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Abstract

Growing pool of public-generated bits like online so-
cial networking data provides possibility to sense so-
cial dynamics in the urban space. In this position paper,
we use a location-based online social networking data
to sense geo-social activity and analyze the underlying
social activity distribution of three different cities: Lon-
don, Paris, and New York. We find a non-linear distri-
bution of social activity, which follows the Power Law
decay function. We perform inter-urban analysis based
on social activity distribution and clustering. We believe
that our study sheds new light on context-aware urban
computing and social sensing.

Introduction

The recent explosion in deployment of pervasive systems
like sensor and cellular networks, and the emergence of the
user-generated information sharing systems like online so-
cial networks produce massive amount of data. This data
encompasses actions of people, dynamics of cities, and how
they evolve over time. It forms digital footprints (Girardin
et al. 2008) that allow researchers to better understand hu-
man mobility (Gonzalez, Hidalgo, and Barabasi 2008), city
dynamics (Reades et al. 2007), and socio-economic (Eagle,
Macy, and Claxton 2010), and could ultimately help those
who manage and live in urban areas to configure more live-
able, sustainable, and efficient cities (Foth 2008).

At the same time, these digital footprints create possibil-
ity of inferring social dynamics in the urban space, which
in turn can provide information about how a city functions
and can potentially influence many aspects of urban man-
agement by assisting local authorities, service providers, en-
terprises, and even citizens themselves to make more inform
decisions and hence create a more efficient urban environ-
ment.

Data collected using pervasive systems has been used to
sense physical dynamics such as face-to-face social network
structure (Eagle, Pentland, and Lazer 2009), activity signa-
ture of the physical environment (Calabrese, Reades, and
Ratti 2010), and even regional boundaries of a country (Ratti
et al. 2010).
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While most analyses of online social networking data
have implications and applications only within the cyber
world (e.g. (Leskovec 2008), (Cha et al. 2010)), here we are
realizing the linkage between the cyber and physical worlds
and utilizing this connection as the crowdsensing mecha-
nism — particularly for socio-geographical aspect.

Online Social Networking Data

In this work, we use the data collected from a location-based
online social network called Foursquare (Foursquare 2011).
The 4sq network allows GPS-enabled mobile phone users to
interact by communicating their whereabouts to their friend
group. The user can check in at a venue, which can be a
site of social encounter either located in a building (e.g.
restaurant, bar, art gallery) or an open space (e.g. park). Its
venue information provides dynamic geo-social aspect that
distinguishes it from that of generic online social network
e.g. Twitter, Facebook, Linkedin. Checking in at a venue
can also earn points and rewards for the user. The typical
reasons for checking-in include tracking friends, reporting
a new venue, recommending a place, sharing experience,
playing game (competing to become the ‘major’ of a place),
and looking for nearby venues. The data acquired from 4sq
thus provides us with the social interaction density and its
geographical relation to the physical landscape. In this study,
we analyze 800,00 data records from the 4sq network con-
sisting of checkins and corresponding venues along with the
venue’s categories from three different cities: London, Paris,
and New York City, over about 16 months (March 2009
to July 2010). The data has been collected by a systematic
crawl of the 4sq public search API (Bawa-Cavia 2010).This
allows us to capture a snapshot of aggregated geo-social in-
teraction and reveals how social activity is distributed in the
urban space. Figure 1 shows the overall geographical density
of social activity (checkins), which creates the signature of
the three cities. With the venue’s category information along
with the volume of checkins of each venue, we can cap-
ture a richer signature of the city as shown in Fig. 2 where
each dot represents a venue, the dot’s size corresponds to the
amount of checkins, and the color indicates different cate-
gories: green, red, blue, magenta, and cyan represent Shop,
Arts, Food, Park, and Nightlife, respectively. Therefore the
data allows individual as well as cross analysis of the urban
space.
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Figure 1: Geographical distribution of social interaction (checkins)
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Figure 2: Geographical distribution and density of social activity

Social Activity Distributions

Clearly, one can observe a non-uniform distribution of social
activity for each city. This different social activity volume
across different areas suggests different social hubs of differ-
ent activity categories. This motivates us to explore further
in terms of how each social activity is distributed (statisti-
cally) and how social hubs are distributed geographically.

