
Social Mechanics: An Empirically Grounded Science of Social Media

Kristina Lerman, Aram Galstyan, Greg Ver Steeg
USC Information Sciences Institute

Marina del Rey, CA

Tad Hogg
Institute for Molecular Manufacturing

Palo Alto, CA

Abstract

What will social media sites of tomorrow look like? What
behaviors will their interfaces enable? A major challenge for
designing new sites that allow a broader range of user actions
is the difficulty of extrapolating from experience with current
sites without first distinguishing correlations from underlying
causal mechanisms. The growing availability of data on user
activities provides new opportunities to uncover correlations
among user activity, contributed content and the structure of
links among users. However, such correlations do not nec-
essarily translate into predictive models. Instead, empirically
grounded mechanistic models provide a stronger basis for es-
tablishing causal mechanisms and discovering the underlying
statistical laws governing social behavior. We describe a sta-
tistical physics-based framework for modeling and analyzing
social media and illustrate its application to the problems of
prediction and inference. We hope these examples will inspire
the research community to explore these methods to look for
empirically valid causal mechanisms for the observed corre-
lations.

1 Introduction

The study of social systems is in the midst of a transforma-
tion into a hard science. While a confluence of factors is re-
sponsible for this transformation, at the core, it is driven by
the widespread availability of detailed data about human be-
havior enabled by social media. People are joining sites such
Twitter, Digg, Flickr, Delicious, and YouTube among oth-
ers, to post or find interesting content, talk about themselves
and things they find interesting, connect to and interact with
friends and like-minded people through online social net-
works. Traces of human activity are exposed by the sites
themselves, often for 3rd parties to build value-added ap-
plications on top of the data, with researchers becoming un-
intended beneficiaries. While the availability of data affects
the kinds of questions social scientists can now ask about
individual and group behavior (Lazer 2009), we focus on
an equally dramatic data-driven transformation in the prac-
tice of research. The goal of this practice is to uncover basic
statistical laws of social interactions that generalize across
different social media data sets. We describe how these dis-
coveries can be used to empirically ground models that help
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explain and predict social behavior. Understanding these es-
sential ingredients of social interactions and behavior will
allow us to design future social media sites to effectively
achieve specific goals, such as optimizing a public good or
acting as a computational system.

In this position paper we describe the statistical
mechanics-inspired approach we use to study two problems
commonly encountered in social data mining: prediction and
inference in networks. A common solution used by the ma-
chine learning and data mining communities involves ap-
plying statistical regression-based methods to classify large
available data sets according to features in the data. Such
methods can identify correlations among sets of features or
behaviors, which are then used to predict outcomes in new
cases. However, these approaches are limited in their abil-
ity to identify causal mechanisms. Experiments, especially
with multiple randomly-selected groups (Salganik, Dodds,
and Watts 2006), are a more powerful approach, but they are
seldom practical in the social media domain.

Statistical mechanics provides an alternative framework
for studying social media. We explain the approach and il-
lustrate with applications to social media analysis. Stochas-
tic models can be used to identify key mechanisms relat-
ing the design choices of social media sites to the collective
behavior observed on them (Lerman 2007a; Hogg and Ler-
man 2009; Hogg and Szabo 2009; Iribarren and Moro 2009;
Castellano, Fortunato, and Loreto 2009). These models con-
sider a few key features of the social media web site to de-
fine a set of states among which users and content transition
probabilistically. By comparing predictions of the models to
observed user behavior, such models could aid development
of future social media services by identifying key mecha-
nisms leading to successful outcomes. In Section 2 we show
how we used stochastic modeling to study social dynamics
of news aggregator Digg and used these models to predict
popularity of content on this site (Lerman and Hogg 2010).

As another illustration, we study dynamics of social con-
tagion (e.g., information spread) on online social networks.
Understanding this process is crucial to identifying influ-
ential users, predicting how far contagion will spread, and
identifying methods to enhance or impede its progress.
Existing works in this area correlate user features with
observed outcomes (e.g., cascade size) (Cha et al. 2010;
Bakshy et al. 2011) without investigating the mechanisms
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underlying social contagion, or they study the contagion
process (Leskovec, Adamic, and Huberman 2007; Romero,
Meeder, and Kleinberg 2011) without examining its effect
on macroscopic properties of the system (e.g., cascade size).
However, details of the underlying dynamic process, specif-
ically, the mechanism for social contagion, dramatically im-
pacts our understanding of network structure and behavior,
as well as the choice of metrics used for network analy-
sis (Ghosh and Lerman 2010; Ghosh et al. 2011). In Sec-
tion 3 we show how we used (Ver Steeg, Ghosh, and Ler-
man 2011) empirical analysis and simulations to investigate
the effect network structure and contagion mechanism have
on the macroscopic properties of social contagion.

For the inference task, we consider the problem of detect-
ing communities in social networks, which can be loosely
defined as a group, or cluster of well connected nodes,
with relatively lower density of links across different clus-
ters (Newman 2006). Understanding community structure is
important for adequately describing various dynamical pro-
cesses unfolding on networks (Arenas, Dı́az-Guilera, and
Pérez-Vicente 2006; Galstyan and Cohen 2007; Gleeson
2008; Dorogovtsev et al. 2008), and a large number of meth-
ods for finding communities have been proposed (for a re-
cent survey of existing approaches see (Fortunato 2010)).
Recent research has also focused on the feasibility of de-
tecting such structures, assuming they are present in the net-
work. Results for the planted partition graph models sug-
gest that clusters can be recovered with arbitrary accuracy if
sufficient data (link density) is available (Condon and Karp
2001). More recently, this problem of cluster delectability
in sparse graphs has been addressed within a statistical me-
chanics framework (Reichardt and Leone 2008). In partic-
ular, it was shown that clustering in the sparse planted par-
tition model is characterized by a phase transition from de-
tectable to undetectable regimes as one increases the over-
lap between the clusters (Reichardt and Leone 2008). We
examine the cluster-detection problem in semi-supervised
settings, showing how different types of background knowl-
edge about the clusters alter the detection threshold.

