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Abstract

The central idea in designing various marketing strategies for
online social networks is to identify the influencers in the
network. The influential individuals induce “word-of-mouth”
effects in the network. These individuals are responsible for
triggering long cascades of influence that convince their peers
to perform a similar action (buying a product, for instance).
Targeting these influentials usually leads to a vast spread of
the information across the network. Hence it is important to
identify such individuals in a network. One way to measure
an individual’s influencing capability on its peers is by its
reach for a certain action.
We formulate identifying the influencers in a network as a
problem of predicting the average depth of cascades an indi-
vidual can trigger. We first empirically identify factors that
play crucial role in triggering long cascades. Based on the
analysis, we build a model for predicting the cascades trig-
gered by a user for an action. The model uses features like
influencing capabilities of the user and their friends, influ-
encing capabilities of the particular action and other user and
network characteristics. Experiments show that the model ef-
fectively improves the predictions over several baselines.

Introduction

The rapid development of social networks such as Facebook,
Flickr, Twitter, Linked-In on the Internet has resulted in so-
cial influence emerging as a complex force, governing the
diffusion of the influence in the network. The emergence
of social influence has allowed various companies to look
beyond direct marketing to find potential customers to tar-
get. The rich neighborhood information that a social network
provides about a user, can be leveraged to make intelligent
marketing decisions.

Viral marketing involves identifying potential customers
who can leverage their social contacts to influence their
friends to perform certain action (such as clicking an ad).
One way to quantify the influence exerted by these individ-
uals is to predict the average length of cascade they trigger
among their friends for a certain action. Once these individ-
uals are identified they can be targeted to achieve large cas-
cades and hence a wide reach. We try to tackle this problem
of predicting average cascades triggered by an individual for
a given action using a machine learning approach.
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Most of the existing research work quantifies the influ-
ence as a function of the influencing capabilities of the tar-
get user only. Ideally, it should also depend on how sus-
ceptible a friend is to getting influenced by the target user.
Indeed, a friend with lesser susceptibility to influence may
‘minify’ some of the influence from the user. Besides, the
depth of the cascade also depends on the particular action
to be propagated in the network. For example, a target user
may influence a friend to click on an ad on buying a football
match ticket, but she may not be able to convince to click
on an ad on IPhone. Aral et al. (2010) talk about how in-
corporating viral features in the product (action) can induce
peer influence in the network. This phenomenon of trigger-
ing of a cascade for an action as a function of the target
user, their friends and the action itself is well explained by
Watts and Dodds (2007) as -“The triggering of cascades in
a network has numerous analogs in natural systems. For e.g,
some forest fires are many times larger than average; yet no
one would claim that the size of a forest fire can be in any
way attributed to the exceptional properties of the spark that
ignited it or the size of the tree that was the first to burn.
Major forest fires require a conspiracy of wind, temperature,
low humidity, and combustible fuel that extends over large
tracts of land”.

From the above discussions it is clear that the concept of
an influencer varies based on the particular action performed
by that user. Tang et al. (2009) show that users have varying
degree of influences for different topics. Thus, the problem
of identification of influencers should also take the particular
action into account while identifying the influencers.

Based on these foundations, we first analyze how factors
like user’s and their neighborhood’s influencing ability and
action popularity affect a cascade at a user for an action.
Next, we build a regression model that predicts the aver-
age cascade triggered for an action by a user. The model
uses features like influence capabilities of the target user and
his/her friends, how prone the friends are to getting influ-
enced by the target user, the influencing capability of the
action, and other network and user characteristics.

In a nutshell, the major contributions of the paper are:

• We empirically try to find if, apart from the user’s influ-
ence abilities, other peripheral factors like the popularity
of the action, influence abilities of the user’s neighbor-
hood also play a role in the spread of the contagion.
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• We propose a novel method to identify individuals who
can lead to large cascades of information in a social net-
work using a predictive model.

• We use a social graph generated from Flickr for our ex-
periments. The data has about 1M users, about 1B action
events and some 200K odd distinct actions.

