
A Bootstrapping Approach to
Identifying Relevant Tweets for Social TV

Ovidiu Dan∗

Lehigh University
Bethlehem, PA, USA

ovidiu.dan@lehigh.edu

Junlan Feng
AT&T Labs Research

Florham Park, NJ, USA
junlan@research.att.com

Brian D. Davison
Lehigh University

Bethlehem, PA, USA
davison@cse.lehigh.edu

Abstract

Manufacturers of TV sets have recently started adding social
media features to their products. Some of these products dis-
play microblogging messages relevant to the TV show which
the user is currently watching. However, such systems suffer
from low precision and recall when they use the title of the
show to search for relevant messages. Titles of some popular
shows such as Lost or Survivor are highly ambiguous, result-
ing in messages unrelated to the show. Thus, there is a need to
develop filtering algorithms that can achieve both high preci-
sion and recall. Filtering microblogging messages for Social
TV poses several challenges, including lack of training data,
lack of proper grammar and capitalization, lack of context
due to text sparsity, etc.

We describe a bootstrapping algorithm which uses a small
manually labeled dataset, a large dataset of unlabeled mes-
sages, and some domain knowledge to derive a high precision
classifier that can successfully filter microblogging messages
which discuss television shows. The classifier is designed to
generalize to TV shows which were not part of the train-
ing set. The algorithm achieves high precision on our two
test datasets and successfully generalizes to unseen television
shows. Furthermore, it compares favorably to a text classifier
specifically trained on the television shows used for testing.

1 Introduction

We address the problem of filtering social media messages
for use in Social TV applications. Some television sets and
set-top boxes which integrate data from social networks can
display messages about the TV show the user is currently
watching. These messages are displayed next to the video
or overlayed on top of the image. They are shown individ-
ually or in some cases as part of aggregate statistics on the
TV show. Current Social TV applications search for these
messages by issuing queries to social networks with the full
title of the television program. Unfortunately, this naı̈ve ap-
proach leads to low precision and recall.

Our main goal is to retrieve microblogging messages rel-
evant to any given TV show with high precision. Our work
makes several contributions. First, we propose an iterative

∗Part of this work was performed while the first author was vis-
iting AT&T Labs Research.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bootstrapping approach to training a classifier using a lim-
ited amount of training data and a large dataset of unla-
beled messages. The classifier is designed to generalize to
TV shows that were not part of the training set. Second,
based on our intuition and experiments, we develop features
which can be used to filter messages for Social TV appli-
cations. Third, we evaluate our bootstrapped classifier on a
combination of two manually labeled datasets. We show that
our classifier achieves high precision, successfully general-
izes to unseen television shows, and matches or surpasses
the baseline which is trained on specific television shows.

Online social networks such as Twitter have attracted
much interest from the academic community in the last few
years (Kwak et al. 2010). Social TV projects have used au-
dio, video, and text chat links to test interaction between
users watching TV in separate rooms. More recently there
has been work on combining these two fields by display-
ing messages from social networks in Social TV interfaces
(Mitchell et al. 2010). Unfortunately such attempts used the
naı̈ve method of searching for the title of the TV show.
While this paper is the first one to approach the task of fil-
tering messages about TV shows, we found two papers that
discuss the somewhat similar task of determining if tweets
refer to a given company. In (Tellez et al. 2010) the authors
used four term expansion approaches to improve the perfor-
mance of K-Means clustering on short texts, with K set to
two. Their approaches outperformed the baseline, which was
the normal K-Means algorithm. (Yerva, Miklós, and Aberer
2010) attempted to build a generic classifier with the same
goal. They achieved a precision of 71% for the positive class.
To the best of our knowledge our work is the first to identify
messages for Social TV.

2 Bootstrapping Approach

Labeling training data for hundreds or thousands of televi-
sion shows is a costly and time consuming process. Instead,
we propose a bootstrapping method which uses a small set of
labeled data, some domain knowledge, and a large unlabeled
dataset to train a classifier which generalizes to hundreds of
television programs. Figure 1 illustrates the iterative process
of this approach.