Statistical physics-based approaches will not replace tra-
ditional machine learning and data mining algorithms. The
former are reductionist at their core. Guided by empirical
analysis, they look for simple mechanistic (causal) models
and underlying statistical principles that allow for a deeper
understanding and predictability. As a tradeoff, the models
lose specificity, which means they cannot predict outcomes
for any specific individual, only for a population on average.
Despite these drawbacks, statistical physics-based methods
complement existing machine learning and data mining ap-
proaches, and inspire this community to look for empirically
valid causal mechanisms for the observed correlations.

2 Stochastic Models of Social Dynamics
Descriptions of social media typically focus on aggregate
behavior of the large numbers of users that is captured
by average quantities. Such quantities include average rate
at which users contribute and rate content, and explicitly
link to other users. Stochastic models provide a useful ap-
proach to understanding the dynamics of aggregate behav-

iors. These models are similar to approaches used in statisti-
cal physics, demographics, epidemiology (Ellner and Guck-
enheimer 2006) and macroeconomics, where the focus is not
to reproduce the results of a single observation, but rather to
describe the typical behaviors and relations among aggre-
gate quantities, such as vaccination policy and fraction of
infected population or interest rates and employment.

We represent an individual entity, whether a user or con-
tributed content, as a stochastic process with a few states.
This abstraction captures much of the individual complexity
and environmental variability by casting individual’s actions
as inducing probabilistic transitions between states. While
this modeling framework applies to stochastic processes of
varying complexity, we focus on processes that obey the
Markov property, namely, a user whose future state de-
pends only on her present state and the input she receives. A
Markov process is captured by a state diagram showing the
possible states of the user and conditions for transition be-
tween those states. This approach is similar to compartmen-
tal models in biology (Ellner and Guckenheimer 2006). For
instance, in epidemiology such models track the progress of
a disease as shifting individuals between states, or compart-
ments, such as susceptible and infected.

We assume that all users have the same set of states, and
that transitions between states depend only on the state and
not the individual user. That is, the state captures the key
relevant properties determining subsequent user actions. A
choice of states to describe users results in grouping users in
the same state into the same compartment for modeling. The
aggregate state of the system can then be described simply
by the number of individuals in each state at a given time.
That is, the system configuration at this time is defined by
the occupation vector: �n = (n1, n2, . . .) where nk is the
number of individuals in state k.

A key requirement for designing stochastic models is to
ensure the state captures enough of the large variation in in-
dividual behavior to give a useful description of aggregate
system properties. This is particularly challenging when in-
dividual activity follows a long-tail distribution, such as seen
in some epidemics (Lloyd-Smith et al. 2005), as well as in
social media web sites (Wilkinson 2008). In our case, in-
cluding user link information as part of the state accounts
for enough of this variation to provide reasonable accuracy,
in particular significantly improving predictions compared
to direct extrapolation of voting rates without accounting for
the properties of the web site user interface.

The next step in developing the stochastic model is to
summarize the variation within the collection of histories
of changing occupation vectors with a probabilistic descrip-
tion. That is, we characterize the possible occupation vectors
by the probability, P (�n, t), the system is in configuration �n
at time t. The evolution of P (�n, t), governed by the Stochas-
tic Master Equation (Kampen 1992), is almost always too
complex to be analytically tractable. We can simplify the
problem by working with the average occupation number,
whose evolution is given by the Rate Equation

d〈nk〉
dt

=
∑
j

wjk(〈�n〉)〈nj〉 − 〈nk〉
∑
j

wkj(〈�n〉) (1)
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where 〈nk〉 denotes the average number of users in state k at
time t, i.e.,

∑
�n nkP (�n, t) and wjk(〈�n〉) is the transition rate

from configuration j to configuration k when the occupation
vector is 〈�n〉.

Using the average of the occupation vector in the transi-
tion rates is a common simplifying technique for stochas-
tic models. A sufficient condition for the accuracy of this
approximation is that variations around the average are rel-
atively small. In many stochastic models of systems with
large numbers of components, variations are indeed small
due to many independent interactions among the compo-
nents and the short tails of the distributions of these com-
ponent behaviors. More elaborate versions of the stochastic
approach give improved approximations when variations are
not small, particularly due to correlated interactions (Opper
and Saad 2001) or large individual heterogeneity (Moreno,
Pastor-Satorras, and Vespignani 2002). User behavior on the
web, however, often involves distributions with long tails,
whose typical behaviors differ significantly from the aver-
age. In this case we have no guarantee that the averaged ap-
proximation is adequate, even when aggregating the behav-
ior of many users . Instead we must test its accuracy for par-
ticular aggregate behaviors by comparing model predictions
with observations of actual behavior, as we report below.

In the Rate Equation, occupation number nk increases
due to users’ transitions from other states to state k, and de-
creases due to transitions from the state k to other states. The
equations can be easily written down from the user state di-
agram. Each state corresponds to a dynamic variable in the
mathematical model — the average number of users in that
state — and it is coupled to other variables via transitions
between states. Every transition must be accounted for by a
term in the equation, with transition rates specified by the
details of the interactions between users.