Related work

The work most relevant to our proposed method is by
Richardson and Domingos (2001; 2002), Kempe et al.
(2003), Hartline et al. (2008) and Leskovec et al. (2007).
Richardson et al. (2001) present a probabilistic model to
mine the network value of each individual based on the in-
fluence exerted by the user on her neighbors. They show that
user’s network value and her intrinsic value can be combined
to make optimized marketing decisions. Kempe et al. (2003)
propose a greedy hill climbing strategy for picking top-k in-
fluentials which works better than certain network heuris-
tics like degree-centrality. Chen et al. (2009) improve the
running time of the greedy algorithm and propose certain
degree-discount heuristics that improve the influence reach.
More recently, Bakshy et al. (2011), analyze the propagation
of influence in twitter and explore various marketing strate-
gies governed by the cost of identifying the influencers.

The problem of identifying top influentials has been mod-
eled in various other ways. Leskovec et al. (2007) formu-
late it as a problem of outbreak detection, while, Hartline et
al. (2008) pose it as a problem of revenue maximization. In
most of the previous work, the analysis of influence propa-
gation was confined to the users and their social neighbor-
hood. In this work, we try to find if the particular action that
propagates also plays a role in the propagation.

Recently, there has been some work on estimating the in-
fluence probabilities (probability of a user influencing oth-
ers). Tang et al. (2009) argue that the influence exerted by
an individual varies across topics. Goyal et al. (2010) outline
various static and dynamic models for estimating the influ-
ence probabilities. Saito et al. (2008) employ expectation-
maximization (EM) algorithm to learn the influence proba-
bilities for the independent cascade model.

Singla et al. (2008) go on to show that people who are
connected often share their interests and personal character-
istics, which proves the existence of homophily in social net-
works. Anagnostopoulos et al. (2008) outline a timestamp
shuffling test to assess if the social network exhibits a signif-
icant influence effect. Concurrently, Aral et. al (2009) come
up with a dynamic matched sampling estimation framework
that identifies both homophily and influence effects in a so-
cial network. Fond and Neville (2010) propose that influence
effects are consequence of change in user attributes and ho-
mophily is present in the network if the network structure
change over time. Cha et al. (2008) study the information
dissemination in social graphs generated from Flickr data.
Bhatt et al. (2010) build a model to predict the future adop-
tion of the PC to Phone product for the Yahoo! IM network.

Problem Formulation

In this section, we present the problem formulation and in-
troduce certain terminologies. Consider a set of users in a

social network, connected with some relation R. The no-
tion of R varies across contexts, say, in social networks
such as Flickr, Facebook, Linked-In or Twitter, the relation
can be - being a friend/follower, while in an Instant mes-
saging environment relation can be interaction between the
users. The relation R can be represented by an undirected
graph (U,E), where U is the set of users and E is the set
of edges: ∃i,j(ui, uj), where (ui, uj) exists if and only if
ui, uj are connected by relation R. In addition, each user u
has features such as age, gender, no. of actions performed
etc. For each user u ∈ U , we represent the set of features as
Xu = {xu

1 , x
u
2 , ..., x

u
n}. Each user u performs certain action

a ∈ A at time tau. Action definition may vary from context
to context, for example clicking on an ad, buying a prod-
uct online etc. In this paper, we consider action as ‘joining a
group’ on Flickr. With each action a ∈ A, we have a set of
features Su = {sa1 , sa2 , ..., sam}. Next we define the notion of
action propagation.

Action Propagation (ui
a−→ uj): An action a is said to

propagate from user ui to user uj , if following holds: (1).
ui and uj are connected with relation R, that is, (ui, uj) ∈
E. (2) User ui performs action a before user uj , that is,
taui

< tauj
. (3) Action a from user uj should follow within

a certain time interval after ui performs the action, that is,
(taui

− tauj
) < τ .

