 for KCLIQUE, H-CGE creates 27 communities of
average size 16. At the start of the simulation, each node
is initialized with a message destined for each other node.
We used varying parameters to tune H-GCE to find the op-
timum solution for this network, and have included both the
best result (labeled BubbleH), and the average of all of these
tuning runs (labeled BubbleH-AVG). The results in Figure
4 show that in this initial evaluation, BubbleH achieves a
higher delivery ratio than BUBBLERap, and with a cost that
is comparable. PROPHET and BubbleH perform similarly
for delivery ratio, but with a much higher cost associated
with it. BubbleH-AVG shows an increase in delivery over
BUBBLERap, and a similar delivery cost as the best Bub-
bleH and the BUBBLERap run.

Not shown is the latency for BUBBLERap, BubbleH,
BubbleH-AVG, PROPHET and Flood, the differences be-
tween them appear to be insignificant, apart from Flood,
which as expected, gives the best possible latency, a few
points better than the other candidates.

Conclusion and Future Work
We have presented methods for identifying hierarchical
community structure and routing messages based on this
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Figure 4: Simulation results for BUBBLERap, BubbleH,
PROPHET and Flood during the MIT-NOV period.

structure. We have shown that the extra information on hi-
erarchy can improve the efficiency of message delivery. In
future work we plan to perform a more comprehensive eval-
uation to see if these improvements hold up. A key question
for the significance of this work is the extent to which hierar-
chical community structure actually exists in real networks.
This is an under-explored question and we plan to test this
across a range of real social networks.
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Appendix: Detecting hierarchical, overlapping
communities using Greedy Clique Expansion

Before describing the algorithm, we define some terms. Let
a community consist of a set of nodes. We will call a pair
of communities C and C ′ near duplicates if the distance
between them δ(C,C ′) is less than the value of ε, where

δ(C,C ′) = 1− |C ∩ C ′|
min(|C|, |C ′|) . (1)

Given a set of communities, we can merge two communities
by removing them from the set and adding their union.

H-GCE consists of two phases. The first involves identi-
fying a set of seeds and expanding these such that a dendro-
gram is formed. To find seeds, we first enumerate the set of
all cliques in the network, and then remove all cliques which
have a larger near-duplicate, as in GCE. Thus, each seed is
a clique that is not a near duplicate of a clique of equal or
greater size. We then select all seeds of the smallest size and
expand them in parallel by one node by greedily optimizing
a local fitness function–see (Lee et al. 2010) for details. Af-
ter each expansion step, we merge any pair of communities
which have become near duplicates. This two-step process
(expanding all smallest communities by one node, merging
any near duplicate pairs) is repeated until each seed has ex-
panded to contain the entire graph. At some point in this

phase all seeds will have been merged into one community.
Thus, the expansion process produces a singly-rooted tree,
or dendrogram, with seeds at the leaves and one big com-
munity containing all nodes at the root.

In this dendrogram, the path from a leaf (the seed) to the
root is the history of nodes that are added either by greedy
expansion or by merging. Thus, each point in this path can
be thought of as representing a community containing the
node added at that step in the expansion and all nodes added
previously.

There is a problem with the dendrogram produced in
phase one: even if a graph contains no community structure
or only flat community structure, the procedure will return
a dendrogram indicating hierarchical community structure–
however, this dedrogram will be a mere artifact of the algo-
rithm. The second phase of the algorithm determines which
points in the dendrogram produced in the first phase repre-
sent significant community structure. The fundamental idea
behind our approach is that if community structure is sig-
nificant, then it will be robust against small perturbations in
the graph, whereas insignificant communities will not dis-
play such stability. In other words, significant communities
will be recoverable even if some noise is added to the graph;
this idea has been previously developed in (Karrer, Levina,
and Newman 2008; Rosvall and Bergstrom 2008). This and
other approaches to measuring the significance of communi-
ties are outlined in Fortunato’s review of community finding
methods (Fortunato 2010).

Phase one leaves us with a set of seeds and a dendrogram.
The purpose of phase two is to solve the problem just identi-
fiend by labeling the points in this dendrogram as significant
or insignificant. Phase two consists of two steps: the first
step produces several dendrograms as in phase one but on
graphs that have been perturbed by randomly rewiring ten
percent of the edges in such a way that the original degree
distribution is preserved. In our experiments we create 100
dendrograms on graphs perturbed using the method outlined
in (Karrer, Levina, and Newman 2008).

In order to make sure that all graphs contain the same
seeds, we did not rewire edges within seeds. Thus, all of
these dendrograms share the same leaves and root as the one
produced on the unpertubed graph. This means that as one
traverses the path from a particular seed seed s to the root,
the nth step of the traversal will have a corresponding point
in every dendrogram, i.e., the nth parent of seed s.

Because each of these points corresponds to a commu-
nity (as explained above), the distance of two correponding
points in two dendrograms can be calculated using the dis-
tance measure in eq. 2. We call two corresponding points
similar if the communities represented by these points have
a distance less than 0.1.1 The second step of phase two com-
pares each point n in the unperturbed dendrogram with the
corresponding points n′ in the perturbed dendrograms. If n
is similar to n′ in at least 90% of the perturbed dendrograms,

1As any two communities approach the size of the entire graph,
they will become similar because they are forced to contain the
same nodes. For this reason, we use a different similarity measure
for two communities if they both contain more than half the nodes
in the graph, based on the proportion of nodes that they both ex-
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then it is labeled as significant. This defininition of signifi-
cance is similar to the one used in (Rosvall and Bergstrom
2008). Finally, H-GCE returns the communities correspond-
ing to all points in the original dendrogram which were la-
beled as significant in phase two.
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