In summary, the stochastic modeling framework is quite
general and requires only specifying the aggregate states of
interest for describing the system and how individual user
behaviors create transitions among these states. The model-
ing approach is best suited to cases where the users’ deci-
sions are mainly determined by a few characteristics of the
user and the information they have about the system. These
system states and transitions give the rate equations. Solu-
tions to these equations then give estimates of how aggregate
behavior varies in time and depends on the characteristics of
the users involved.

An Example: Digg

With over 6 million registered users, the social news aggre-
gator Digg is one of the more popular news portals on the
Web. Digg allows users to submit and rate news stories by
voting on, or ‘digging’, them. There are many new submis-
sions every minute, over 16,000 a day. Every day Digg picks
about a hundred stories that it believes will be most interest-
ing to the community and promotes them to the front page.
Digg’s front page is created by the collective decision of its
many users. Digg’s user interface defines how users post or
discover new stories and interact with other users. A model
of social dynamics has to take these elements into account
when describing the evolution of story popularity.
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Figure 1: State diagram of user behavior for a single story. A
user starts in the ∅ state at the left, may find the story through
one of the three interfaces and may then vote on it. At a given
time, the story is located on a particular page of either the
upcoming or front page lists, not both. This diagram shows
votes for a story on either page p of the front pages or page q
of the upcoming pages. Only fans of previous voters can see
the story through the friends interface. Users in the friends,
front or upcoming states may choose to leave Digg, thereby
returning to the ∅ state (with those transitions not shown in
the figure). Users reaching the “vote” state remain there in-
definitely and can not vote on the story again. Parameters
next to the arrows characterize state transitions.

A newly submitted story goes on the upcoming stories list,
where it remains for a period of time, typically 24 hours, or
until it is promoted to the front page, whichever comes first.
The default view shows newly submitted stories as a chrono-
logically ordered list, with the most recently submitted story
at the top of the list, 15 stories to a page. To see older sto-
ries, a user must navigate to page 2, 3, etc. of the upcoming
stories list. Promoted stories (Digg calls them ‘popular’) are
also displayed as a chronologically ordered list on the front
pages, 15 stories to a page, with the most recently promoted
story at the top of the list. To see older promoted stories, user
must navigate to page 2, 3, etc. of the front page. Users vote
for the stories they like by ‘digging’ them.

Digg allows users to designate friends and track their ac-
tivities, i.e., see the stories friends recently submitted or
voted for. The friend relationship is asymmetric. When user
A lists user B as a friend, A can watch the activities of B
but not vice versa. We call A the fan of B. A newly submit-
ted story is visible in the upcoming stories list, as well as
to submitter’s fans through the friends interface. With each
vote, a story becomes visible to the voter’s fans through the
friends interface, which shows the newly submitted stories
that user’s friends voted for.

A prior study of social dynamics of Digg (Hogg and Ler-
man 2009) used a simple behavioral model that viewed each
Digg user as a stochastic Markov process, whose state dia-
gram with respect to a single story is shown in Fig. 1. Ac-
cording to this model, a user visiting Digg can choose to
browse the front pages to see the recently promoted stories,
upcoming stories pages for the recently submitted stories, or
use the friends interface to see the stories her friends have re-
cently submitted or voted for. She can select a story to read
from one of these pages and, if she considers it interesting,
vote for it. The user’s environment, the stories she is seeing,
changes in time due to the actions of all the users. We cre-
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Figure 2: Evolution of the number of votes received by six
stories compared with model solution.

ated a model based on these states and transitions, matching
the way Digg shows stories to users, how those users browse
the web site, and the diversity of how stories appeal to the
user community.

We evaluated this model using voting activity and a snap-
shot of the social network on Digg in June 2006. Figure 2
shows the behavior of six stories that were promoted to the
front page and the corresponding solution of the rate equa-
tions from the model. In the model, a story has two char-
acteristics: the number of fans of the story’s submitter and
the probability a user seeing the story will vote for it (the
story’s “interestingness”). The number of fans is given in our
data, but the interestingness must be estimated by matching
the rate equation solution to the observed data. Thus each
story has a single adjustable parameter for the model. Over-
all there is qualitative agreement between the data and the
model, indicating that the features of the Digg user interface
we considered can explain the patterns of collective voting.
Specifically, the model reproduces three generic behaviors
of Digg stories: (1) slow initial growth in votes of upcoming
stories; (2) more interesting stories are promoted to the front
page (inflection point in the curve) faster and receive more
votes than less interesting stories; (3) however, as first de-
scribed in (Lerman 2007b), better connected users are more
successful in getting their less interesting stories promoted
to the front page than poorly-connected users. These obser-
vations highlight a benefit of the stochastic approach: iden-
tifying simple models of user behavior that are sufficient to
produce the aggregate properties of interest. Thus while the
stochastic model primarily describes typical story behavior,
we see it gives a reasonable match to the actual vote his-
tory of individual stories. Nevertheless, there are some cases
where individual stories differ considerably from the model,
particularly where an early voter happens to have an excep-
tionally large number of fans, thereby increasing the story’s
visibility to other users far more than expected. This varia-
tion, a consequence of the long-tail distributions involved in
social media, is considerably larger than seen, for example,
in most statistical physics applications of stochastic models.
The effect of such large variations is an important issue to
address when using stochastic models to predict the behav-
ior of individual stories in social media.