The time constraint for action propagation ((taui
− tauj

) <
τ ), is kept in order to have a tighter bound on the credit
given to user ui for propagating action a to user uj . This
follows inline with the findings of Anagnostopoulos et al.
(2008) who avail the evidence of temporal clustering to cor-
roborate the claims of peer influence. The significance of τ
can be explained by the fact that after performing action a at
time taui, if user ui can not propagate the action to uj (that is,
make user uj perform action a), within time τ , it becomes
non-contagious after τ with respect to action a. After time τ
even if the uj performs action a, it is not credited to user ui.

Each user u after performing a particular action a, be-
comes contagious for time τ and tries to propagate the action
to its neighbors in the social graph. Say, after time tau < τ ,
u succeeds in propagating the action to some of its neigh-
bors, these neighbors in turn become contagious and try to
propagate the action to their neighbors and so on. This leads
to a chain of actions (referred to as cascades), initiated at
user u for a particular action a, propagating across its neigh-
bors within few hops. These action propagations from one
user to other can be well represented in the form of directed
acyclic graphs. In this paper, we refer to such graphs as ac-
tion graphs. Action Graph: An action graph for action a,
Ga = (Ua, Ea) consists of a set of Users Ua who have per-
formed action a at some point of time and set of directed
edges (ui, uj) such that action a was propagated from node
ui to uj . Propagation set �P a(u): Each user u has a propa-
gation set �P consisting of all the immediate neighbors ui of
u in social graph such that there was an action propagation
from u to ui. Formally, �P a(u) = {ui|u a−→ ui}

Sample graphs for an action a initiated at users u1 and u7

are shown in the Figure 1. Identifying the set of users who
can trigger large cascades for a particular action is of great
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Figure 1: Sample action graphs for an action a

interest in various contexts. For example, an advertiser might
want to start showing a particular ad to these special set of
identified individuals who can promise more reach through
her neighbors. The reach of a user can be quantified by the
average number of cascades triggered by a user for an action
a, which leads us to the definition of reach. Let reacha(u) is
the reach of a user u for an action a, and can be recursively
defined as follows:

reacha(u)=

⎧⎪⎪⎨
⎪⎪⎩

∑

ui∈�Pa(u)

1 +
1

2
∗
∑

uj∈�Pa(ui)

reacha(uj) if �P a(u) �= ∅

0 otherwise

A user gets a credit of 1 for an action propagation to its
immediate neighbor. The significance of (12 ) times the reach
of the descendants of a user u in the action graph can be
understood as assigning decaying credit as we move far-
ther from the node u in the action graph1. For example, in
Figure 1(a), u1 gets the complete credit for the propaga-
tion of action to u2 and u4, while gets credit of 0.5 times
( 1
21 ) the reach of u2 and u4, and 0.25 ( 1

22 ) times the reach
of u3 and so on. User u1 gets a credit of 1 for all the im-
mediate neighbors in the action graph (i.e all the members
of �P a(u1)) So, the overall reach of user u for action a is
= (1 + 0.5(1 + (0.5 ∗ 1)) + 1 + 0.5(1)) = 3.25. While
counting the reach of a node, we only consider reach of
the descendant nodes only once, if that node is encountered
again through some other path we discount it. For exam-
ple, in Figure 1(b), while computing reacha(u7), the edge
u10

a−→ u9 will not be counted, while reach of u9 will
be counted only once as u9 has already been considered
through edge u7

a−→ u9. The overall reach of user u7 is
= (1 + 1 + 0.5(1) + 1 + 0.5(1)) = 4. While calculating
the reach, the paths are considered based on the timestamp at
which they were added to the action graph. The paths are tra-
versed in the ascending order of timestamp. In Figure 1(b),
the descendants of u7 were added to the action graph in the
following order: u8, u9, u10. Hence these nodes will be tra-
versed in the same order.

Identifying the small set of users who can elicit greater
reach for an action can be formulated as the problem of pre-
dicting the reach for each user and for a particular action.
Now we can formally define the problem as:

Problem: Given a social graph and past action events, ac-
curately predict the reach of each user for a particular action
(reacha(u)).