It turns out that social activity is distributed in a non-
linear fashion as shown in Fig. 3. Each social activity ap-
pears to follows the Power Law distribution, which means
that only a few places attract high social activity while the
majority of places show very low social interaction — hence
those few places represent the ‘social hubs’. Note that plots
in Fig. 3 are in log-log scales and each social activity dis-
tribution can be described by a power-law decay function
y = kax~% where y denotes checkins, k is a constant, and x
represents the rank with the decay term «. From Fig. 3, Food
and Nightlife appear to form the strongest activity hubs —
most clustered.

To quantify this non-linear characteristic for further inter-
urban analysis, we estimate the power-law decay term «
according to the maximum-likelihood fitting methods with
goodness-of-fit tests based on the Kolmogorov-Smirnov
statistic and likelihood ratios (Clauset, Shalizi, and Newman
2009). The estimated values of « are plotted in Fig. 4 and it
confirms our previous observation of Food and Nightlife be-
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ing the top clustered social activities. The decay values also
reveal a surprisingly low variation among social activities
in New York City, which implies that the social interaction
of each activity category is distributed in a similar fashion.
Paris appears to also have this similar characteristic but with
higher decay rates — stronger social hubs. Among the three
cities, London seems to be different than others in the way
that Food and Nightlife activity form much stronger social
hubs than other social activity types — e.g. there are major
restaurants and night clubs that seem to attract majority of
people.

To get a sense of how social centers are distributed ge-
ographically, we cluster each social activity category based
on the geo-location using the k-means clustering technique.
With the number of clusters & = 4 (chosen arbitrarily),
Fig. 5, 6, and 7 show resulting clusters (with centroids) of
each social activity for London, Paris, and New York, re-
spectively. This provides to some extent a geographical dis-
tribution of social centers of each social activity category.
With our arbitrary choice of number of clusters, London’s
Park and Shop show a similar cluster distribution while
Food and Nightlife are relatively correlated, and Arts is
showing a lone different social clustering. For Paris, Arts’
and Nightlife’s social clusters are geographically distributed
similarly while Food, Park, and Shop are sharing a similar
pattern. New York, on the other hand, is having different so-
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Figure 3: Power-law distribution of each activity category
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cial clustering patterns among Park, Shop, and Arts while
Food and Nightlife are showing a relative similarity as also
observed in London.

Conclusion

Urban spaces are being blanketed by streams of digital data
generated by inhabitants. This large pool of bits creates
a unique opportunity for harvesting and analyzing behav-
ioral data to better understand about the city and people.
In this position paper, we analyze the aggregated data over
about 16 months from a location-based online social net-
work called Foursquare. The data has been collected from
London, Paris, and New York. With the unique characteris-
tic of the Foursquare network that allows the users to interact
(check in) with the physical landscape (venue), we are able
perform a geo-social and inter-urban analyses. With differ-
ent venue’s categories in our data, we find that social activ-
ity is distributed in a non-linear fashion and is following a
Power Law distribution with Food and Nightlife social ac-
tivity being the strongest social hubs across the three cities.
Statistically we show that New York has a low variation in
social distributions among different activity types compared
with other two cities. Moreover, we observe a similar so-
cial clustering between Food and Arts in London and New
York, but Paris on the other hand appears to have Arts and
Nightlife social activity clustered comparably.

There are however some limitations in this study. The de-
mographics and penetration of the Foursquare network in the
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Figure 5: Social clusters of each activity category in London
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Figure 6: Social clusters of each activity category in Paris

cities of study can also impact to the results. The arbitrary
selection of number of centroids in our k-means clustering
may not be a representative for social centers. Nonetheless
we believe that to some extent this study helps us realize
the usefulness of online social network data that can be uti-
lized to better understand physical space and sociality. As
our future direction, we will continue to investigate on the
sole use of this data to understand the city as well as inte-
grating it with data from other sources e.g. transportation,
telecommunication to enrich context inference.
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