Predicting Popularity of Stories

By separating the impact of story quality and social influ-
ence on the popularity of stories on Digg, a stochastic model
of social dynamics enables two novel applications: (1) esti-
mating inherent story quality from the evolution of its ob-
served popularity, and (2) predicting its eventual popularity
based on users’ early reactions to the story. To predict how
popular a story will become, we use early votes, even those
cast before the story is promoted, to estimate how interesting
it is to the community. With this estimate, the model then de-
termines, on average, the story’s subsequent evolution. We
showed (Lerman and Hogg 2010) that this method signifi-
cantly outperforms an alternative prediction method (Szabo
and Huberman 2010) that extrapolates the final number of
votes from votes immediately after promotion.

By estimating story interestingness from the evolution
of its popularity, the model identifies a lognormal distribu-
tion of interestingness among the stories (Hogg and Lerman
2009), which is not directly apparent from the data itself
which confounds effects of changing visibility of the sto-
ries with their appeal to the user community. The observa-
tion of this distribution suggests there is an underlying mul-
tiplicative process giving rise to user interest. The nature of
this process is a significant open question that the stochastic
modeling approach helped to identify.

Discussion

The ability of the stochastic approach to incorporate de-
tails of user behaviors based on information available on
the web site illustrates its value in providing insights into
how aggregate behavior arises from the users, in contrast to
models that evaluate regularities in the aggregate behaviors
only (Wu and Huberman 2007). In particular, user models
can help distinguish aggregate behaviors that arise from in-
trinsic properties of the stories (e.g., their interestingness)
from behavior due to the information the web site provides,
such as ratings of other users and how stories are placed in
the site, i.e., their visibility (Hogg and Lerman 2009). In ad-
dition to explaining empirically observed phenomena (e.g.,
it is easier for submitters with more fans to get a story pro-
moted to the front page, even when the story is less interest-
ing), stochastic models also have predictive power.

Social media sites often allow users to link to others
whose activity they find particularly interesting. These links
can be a significant factor in how users find and react to con-
tent. Thus we can expect that extending stochastic models
to account for this community structure will improve their
accuracy. One way to partially account for this structure in
Digg is distinguishing behavior of users who are fans of
prior voters from those who are not. While such a model can
faithfully predict the evolution of story’s popularity among
voters who are not fans of any of the prior voters, and even
its popularity among submitter’s fans, it does not do a great
job predicting votes from other voters’ fans. This is the con-
sequence of the simplification made by the mean field ap-
proach which models growth in visibility through the social
network by an average rate parameter. In order to model in-
formation spread through a community, we need to better
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understand dynamics of cascades. The following section de-
scribes our attempts in that direction.

3 Dynamics of Information Cascades
While the previous section studied the relationship between
aggregate quantities like story visibility and popularity, this
section considers a stochastic description of the dynamics of
individual nodes. In statistical mechanics, these correspond
to macroscopic versus microscopic approaches, and the con-
nection between the two has historically played an impor-
tant role. For instance, the ideal gas law, which predicts how
changes in one global property of a gas like temperature will
affect the other properties like pressure and volume, was de-
rived first from empirical laws. Later, it was shown that the
ideal gas law could be derived from the kinetic theory of a
gases, a microscopic modeling approach describing dynam-
ics of individual gas molecules. This confirmation of the ki-
netic theory provided an intuitive framework that allowed
theorists to confidently make many new predictions.

The microscopic approach is embodied in the study of
contact processes in graphs. We consider nodes to be the
fundamental dynamic entities, and links represent interac-
tions between nodes. We have a stochastic description of
the node’s dynamics in terms of transition probabilities that
result from interactions with other nodes. A contact pro-
cess is simply a diffusion of activation on a graph, where
each activated, or “infected,” node can infect its neighbors
with some probability given by the transmissibility. Given
their prevalence, contact processes and the effect of network
topology on their dynamics have been widely studied, see,
e.g., references in (Ver Steeg, Ghosh, and Lerman 2011).

Theoretical progress in understanding the dynamics of
spreading processes on graphs suggests the existence of an
epidemic threshold (Wang et al. 2003; Chakrabarti et al.
2008; Castellano and Pastor-Satorras 2010) below which no
epidemics form and above which epidemics spread to a sig-
nificant fraction of the graph. At odds with these theoreti-
cal results, we have observed information cascades on Digg
that spread fast enough for one initial spreader to infect hun-
dreds of people, yet end up affecting only 0.1% of the en-
tire network. We demonstrate with a microscopic modeling
approach that two complementary effects conspire to dra-
matically reduce the size of epidemics. First, because of the
highly clustered structure of the Digg network, most people
who are aware of a story have been exposed to it via mul-
tiple friends. This structure lowers the epidemic threshold
while also slowing the overall growth of cascades. We also
find that the mechanism for social contagion on Digg devi-
ates from standard social contagion models and this severely
curtails the size of social epidemics on Digg. These find-
ings underscore the fundamental difference between infor-
mation spread and other contagion processes: despite multi-
ple opportunities for infection within a social group, people
are less likely to become spreaders of information with re-
peated exposure. The more clustered a graph is, the more
pronounced this effect becomes.

We collected data from the social news aggregator Digg
detailing how interest in a story spreads through Digg’s so-
cial network (Lerman and Ghosh 2010). A user becomes

infected by digging (i.e., voting for) a story and exposes
her network neighbors to it. Each neighbor may in turn be-
come infected (i.e., vote), exposing her own neighbors to
it, and so on. This way interest in a story cascades through
Digg’s network. This data enables us to trace the flow of
information along social links and quantitatively study dy-
namics of information spread on a network.