1Any appropriate value would have sufficed, we propose to use
( 1
2d

) for a depth d

Dataset

To apply our framework, we use Flickr social network data
for the experiments. The dataset is a longitudinal combina-
tion of the following four datasets : (1) User data (X) , which
contains information about the Flickr users (2)Contacts data
(ui, uj): This data gives the friends information. We use this
data to build the social graph. (3) User-group membership
(u, a, tau): contains information about a user joining a par-
ticular group and the time of joining the group. (4) Group
data (S): tells various details about a particular group such
as number of members, topics for the group.

Algorithm 1 Computing the Action Graph
1: Input: C: (ui, uj), A: (u, a, tau)
2: Output: Ga = (Ua, Ea)
3: for each tuple (ui, uj) in C do
4: for each action event (u, a, tau) in A do
5: if entry for ui&uj exists in A then
6: if (taui

− tauj
) < τ then

7: add ui and uj to Ua;
8: add a directed edge ((ui, uj)) to Ea;
9: else if (tauj

− taui
) < τ then

10: add ui and uj to Ua;
11: add a directed edge ((uj , ui)) to Ea;
12: end if
13: end if
14: end for
15: end for

The social graph built from the above data contains
O(1M) users and O(100M) edges. The action graph for
the actions is built using data (2) and (3) as described in Al-
gorithm 1.

The action graph without the τ constraint contains O(1B)
edges. Figure 2(a) shows the CDF for the propagated actions
in the dataset. As it can be seen, the duration of propaga-
tion for some actions is even greater than 7 months. Figure
2(b) shows the frequency of the actions propagated within
2 weeks.2 It should be noted that the x and y axis in Figure
2(b) are log scaled. As shown, it shows an exponential de-
cay with time. The tail after 2 weeks till 7 months is quite
long (not shown in the Figure 2(b)). The exponential decay
can be attributed to the fact that when a user performs an
action, her friends are more likely to adopt as they feel an
urge to do the action and with time the urge may mitigate.
Hence, if a user performs the same action as its peer after a
substantially long time, there is a good chance that the user
performed the action just because they have common inter-
ests (Homophily). In order to confidently attribute the action
propagation to peer influence, we keep the τ value to one
week, which gives us a better bound on the influence. A sim-
ilar approach of keeping a time constraint to distinguish peer
influence from homophily has been used before in Goyal et
al. (2010) as well. For each user u-action a pair, we compute
the reacha(u), if u has ever performed action a.

2Figure 2(b) is rescaled to preserve data confidentiality
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Figure 2: (a) CDF for the action events in the dataset. (b) Frequency of actions propagated within two weeks. (c) Reach v/s
number of friends of u

Factors Affecting Cascades

In this section, we answer the question - what are the fac-
tors that can play a role in determining the reacha(u) for a
user u and action a. In particular, we consider various user-
level, social neighborhood level and action level factors in
the following subsections.

User Level Factors

We first study, how reacha(u) of u changes with the num-
ber of friends of u in the social network. Intuitively, more
the number of friends a user has, better are her chances of
propagating the action a to the next hop. Figure 2(c) shows
reacha(u) as a function of number of friends of u. The
reacha(u) values are averaged in the particular bins. For
example, value 200 on x-axis represents average reach for
all the users u having number of friends less than or equal
to 200, but greater than 100. As shown, the reacha(u) in-
creases as the number of friends of u increase. This is ex-
pected as high degree users have better opportunity of prop-
agating the action as compared to low degree users.

Next, we analyze how reacha(u) varies with respect to
the influencing capability (influence probability) pinfu of u.
It is the ratio of number of times an action was propagated
from u to its at least one of its immediate neighborhood by
the total number of actions performed by user u.

pinfu =

∑
∀a,ui

I(u
a−→ ui)

#{actions by u}
where I is an indicator function taking value 1, if there was
action propagation for action a by user u to at least one
of the neighbor. Ideally, more the influence probability of
a user better should be its reach. As shown in Figure 3(a),
reacha(u) increases monotonically with the influence prob-
ability of the user. In addition, we refer to the extent to which
a user is prone to getting influenced by others as the prone
probability of user u (pproneu ). It is the ratio of the number
of times u did an action under influence by the total number
of actions performed by u.

pproneu =

∑
∀a,ui

I(ui
a−→ u)

#{actions by u}
The prone probability captures the susceptibility of a user

to peer influence. Figure 4(a) shows the pproneu versus the
reacha(u) graph (red line). The reach increases proportion-
ally till pproneu reaches 0.06 and after that we find a gradual
improvement.