First, we retrieve candidate messages from the social me-
dia website. This retrieval step is needed because most social
media websites offer search APIs which require queries. We

462

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media



Figure 1: Overview of our bootstrapping method

collect a list of TV show titles from IMDB1 and TV.com2.
For some shows these websites list several variations of the
main title. We use each title in the list as a query to the search
API provided by Twitter and retrieve candidate messages for
each show.

Second, we train an initial binary classifier, which we re-
fer to as Classifier-I, using a small dataset of manually la-
beled messages. The features used for training are described
in Section 4. Let S = {s1, s2, . . . , sn} be a set of n televi-
sion shows and let ki be the set of queries we use to search
for candidate messages which might be relevant to show si,
∀i = 1 . . . n. For the purpose of this paper we will define
ki to only contain the title variants of the show si which we
collected in the first step. However, some of the features de-
scribed in Section 5 could be used to extend this set, greatly
improving overall recall. Let m be a message retrieved by
using a query in ki. Then, we train the classifier:

f(i,m) =

{
1, if m makes a reference to show si

0, if m does not make a reference to show si

Note that i is an input of f , along with the message m. Since
we know m was retrieved by searching for ki, we can use
this context when we compute the values of the features.
For a new unlabeled message, we compute a list of IDs of
candidate TV shows by matching the text of the message
with the keywords in ki. We can test each of these candidate
IDs against the new message by using the classifier.

Third, we train an improved classifier, Classifier-II. To
achieve this, we use Classifier-I to assign labels to a large
corpus of unlabeled messages. From this corpus of messages
we derive more features which are combined with the ones
from Classifier-I to train Classifier-II. Optionally, we can it-
erate this step using the second classifier to further increase
the quality of the extra features. We will elaborate on the
features used for Classifier-II in Section 5.

3 Datasets

We used three datasets for training, testing, and deriving new
features for the classifiers. Dataset D1 was labeled using the
Amazon Mechanical Turk Service and dataset D2 contains
messages labeled by our team. Table 1 shows statistics about
D1 and D2. Furthermore, a third dataset, DU , consists of
10 million unlabeled Twitter messages collected in October
2009 using the Streaming API provided by Twitter.

1http://www.imdb.com/
2http://www.tv.com/

Table 1: Summary of manually labeled datasets

Show Yes No N/A Total usable

D1 Fringe 634 227 139 861
Heroes 541 321 138 862
Monk 317 589 94 906

D2 Survivor 325 175 500
Cheaters 101 49 150
Firefly 68 102 170
House 80 20 100
Weeds 97 65 162

4 Classifier-I

We developed features which capture the general character-
istics of messages which discuss TV shows. Each of these
features have one single value between 0 and 1 (normalized
when needed).

Terms related to watching TV. We developed three fea-
tures based on the observation that TV-related microblog-
ging messages contain general terms commonly associated
with watching TV. tv terms and network terms are short
manually compiled lists of keywords, such as watching,
episode, hdtv, netflix, and cnn, bbc, pbs. When classifying
messages we check if they contain any of these terms. If
they do, we set the corresponding feature to 1.

Some users post messages which contain the season and
episode number of the TV show they are currently watching.
Since Twitter messages are limited in length, this is often
written in shorthand. For instance, “S06E07”, “06x07” and
even “6.7” are common ways of referring to the sixth season
and the seventh episode of a particular TV show. The feature
season episode is computed with the help of a limited set of
regular expressions which can match such patterns.

General Positive Rules. We observed that many Twitter
messages about TV shows follow certain language patterns.
Table 2 shows such patterns. <start> means the start of the
message and <show name> is a placeholder for the real
name of the show in the current context si. When a message
contains such a rule, it is more likely to be related to televi-
sion shows. We use these rules in the feature rules score.