We find that the vast majority of cascades grow far slower
than expected and fail to reach “epidemic” proportions. To
understand why, we simulate information cascades on the
Digg graph and on a synthetic graph constructed to have
similar properties. We compare results to theoretical pre-
dictions and properties of real cascades on Digg. We find
that while network structure somewhat limits the growth of
cascades, a far more dramatic effect comes from the social
contagion mechanism. Unlike the standard cascade models
used in previous works on the spread of epidemics, repeated
exposure to the same story on Digg does not make the user
more likely to vote for it. This effect becomes significant
due to the structure of the Digg graph which results in re-
peated exposure for most users. We define an alternate cas-
cade model that fits empirical observations and show that
in simulation it reproduces the observed properties of real
information cascades on Digg.

Information cascades on Digg

In this section we primarily focus on the spread of stories
through directed friend network of Digg. With each vote, a
story becomes visible to the voter’s fans. In the event that
a user has n friends who have voted for a story, the story
appears in their interface along with how many friends had
voted on it.

We used Digg API to collect data1 about 3,553 stories
promoted to the front page in June 2009. The data associated
with each story contains story title, story id, link, submitter’s
name, submission time, list of voters and the time of each
vote, the time the story was promoted to the front page. In
addition, we collected the list of voters’ friends. We define
an active user as any user who voted for at least one story on
Digg during the data collection period. There were 139,409
active users, of which 71,367 designated at least one other
user as a friend. We extracted the friends of these users and
reconstructed the fan network of active users, i.e., a directed
graph of active users who are watching activities of other
users. There were 279,634 nodes in the fan network, with
1,731,658 links.

As interest in a story spreads, it may generate many cas-
cades from independent seeds. For each story, using the
methodology proposed in (Ghosh and Lerman 2011), we
extracted the cascade that starts with the submitter and in-
cludes all voters who are connected to the submitter either
directly or indirectly via the fans network. We call this the
principal cascade of the story. The distribution of principal
cascade size is well described by a log-normal function with
the mean of 156. Most of the cascades are smaller than 500,
and only three are bigger than 1,000.

1The data set is available at
http://www.isi.edu/˜lerman/downloads/digg2009.html
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What Limits Cascades on Digg?

These observations present a puzzle: why are information
cascades on Digg so small? In our sample, only one cas-
cade, about Michael Jackson’s death, can be said to have
reached epidemic proportions, reaching about 5% of active
Digg users. The majority of the cascades for the remaining
stories reached fewer than 1% of active users. This obser-
vation becomes more striking in Fig. 3 which shows that
typical epidemic models predict that stories will reach an
order of magnitude more voters than we observe on Digg
(Moreno, Pastor-Satorras, and Vespignani 2002).

There are a number of factors that could explain why in-
formation cascades on Digg are so small. Perhaps Digg users
modulate transmissibility of stories and keep them small to
prevent information overload. On the other hand, transmis-
sibility could diminish in time, either because of novelty de-
cay (Wu and Huberman 2007) or decrease in visibility of
stories as new stories are submitted to Digg (Hogg and Ler-
man 2009). Perhaps the structure of the network (e.g., clus-
tering or communities) limits the spread of information. Or
it could be that the mechanism of social contagion, i.e., how
people decide to vote for a story once their friends vote for it,
prevents stories from growing on Digg. In addition, users are
active at different times, and heterogeneity of their activity
could be another explanation.

We examined some of these alternate hypotheses through
simulations of contact processes on networks and empiri-
cal study of real cascades on Digg. Our basic approach is
to compare the predictions of a microscopic model on ag-
gregate quantities like cascade size. Ultimately, we were
able to identify a critical combination of factors that allow
us to closely reproduce the observed behavior on Digg. As
we point out in the introduction, simple mechanisms that
are capable of describing aggregate behavior also suggest
casual implications that feature-based machine learning ap-
proaches miss.

In particular, we found two complementary effects that
severely limit the size of cascades on Digg. First, due to the
highly clustered structure of the Digg graph, more than half
of people exposed to a story on Digg by their friends are ex-
posed by multiple friends. Therefore, it becomes important
to understand how people decide to vote on a story based on
the number of recommendations. Second, we observe that,
contrary to many contagion models, repeated exposure to a
story does not make a user more likely to vote on it.

Therefore, we proposed a simple mechanism for story
spread, the friend saturation model (FSM). We say the trans-
missibility of a story is the probability to vote given that
some of your friends have voted. Based on our observations,
and in contrast to standard epidemic models like the inde-
pendent cascade model, we say that this probability is the
same as long as at least one friend has voted for a story. More
sophisticated mechanisms could certainly be proposed, but
simulations of cascade processes obeying this simple mech-
anism, coupled with the structure of the Digg graph, suffice
to closely reproduce the observed dynamics of cascade size.
In Fig. 3, we see that the predictions of standard epidemio-
logical models are orders of magnitude too big. Our model,
on the other hand exactly reproduces the vast reduction in

cascade size observed on Digg.

Figure 3: Cascade size vs inferred transmissibility for sim-
ulated and real cascades on the Digg graph, plotted on a
log-log scale to highlight the order of magnitude difference
between these cascade sizes and predictions of a standard
epidemic model (HMF, or heterogeneous mean field theory
(Moreno, Pastor-Satorras, and Vespignani 2002)).