Social Neighborhood Factors

In this section, we explore the role of a user’s social neigh-
borhood in determining her reach. We consider the influence
probability pinfui

and pproneui
of all users ui in the immediate

neighborhood (hop one) and at second and third hop levels.
The motivation behind analyzing these factors is to see if
the neighborhood user ui’s influence probability pinfui

, con-
tributes to reacha(u). For each user, the influence probabil-
ity of u’s neighborhood at hop k, pinfu:hopk, is the average of
pinfui

for all users ui at hop level k from u. Mathematically,

pinfu:hopk =

∑
∀ui:hopk

pinfui

#{ui at hop k from u}
Figure 3(b), (c) and (d) plots reach as a function of

pinfu:hopk for k=1, 2 and 3 respectively. As before, the
reacha(u) values are averaged in that particular bin. As
shown, the neighborhood influence probabilities increase the
reacha(u) increases monotonically. As with influence prob-
abilities, we also consider the prone probabilities of the so-
cial neighborhood up to 3 hop levels from user u.

pproneu:hopk =

∑
∀ui:hopk

pproneui

#{ui at hop k from u}
The idea behind considering the prone probability of the

neighboring users is that more susceptible the users in neigh-
borhood to peer influence, better are the chances of the cas-
cades increasing further. Figure 4(b),(c) and (d) shows the
pproneu:hopk versus reacha(u) plot for k =1, 2 and 3. The sudden
decline in the reacha(u) value (for values after 0.05) can be
attributed to the fact that there were very few pproneui

values
greater than 0.05 to have a confident estimate of reacha(u).

We hypothesize that if the influence probability is more
than a certain threshold, we deem that factor as active and
say that it is contagious. For example if the P inf

u value is
less than 0.5, we consider the user to be inactive. On the
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Figure 3: Effect of influence probability on the reach of user at hop level (one, two, three)
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Figure 4: Effect of influence prone probability on the reach of user at hop level (one, two, three)

Active Avg. log(reach) Avg. log(reach)
Factors for pinfu for pproneu

Only u 2.00 2.69
u+h1 2.74 3.27
u+h1+h2 3.23 3.31
u+h1+h2+h3 3.47 3.78

Table 1: Reach increases as neighborhood influence and
prone probabilities cross the threshold

other hand, if the P inf
u exceeds 0.5, the user is considered

to be contagious (active). For all the user, action and neigh-
borhood influence probabilities (P inf

u , P inf
a , P inf

u:hopk), the
threshold is set to 0.5. Similarly, if the prone probability is
less than a certain threshold, we hypothesize that the factor
is not susceptible to peer influence (Inactive). In our case,
if the user (P prone

u ) or the neighborhood prone probability
(P inf

u:hopk) is less than 0.03, we say that it is inactive, oth-
erwise we consider the user/neighborhood to be active. We
choose to use the average values of P inf

u and P prone
u as

threshold. However, the resulted presented next were simi-
lar for other values of thresholds (0.3, 0.4, and 0.6) for P inf

u
and (0.02 and 0.04) for P prone

u .
Table 1 confirms our hypothesis, where row 1 corresponds to
only the user being active (both in terms of pinfu & pproneu ).
Row 2 corresponds to the event that only the user and hop1
neighbors are active (while hop2 and hop3 neighbors are In-
active) and so on. As shown, as the neighborhood becomes
active, the reach for user u increases (column 1). Prone prob-
abilities (column 2) at each hop show a similar trend, the
reach increases as the neighborhood at each hop becomes
susceptible to peer influence.