Table 2: Examples of general positive rules

<start> watching <show name>

episode of <show name>

<show name> was awesome

We developed an automated way to extract such gen-
eral rules and compute their probability of occurrence. We
started from a manually compiled list of ten mostly un-
ambiguous TV show titles, which contains titles such as
“Mythbusters”, “The Simpsons”, “Grey’s Anatomy”, etc.
We searched for these titles in all 10 million messages from
DU . For each message which contained one of these titles,
the algorithm replaced the title of TV shows, hashtags, refer-
ences to episodes, etc. with general placeholders, then com-
puted the occurrence of trigrams around the keywords. The

463



result is a set of general rules such as the ones shown in Ta-
ble 2, along with their occurrences count in the messages
which matched the titles. If we find one of these rules in an
unlabeled message, we use the normalized popularity of the
rule as the value of the feature rules score.

Features related to show titles. Although many social
media messages lack proper capitalization, when users do
capitalize the titles of the shows this can be used as a feature.
Consequently, our classifier has a feature called title case,
which has the value 1 iff the title of the show is capitalized.

Another feature which makes use of our list of titles is ti-
tles match. Some messages contain more than one reference
to titles of TV shows. If any of the titles mentioned in the
message (apart from the title of the current context si) are
unambiguous, we can set the value of this feature to 1. For
the purpose of this feature we define unambiguous title to
be a title which has zero or one hits when searching for it in
WordNET (Fellbaum 1998). WordNET contains both single
words and compound expressions.

Features based on domain knowledge crawled from on-
line sources. One of our assumptions is that if a mes-
sage contains names of actors, characters, or other key-
words strongly related to the show si, the probability of
f(i,m) being 1 increases. To capture this intuition we devel-
oped three features: cosine characters, cosine actors, and
cosine wiki, which are based on data crawled from TV.com
and Wikipedia. For each of the crawled shows, we collected
the names of actors and their respective characters. We also
crawled their corresponding Wikipedia page. Using the as-
sumptions of the vector space model we compute the cosine
similarity between a new message and the information we
crawled about the show for each of the three features.

5 Classifier-II

We used Classifier-I to label the messages in DU . We then
derived new features for Classifier-II.

Positive and negative rules. Features pos rules score
and neg rules score are natural extensions of the feature
rules score. Whereas rules score determined general posi-
tive rules, now that we have an initial classifier we can de-
termine positive and negative rules for each show in S indi-
vidually. For instance, for the show House we can now learn
positive rules such as episode of house, as well as negative
rules such as in the house or the white house.

Related users and hashtags. Using messages labeled by
Classifier-I, we can determine commonly occurring hash-
tags and users which often talk about a particular show. We
use messages labeled as “Yes” by Classifier-I to calculate
the occurrences of users and hashtags for each individual
show. These features, which we call users score and hash-
tags score, can be used to expand the set ki for each show,
thus improving the overall recall of the system. For unla-
beled messages, the value of these features is given by the
normalized popularity of the users or hashtags for the cur-
rent show si.

Tweet volume. As users of social media websites often
discuss a show around the time it airs, we develop the feature
rush period. We keep a running count of the number of times
each show was mentioned in every 10 minute interval. If
the number of mentions is higher than a threshold equal to
twice the mean of the mentions of all previous 10 minute
windows, we set the feature to 1. Otherwise, we set it to 0.
An important advantage of this method is that it does not
require information on TV listings or timezones.

6 Evaluation

Unless otherwise stated, all experiments in this section were
carried out on the D1+D2 dataset using 10-fold cross vali-
dation, and all results show the performance of the Yes label.

Evaluation of Classifier-I

The results for Classifier-I are shown in Figure 2. The clas-
sifier labeled SVM is the Java implementation of LIBSVM,
Linear corresponds to LIBLINEAR, J48 is an implementa-
tion of the C4.5 decision tree classifier, and Rotation Forest
(RF), is a classifier ensemble method. Please refer to (Hall
et al. 2009) for more information. We ran all classifiers with
their default settings. Figure 2 shows that we can achieve
a precision of over 90% with both the SVM and Linear. In
fact, all four classifiers achieve a precision over 85%. Unfor-
tunately, the results suffer from poor and inconsistent recall.
SVM and Linear, which achieve the best precision, have es-
pecially bad results. Overall, the best classifier for this ex-
periment is Rotation Forest, which achieves an F-Measure
of 83.9%.