Discussion

If one assumes Digg’s graph structure consists of dense
clusters, the effects on cascades in the independent cascade
model are quite intuitive. It is easier for a story to take off
within a smaller, more tightly connected community. This
also explains why the majority of people exposed to story
are exposed to it from multiple sources. On the other hand,
for cascades to grow very large it is better to have a more
homogeneous link structure to reach all parts of the graph
quickly. Ultimately, clusters have the effect of marginally
decreasing the size of cascades by sequestering an infection
in one part of the graph.

In epidemic models, population models and other branch-
ing processes, the principal quantity of interest is the repro-
ductive number, R0. Intuitively, the reproductive number is
just the average number of people infected by a single in-
fected person. If R0 > 1, each infection leads to another
indefinitely, an epidemic. Whereas, if R0 < 1, the infec-
tion will die out eventually. Naively, the reproductive num-
ber should just be the average fanout, i.e., the average num-
ber of fans, times the transmissibility. For Digg, we have
〈k〉 ≈ 6 so R0 ≈ 6λ. In that case, an epidemic threshold
at R0 = 1 → λc ≈ 1/6, much higher than we observe. It
is well known, however, that heterogeneous degree distribu-
tions lower the threshold compared to this prediction(Bar-
rat, Barthélemy, and Vespignani 2008). If we take R0 to be a
constant larger than 1, then it is easy to see that the epidemic
must eventually spread to the whole network.

However, we can gain some intuition from this quantity
if we view it as a dynamic quantity. FSM implies that the
true fanout only includes the number of new fans (those that
have not already been exposed to a story) and changes with
time. With this definition the fanout is steadily decaying,
both for actual and simulated cascades on the Digg graph.
Effectively, this leads to a decrease in the reproductive num-
ber as well, so that a cascade that initially starts above the
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epidemic threshold may fall below it with time.
We have demonstrated a simple behavior model that strik-

ingly reproduces the behavior of Digg cascades, while stan-
dard methods go awry. Many network studies assume that
graphs with locally tree-like behavior give a good approx-
imation to real networks. In this case, we find that such
methods wildly overestimate the size of cascades. If most
of the people exposed to a story are exposed repeatedly, un-
derstanding how they are affected by repeat exposures is
of paramount importance. On Digg, subsequent exposures
to a story have almost no effect on the probability of vot-
ing. Much remains to be studied: whether these results hold
on other social networks, more sophisticated models of re-
sponse to friends, the time dependence of transmissibility,
and more detailed analysis of the effect of graph structure
on cascades. However, a simple causal mechanism that re-
produces the system’s aggregate behavior is a valuable tool
for understanding dynamics.

4 Inferring Latent Structures in Networks

Turning from statistical models that predict user behavior,
this section employs statistical mechanics to analyze the sig-
nificance of our inferences about network structure. Most
real–world networks are composed of clusters of well con-
nected nodes, with relatively lower density of links across
different clusters (Newman 2006). As we mentioned in Sec-
tion 1, the problem of community detection has been stud-
ied actively in recent years (Fortunato 2010). In addition
to algorithmic development, recent research has focused on
characterizing statistical significance of clusters detected by
different methods (Fortunato and Barthelemy 2007; Kar-
rer, Levina, and Newman 2008; Lancichinetti, Radicchi, and
Ramasco 2010). A related issue is the feasibility of de-
tecting clusters, assuming they are present in the network.
To be specific, consider the so called planted bi–partition
model (Condon and Karp 2001), which is a special case of
more general family of generative models known as stochas-
tic block-models (Holland, Laskey, and Leinhardt 1983;
Nowicki and Snijders 2001). In this model the nodes are par-
titioned into two equal–sized groups, and each link within a
group and between the groups is present with probabilities p
and r, respectively, so that p > r corresponds to denser con-
nections within each group. An important question is how
well one can recover the latent cluster structure in the limit
of large network sizes. It is known that in dense networks
where the average connectivity scales linearly with the num-
ber of nodes N (e.g., p and r are constants), the clusters in
the planted partition model can be recovered with asymptot-
ically perfect accuracy for any p − r > N−1/2+ε (Condon
and Karp 2001). Recently, a more general result obtained
for a larger class of stochastic block–models states that cer-
tain statistical inference methods are asymptotically consis-
tent provided that the average connectivity grows faster than
logN (Bickel and Chen 2009).

The situation is significantly different for sparse graphs,
where the average connectivity remains finite in the asymp-
totic limit N → ∞. Recently it was shown (Reichardt
and Leone 2008) that planted partition models (of arbitrary

topology) with finite connectivities are characterized by a
phase transition from detectable to undetectable regimes
as one increases the overlap between the clusters, with the
transition point depending on the actual degree distribution
of the partitions. In particular, let p = α/N , r = γ/N ,
where α and γ are finite average connectivities within and
across the clusters, and let pin = α/(α + γ) be the frac-
tion of links that fall within the clusters, so that pin = 1
and pin = 1

2 correspond to perfectly separated and perfectly
mixed clusters, respectively. Then there is a critical value
pcin = 1

2 + Δ, Δ > 0 such that for pin < pcin the clusters
cannot be recovered with better than random accuracy in
the asymptotic limit. When the planted clusters have Erdos–
Renyi topology, one can show that Δ ∝ 1/

√
α+ γ for large

(α+ γ) (Allahverdyan, Ver Steeg, and Galstyan 2010).
From the perspective of statistical inference, this type

of phase transition between detectable and undetectable
regimes is undesirable, as it signals inference instabilities –
a small change in parameters causes a large change in accu-
racy. In (Allahverdyan, Ver Steeg, and Galstyan 2010) it was
shown that this instability can be avoided if one uses prior
knowledge about the underlying group structure. Namely, it
was demonstrated that knowing the correct cluster assign-
ments for arbitrarily small but finite fraction of nodes de-
stroys the criticality and moves the detection threshold to
its intuitive (dense–network limit) value pin = 1

2 , or α = γ.
This can be viewed as a semi–supervised version of the prob-
lem, as opposed to an unsupervised version where the only
available information is the observed graph structure.