Action Level Factors

As with the user level and social neighborhood features, we
expect the reach to increase with the popularity of the action.
One way to assess the popularity, in our case, is by counting

Active Avg. log(reach)
Factors for pinfu

Only u 2.21
Only a 3.60
u + a 4.04
u + a + all hops 4.24

Table 2: Reach increases as user, action and hop become
active in conjunction

the number of users doing that action (count of users joining
the group). Figure 5(a) shows the ‘count of users doing ac-
tion a’ versus the reacha(u) plot. To find how influenceable
the action is, we define action’s influencing ability (pinfa ) as
the ratio of number of users doing action a under a friend’s
influence by the total number of users doing action a.

pinfa =

∑
∀ui

I(ui
a−→ uj)

#{users ui doing a}
Figure 5(b) shows reacha(u) as a function of pinfa and con-
firms the intuition that as the action a becomes more in-
fluencing the reach for the action also increases. Next, we
check if the action level factors combined with the user and
social neighborhood factors have any impact on the reach
value. As before, we fix on a threshold (0.5) and if pinfa is
greater than the threshold, we say that the action is con-
tagious (active). Table 2 analyses the impact on reach as
the user, action and the neighbors become active. Row 1
gives the average reach value when only the user is active
(pinfu >= 0.5 and pinfa < 0.5). In row 2, only the action is
active, while in row 3, both user and action are active and so
on. This shows, all the factors, when active in conjunction,
can increase the reacha(u) value further.

Experimental evaluation
Based on our analysis in the previous section, we propose a
solution to the problem posed of predicting the reach value
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Figure 5: Action level factors

for an action and a user. In this section, we describe the train-
test split, model and features used.

Training and Testing

From the data, we have a user-action pair and the observed
reacha(u) value. We compute the log of the reacha(u) and
use it as the reach value. For each user-action pair the goal
is to predict the reach of the cascade, as if we did not know
about the cascade event. Each entry in our dataset consists
of the following tuple, (u, a, F , log(reacha(u))). where F
is the set of features described earlier.

All the feature values in F are computed on the action log
built till time M . We use the data from time M +1 onwards
for the experiments. The idea is to learn from the past user
and action behaviors to effectively predict the reach in future
for a user action pair. In our case a user only performs an
action once, hence we test the model on (u, a) such that u
did not perform action a earlier in time M . In cases, where
a user can perform the same action more than once (for e.g.
clicking on an ad), the model can also be used to predict the
reach for the same user-action pair.

We split our data into ratio 60:30:10 for training, testing
and validation respectively. We ensure that these sets are
non-overlapping w.r.t the actions, that is, all the tuples (u,
a, F , log(reacha(u))) having action a will go into either
of the training, test or validation set. As our goal is to pre-
dict a real valued number (reacha(u)), we cast it as a re-
gression problem. We use Gradient boosted decision trees
(GBDT) as a regression model for predicting the reach val-
ues. The GBDT parameters, number of trees and number of
leaf nodes per tree were set to 150 and 100 respectively. We
use the mean square error (MSE) as our primary measure of
performance. This metric is the mean squared error between
the models predicted reacha(u) value and the actual (or ob-
served) reach value. We also use KL-divergence as the other
performance measure. The improvements in the model are
reported on the MSE metric. We use two baselines to com-
pare our model:

Baseline-1: This baseline is the average reach of the user
u across all the actions in data before time M.

reacha(u) =

∑
∀ai

reachai(u)

#{actions by u}
Baseline-2: This baseline is the average reach of the ac-

tion(group) a for all the users in the data before time M.

reacha(u) =

∑
∀ui

reacha(ui)

#{users doing action a}
Features

The features used in by the model are described in Table 3.
Apart from the features listed, we consider log(f+1) as ad-
ditional set of features for all numeric features f. We also
had an ‘always on’ feature set to 1. In all, the model uses 41
features. In the user level feature set, apart from influence
and prone probability, we also consider the average influ-
ence probability of the user across all its friends and all the
actions performed.

avginf(u) =
#{actions propagated}
n friends ∗ n actions

The social graphs and the action logs can be effectively used
to measure the importance of a user in the network. Specif-
ically, one can leverage the HITS algorithm by Kleinberg
(1998) and the Page rank algorithm by Page et al. (1998) to
identify the authoritative users from the graph.