Figure 2: Classifier-I - 10-fold cross validation on D1 +D2

Evaluation of Classifier-II

10-fold Cross Validation. Next, we turn our attention to
the results for Classifier-II, which are shown in Figure 3.
We can easily see that the recall has improved significantly
for all four classifiers. Again, the best performing classifier
is Rotation Forest, with an F-Measure of 87.8%. Also, the
Linear classifier yields the best precision of 89% while still
maintaining a respectable F-Measure of 85.6%.

Leave one feature out. The purpose of this experiment is
to observe what are the effects of leaving one of the features
out when training Classifier-II. We run 14 experiments, one
for each feature. Each time we remove one feature and run

464



Figure 3: Classifier-II - 10-fold cross validation on D1 +D2

the experiment with the remaining ones. The classifier we
used was Linear (LIBLINEAR). Figure 4 shows the change
in Precision and F-Measure. The bars labeled “none” show
the results with all fourteen features and are our basis for
comparison. Because of lack of space we only show the top
five features which had the largest drop in F-Measure. The
largest drop is only 3.6% absolute, which suggests there is
no feature which vastly dominates the others, and that they
are used in ensemble by the classifier.

Figure 4: Precision and F-Measure when removing a feature -
D1 +D2

Leave one show out. We argued that one major advan-
tage of this classifier is that it generalizes to TV programs
on which it has not been directly trained. To test this claim
we ran eight experiments where we trained the classifier on
seven of the shows and tested on the eighth. Figure 5 shows a
summary of the results. As before, we used the Linear clas-
sifier. Except for the show House, all F-Measure values are
above 80%, with a mean of 83.6%. The F-Measure com-
puted on all shows for the Linear classifier is 85.6%. At an
absolute difference of 2% we can conclude that our classifier
successfully generalizes to new shows.

Comparison against a baseline Finally, we compare our
classifier against a baseline built by training a text classi-
fier on one show at a time. Our goal here is to show that our
more general classifier can come close to or even surpass one
specifically trained on a particular show. This was in fact an
important argument in our motivation. The features of the
baseline classifier are the terms of each message normalized
by the maximum word occurrence in the message. Often in
such types of messages each term has an occurrence of 1, as

Figure 5: Precision, Recall, and F-Measure when leaving one
show out

they are limited to 140 characters. We will again use the Lin-
ear classifier to run the experiments. We use the four shows
from D1 and D2 for which we have at least 500 samples.
Figure 6 shows that our classifier achieves better precision
than the baseline. F-Measure results, not shown here due to
lack of space, are similar. In conclusion, we achieved our
goal of being comparable to or surpassing the results of a
baseline specifically trained on a particular show.

Figure 6: Comparison to baseline - Precision for 10-fold cross-
validation

References
Fellbaum, C. 1998. WordNet: An electronic lexical database. The
MIT press.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. 2009. The WEKA data mining software: An update.
ACM SIGKDD Explorations Newsletter 11(1):10–18.

Kwak, H.; Lee, C.; Park, H.; and Moon, S. 2010. What is Twitter,
a social network or a news media? In Proceedings of the 19th
international conference on World wide web, 591–600. ACM.

Mitchell, K.; Jones, A.; Ishmael, J.; and Race, N. 2010. Social
TV: toward content navigation using social awareness. In Proceed-
ings of the 8th international interactive conference on Interactive
TV&Video, 283–292. ACM.

Tellez, F. P.; Pinto, D.; Cardiff, J.; and Rosso, P. 2010. On the
difficulty of clustering company tweets. In Proceedings of the 2nd
international workshop on Search and mining user-generated con-
tents, SMUC ’10, 95–102. New York, NY, USA: ACM.

Yerva, S. R.; Miklós, Z.; and Aberer, K. 2010. It was easy, when ap-
ples and blackberries were only fruits. In Third Web People Search
Evaluation Forum (WePS-3), CLEF, volume 2010.

465