In practice, semi–supervised graph clustering methods
can utilize two types of background knowledge – cluster as-
signment for a subset of nodes (Zhu and Goldberg 2009;
Getz, Shental, and Domany 2005), or pair–wise constraints
in the form of must-link (cannot-links), which imply that
a pair of nodes must be (cannot be) assigned to the same
group (Basu, Bilenko, and Mooney 2004; Kulis et al. 2009).
In fact, the latter type of constraints are more realistic in sce-
narios where it is easier to assess similarity of two objects
rather than to label them individually. Below we examine
the impact of semi-supervision on clustering accuracy using
a statistical mechanics framework. We focus on a random
network composed of two equal–sized clusters, where the
clustering objective can mapped to an appropriately defined
Ising model defined on the planted partition graph.

Community Detection

Let us consider a graph with two clusters containing N–
nodes each. Each pair of nodes within the same cluster is
linked with probability p = α/N , where α is the aver-
age within–cluster connectivity. Also, each pair of nodes
in different clusters is linked with probability r = γ/N ,
where γ is inter–cluster connectivity. Let a spin variable
si = ±1 denote the cluster assignment of node i, and let
s = (s1, . . . , s2N ) denote a cluster assignment for all the
nodes in the network. Further, let A be the observed ad-
jacency matrix of interaction graph of 2N nodes so that
Aij = 1 if we have observed a link between nodes i and
j, and Aij = 0 otherwise.
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Using δsi,sj ≡ [1 + sisj ]/2, we define a Hamiltonian.

H(s,A) = −1

2

2N∑
i<j

Aijsisj +Hπ(s) (2)

The statistical physics meaning of the first term in Eq. 2 is
the following: If two spins si and sj are linked (Aij = 1),
then they tend to align together.

Furthermore, we assume that the background informa-
tion is encoded via a matrix Θ with elements θij , so that
θij = Aij and θij = −Aij correspond to the presence of a
must link and cannot link (θij = 0 means no constraint at
all)2. For the sake of simplicity, we will assume that violat-
ing either type of constraint carries the same cost w, yielding

Hπ(s) = −w

2

2N∑
i<j

θijsisj . (3)

Equation 2, 3 define a Hamiltonian of an Ising model,
which is a well-studied example of a Markov Random Field
(MRF). Minimizing the Hamiltonian then corresponds to
finding the Maximum a Posteriori (MAP) estimation of the
MRF(Allahverdyan, Ver Steeg, and Galstyan 2010). This
problem is known to be computationally hard for general
graphs, and one usually has to resort to approximate tech-
niques, such as linear relaxation, message passing, and so
on (e.g., see (Wainwright and Jordan 2008)).

Instead of focusing on MAP assignment of a particular in-
stance of a MRF, our goal is to understand average (typical)
behavior and characteristics of MAP estimation for an en-
semble of such problems drawn from some distribution. In
this approach, the parameters of the problem are treated as
random (quenched) variables. While we consider statistical
properties of random instances of graphs, the overall ensem-
ble of graphs is defined according to a tunable cluster struc-
ture. In our case, the quenched variables are Aij and θij . The
statistics of Aij is defined by the stochastic block-structure.
We also assume that the constraints are imposed on each link
randomly and independently, with probability fm and fc for
must-link and cannot-link constraints, respectively.

We are interested in the properties of the above Hamilto-
nian in the limit of large N . In particular, we would like to
know whether the configuration that minimizes Eq. 2 car-
ries information about the underlying cluster structure. This
problem can be studied within the so called zero temperature
cavity method (Mezard and Parisi 1987; 2001) which is re-
lated to the max–product message passing algorithm. In this
mean field approximation, the solution is characterized via
a cavity field distribution in each clusters P (h) and P̄ (h),
that denotes the probability of an internal (cavity) field act-
ing on an randomly chosen spin s in the respective cluster.
This distribution is found from the cavity equation, which is
like the fixed point of a belief propagation algorithm.

The details of the approach are irrelevant for the purposes
of this paper. We simply note that once P (h) is found we

2This notation assumes that the constraints are available only
for the nodes that are already connected in the graph. Relaxing this
assumption simply re-normalizes the graph parameters

can obtain the so called magnetization of the spins in one of
the clusters (say, the first one),

m =

∫
P (h) sign(h), (4)

m is the average value of a randomly selected spin, where
the average is taken over the graph structure and the con-
straints (i.e., Aij , θij), and over all configurations of si that
in the thermodynamic limit N → ∞ have— the same (mini-
mal) values of the Hamiltonian H . Note that the accuracy of
the clustering (i.e., probability that a node has been assigned
to the correct cluster) is simply 1+|m|

2 . Thus, |m| = 1 cor-
responds to perfect clustering, whereas m = 0 means that
discovered clusters have only random overlap with the true
cluster assignments.