The HITS algorithm gives two scores per node: Authority
score and the hub score. Both these score fit well into the in-
fluencer - influenced paradigm. The authoritative score give
an indication of the influencing power of a user and the hub
score tries to measure susceptibility of a user to peer influ-
ence. The user rank score is similar to the page rank score,
which gives the authority of the user in the action graph.

The action level features n users a, n prone users a
and pinfa indicate the action popularity. Besides this, we also
include a Flickr specific feature topic cnt. Each group in
Flickr mention various topics related to the group. We con-
sider the number of topics in each group as a feature.

The social neighborhood features try to capture the capa-
bility of user u’s neighborhood to extend the cascades trig-
gered by u. In addition to the average influence and prone
probabilities, we also compute the number of friends of u at
each hop level.

Results

In this section, we present the combined effect of various
factors on the reacha(u) value. Table 4 shows the perfor-
mance of both the baselines and the machine learned model.
In Table 4, Improvement 1 & 2 show improvements over
baseline 1 & 2 respectively. All the results presented are
statistically significant at 99% significance level. We used
paired t-test for testing statistical significance.

As shown, the prediction model gives a good improve-
ment of 48.65% over baseline-1 and an improvement of
14.15% over baseline-2. Besides, the model does better
than baseline-2 by 8.46% in terms of improvements over
baseline-1.

Also, baseline-2 performs substantially better compared
to baseline-1. On further investigation of the data, it was
found that the average coefficient of variation for the actions
was 0.29, while for users the average was 0.47. Hence lesser
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Set Feature Description

User-level
Features

n friends Number of friends of the user
n actions Number of actions performed by u
gender M - male, F - Female, X - Unknown
user rank Rank of the user (similar to page rank)
auth Authority score of the user in the action graph using HITS algorithm
hub Hub score of the user in the action graph using HITS algorithm.
nuuj Number of actions propagated
pinf
u Influence probability of the user

pprone
u Prone probability of the user

avginf(u) Average influence across all users and groups

Neighborhood
Features

n hop k Number of users at hop level k=(1,2,3)
pinf
u:hopk Average of influence probabilities of all friends at hop k from the users

pprone
u:hopk Average of prone probabilities of all friends at hop k from the users

Action-level
Features

n user a Number of user who have performed action a
n prone users a Number of users doing action a under a peer influence
pinf
a Influence probability of action.

topic cnt Number of topics in the group(specific to Flickr dataset)

Table 3: Feature set

System MSE KL Div.- Improv- Improv-
(* 0.1) ement1 ement2

Baseline-1 5.20 2.54 - -
Baseline-2 3.11 1.53 40.19 % -

Model 2.67 1.27 48.65% 14.15 %

Table 4: Improvements in the model compared to baselines

Rank Feature Category Importance
1 n users a action 100
2 pinfa action 41.34
3 pinfu user 28.63
4 n prone users a action 22.78
5 pinfu:hop1 Neighborhood 20.46
6 log(n hop 1) Neighborhood 14.37
7 log(n friends) user 12.11
8 pinfu:hop3 Neighborhood 11.65
9 pproneu:hop3 Neighborhood 11.42

10 pproneu user 9.03
11 log(n hop 2) Neighborhood 8.79
12 log(hub) user 8.68

Table 5: Feature importance: Top 15 features

variance in the reach values amongst the action, results in
baseline-2 performing better than baseline-1. In addition to
the overall performance of the model, It is also interesting to
assess the contribution of each feature in the learned model.
Table 5 shows the feature importance for the top 15 features.
The feature contributions are scaled with respect to the top
performing feature n users.

As shown in Table 5, the top few performing features
come from the action-level category showing a healthy con-
tribution in the overall prediction. Which means that more
contagious the action better is the reach of that action for a
user. Followed by the top few action level features, there are
various user and social neighborhood level features showing
decent contributions.

τ System MSE KL Div. Improv- Improv-
(* 0.1) ement1 ement2

Four
days

Baseline-1 4.55 2.51 - -
Baseline-2 2.81 1.49 38.24% -

Model 2.46 1.23 45.93% 12.45%

Six
days

Baseline-1 4.84 2.58 - -
Baseline-2 2.93 1.48 39.46% -

Model 2.55 1.25 47.31% 12.96%

Two
weeks

Baseline-1 5.77 2.60 - -
Baseline-2 3.32 1.57 42.46% -

Model 2.84 1.28 50.77% 14.46%

Table 6: Improvements in the model compared to baselines
for various τ values

The results presented in Table 4 were for τ = 1 week.
Next, we also vary the τ value to see if changing the value
affects any of the improvements obtained in Table 5. Table 6
shows the performance of the model for various τ values. It
should be noted that changing the τ value changes the action
graphs and hence the influence, prone probabilities. Most of
features are recomputed for every different value of τ . As
shown in table 6 the improvements over both the baselines
are consistent across various τ values.

Discussion
We have analyzed various factors contributing to the cas-
cades triggered by a user. The analysis yields several inter-
esting insights - There is a direct association between the
reach and various user, action and neighborhood factors. The
analysis confirms that more contagious these factors are big-
ger is the reach for that user and the action.

While there is an evidence of social influence, the action
itself carries a large amount of predictive power augmented
by user and the neighborhood’s influencing abilities. Analy-
sis of feature contribution and the performance of baseline-2
complement the claims of action being the dominant factor
in the prediction of the spread of the action. As mentioned,
less variance in reach values across the actions as compared
to the users results in action playing a more important role.
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Bakshy et al. (2011) did a similar work of predicting the
average size of the cascades for a user. Interestingly, they
found out that the content itself carries little predictive power
in determining the length of cascades. However, there are a
few subtle differences - They focus on evaluating various
targeting strategies to maximize spread of influence, while
we focus on analyzing the contribution of the social network
and action on the cascades.While they consider the content
itself for predicting the cascades, we look at the popularity
of the content as a feature. Also, as the governing social dy-
namics is different for both the networks, the cascades are
driven by different diffusion mechanisms.

In this paper, the model learns the prediction from the past
events of the user and action. In cases, where we need to
identify the set of influencers for new actions for which we
do not have past information, the features can be inherited
from similar actions having past information. The notion of
similarity largely depends upon the context. In our case, For
a new group, similarity can be based on the topics that are
discussed in the groups. Other intuitive example, where new
actions are prevalent is the diffusion of ad’s influence in so-
cial network where clicking on the ad or buying a particu-
lar product being advertised can be considered as an action.
In such cases ads from the same advertiser, or for the same
product can be used as a measure. In scenarios where the
notion of similarity between actions can not be defined, the
task of identifying the influencers has to rely on the user and
the neighborhood features.

Distinguishing homophily and influence is a tough prob-
lem in general. In this paper, we avail temporal difference
between the action to distinguish homophily and influence.
Most of research that involves distinguishing homophily and
influence is either at the network level or is difficult to im-
plement on large online networks. There is a clear need for a
more robust and scalable technique to distinguish these two
types of diffusions at the action propagation granularity.

Conclusion

In this paper, we analyzed the correlation between users, ac-
tion and their reach. Analysis showed that there is a positive
correlation between the reach and various user-level, action-
level and neighborhood-level factors. When these factors
were considered together the combined effort increases the
reach value further. Based on this analysis, we built a ma-
chine learning model to predict the average reach for a user-
action pair.

We empirically showed that the action, user and the neigh-
borhood features combined together give a good prediction
of the average reach of a user in the graph. While features
pertaining to action play a dominant important role in the
prediction, they are aptly supported by the user and neigh-
borhood features. The model performs better than several
baselines systems.

We used social graphs generated from Flickr for our ex-
periments. It will be interesting to repeat the experiments on
other social online graphs such as Twitter, Facebook or an
IM network to see if they show similar trends. We consider
this as a future work.
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