Impact of pairwise constraint

We first consider the case when violating a constraint car-
ries a finite cost. The most trivial such case is when w = 1.
In this case, the must–link constraints do not yield any ad-
ditional information. The cannot-link constraints, however,
help clustering by “flipping” the sign of the corresponding
edge, thus favoring anti–ferromagnetic interactions between
the nodes across different clusters. In fact, it can be shown
that the only impact of the constraints with w = 1 is to renor-
malize within and across cluster connectivities, (α, γ) →
(α+ργ, γ−ργ). Recall that the mixing parameter is defined
as pin = α

α+γ . Thus, this situation is identical to the un–
supervised clustering scenario (Reichardt and Leone 2008;
Allahverdyan, Ver Steeg, and Galstyan 2010) with renormal-
ized mixing parameter pin → pin + ρ(1 − pin)/(α + γ).
The sole impact of constraints is to shift the detection be-
low which clusters cannot be detected with better than ran-
dom accuracy. In particular, the modified threshold coin-
cides with its dense network limit 1

2 for ρ = α+γ
2

1−2pin

1−pin
.

Now let us focus on the case where violating a constraints
incurs an infinite cost, w = ∞. In this case, the cavity equa-
tion cannot be solved analytically. Instead, we address this
case by solving the cavity equation using population dynam-
ics. The goal of population dynamics is to estimate the distri-
bution of fields P (h) whose fixed point is the cavity equation
(see (Mezard and Parisi 2001) for a detailed description).
We also compare our results to simulations using synthetic
data. After generating random graphs of size N = 100, 000,
we find the ground state of the Hamiltonian 2 using simu-
lated annealing.

Looking at Fig. 4, we see that for small amounts of su-
pervision, ρ < 1, the impact of the constraints is to shift
the detection threshold to smaller values of pin. This behav-
ior is expected, since adding hard constraints is equivalent
to studying the same unsupervised clustering problem on a
renormalized graph (e.g., merging two nodes that are con-
nected via constraints). This is in contrast to results for prior
information on nodes in (Allahverdyan, Ver Steeg, and Gal-
styan 2010), which showed that even small amounts of node
supervision shifted the detection threshold to its lowest pos-
sible value pin = 1/2.

As ρ → 1, there is a qualitative change in our ability to
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Figure 4: Magnetization plotted against the mixing param-
eter pin for α + γ = 4 and different ρ. Lines are gen-
erated from population dynamics and points are generated
from simulated annealing. From bottom to top we have
ρ = 0, 0.5, 1, 1.5

detect clusters. A large number of nodes, O(N2/3), are con-
nected by labeled edges. If we take the relative labeling of
nodes in this largest group as the “correct” one, than we have
a situation similar to node supervision, which, as discussed,
moves the detection threshold to α = γ. While this large
labeled component suffices to create non-zero magnetiza-
tion in finite graphs (as seen from the simulated annealing
results), as N gets large, the effect of this component dimin-
ishes. For ρ > 1, we see that the fraction of nodes contained
in the largest labeled component suffice to produce non-zero
magnetization even at the group-defining threshold α = γ.

Discussion

In this section we have presented a statistical mechanics
analysis of semi-supervised clustering in sparse graphs in
the presence of pair–wise constraints on node cluster assign-
ments. Our results show that addition of constraints does not
provide automatic improvement over the unsupervised case.
This is in sharp contrast with the semi–supervised clustering
scenario considered in (Allahverdyan, Ver Steeg, and Gal-
styan 2010), where any generic fraction of labeled nodes
improves clustering accuracy.

When the cost of violating constraints is finite, the only
impact of adding pair–wise constraints is lowering the detec-
tion boundary. Thus, whether adding constraints is beneficial
depends on the network parameters. For semi–supervised
clustering with hard pair–wise constraints, the situation is
similar if the number of added constraints is small. For small
density of constraints the subgraph induced by the must–
and cannot links consists mostly of isolated small compo-
nents, and the only impact of the added constraints is to
lower the detection boundary. The situation changes dras-
tically when the constraint density reaches the percolation
threshold. Due to transitivity of constraints, this induces a
non–vanishing subset of nodes (transitive closure) that be-
long to the same cluster, a scenario that is similar to one
studied in (Allahverdyan, Ver Steeg, and Galstyan 2010). In
this case, the detection boundary disappears for any α, γ.

In the study presented here, we assume that the edges are
labeled randomly. One can ask whether other, non–random

edge–selection strategies will lead to better results. Intuition
tells us that the answer is affirmative. Indeed, in the random
case one needs to add ρ = 1 additional edges per node in or-
der to have the benefit of transitivity. For a given ρ, a much
better strategy would be to choose ρN + 1 random nodes
(rather than edges), and connect them into a chain using la-
beled edges. This would guarantee the existence of a finite
fraction of labeled nodes for any ρ.

Finally, it is possible to envision a situation where one
has access to two types of information – about cluster as-
signment of specific nodes and pairwise constraints. Fur-
thermore, this information might be available at a cost that,
generally speaking, will be different for either type of in-
formation. An interesting problem then is to find an optimal
allocation of a limited budget to achieve the best possible
clustering accuracy.

5 Conclusion

Social media has transformed the Web into a participatory
medium and potentially a powerful new computational plat-
form. As people interact online, their collective activity and
the structure of the Web itself are becoming increasingly
more complex and dynamic. Complex feedback between
individual decisions and collective actions often leads to
qualitatively new behaviors. Statistical physics provides a
framework to model emergent behaviors in social media.
This framework represents individual dynamic entities as
stochastic processes and allows the modeler to relate aggre-
gate behaviors to these descriptions. We presented several
examples where we used this framework to understand the
underlying statistical laws of information diffusion and the
structure of social networks.
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