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Abstract

We study the distribution of the activity period of users
in five of the largest localized versions of the free, on-
line encyclopedia Wikipedia. We find it to be consis-
tent with a mixture of two truncated log-normal distri-
butions. Using this model, the temporal evolution of
these systems can be analyzed, showing that the statis-
tical description is consistent over time.

Introduction
An interesting open question in the study of online commu-
nities is whether these systems evolve over time, what the
causes for this evolution are, and what may happen to these
platforms in case the current state of affairs gives way to
an unfavorable one. Among the various features that are
likely to evolve over time, the balance between green and
expert users plays an important role in the economy of any
community where content is user-generated (UGC), as in the
well-known free, online encyclopedia called Wikipedia.

Here, we present a framework for measuring properties
of a virtual community by looking at its temporal evolution.
We focus on a single quantity: the time period of participa-
tion of an individual to the process of creation of the content.
We measure the time between the first and the last edit of a
user, which we call the lifetime of a user account, and per-
form a statistical testing of hypotheses on what model best
describes it.

Related work: recently, a survival analysis of the activa-
tion and de-activation of users has been performed (Ortega
2009). Our approach is different as our model is essentially
a clustering technique, so that we can directly evaluate the
statistical properties of the classes of the short and long-lived
users.

Another work (Wilkinson 2008) is also interested in the
same ‘deactivation’ phenomenon in users-generated content
communities. It deals however with a different quantity (the
number of edits) in order to characterize the ranking of the
level of contributions by users.

Besides these empirical works, studies on network
growth, that feature the ‘death’ of nodes, account for an
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heavy-tailed statistics too (Lehmann, Jackson, and Lautrup
2005): the present work is in part motivated by the fact that
these generative models also need to be compared with em-
pirical data.

Our contribution: in this paper, we report the following
contributions:

1. We find all datasets to be consistent with the hypothesis
that the lifetime of an user account is described by the su-
perposition of two truncated log-normal distributions. An
interpretation for this phenomenon is that two different
regimes govern the participation of individuals to these
versions of the Wikipedia project: the occasional users,
who fail to find interest in the project after the first few at-
tempts to contribute, and the long-term users, whose with-
drawal is probably more related to external factors like
the loss of personal incentives in contributing and similar
causes.

2. Using our model, we characterize how the participation of
users over time evolves, as the system ages. We find that
the statistical description of the one-timers is stable over
time, while the properties of the group of long-term users
change as a consequence of the aging of the system.

3. We find evidence that the inter-edit time distribution de-
cays with an heavy tail. In view of this finding, we check
that our analysis is not affected by the choice of the pa-
rameter used for determining when an user is to be con-
sidered “inactive”; we find that for the one-timers it has
no quantitative effect. For the statistics of the long-lived
users we find instead a very good qualitative agreement.

The Model

A truncated distribution in (a, b) ∈ R ∪ {±∞} is specified
by considering the original distribution conditional on being
in (a, b). For the normal distribution with location μ and
scale σ the probability density of its truncated version is thus
defined as:

p(x) =
1

Φ(b′) − Φ(a′)

e−
(x−μ)2

2σ2

√
2πσ

if x ∈ (a, b) (1)

and 0 elsewhere. Φ denotes the cumulative distribution func-
tion of the standard Gaussian and the extremes are standard-
ized, ie. a′ = (a − μ)/σ, (similarly for b′).
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A mixture model is the superposition of two or more dis-
tributions, so that the resulting density is a weighted average

from several components: p(x) =
∑K

k=1 πkpk(x; θk). Here
pk(x; θk) is the density of the k-th component, with vectors
of parameters θk, evaluated at x.

Inference for mixture models is, however, often infeasible
using constrained maximization methods because of the pe-
culiar behavior of the log-likelihood function (Bishop 2006).
A solution to this problems comes under the form of the
expectation-maximization (EM) algorithm (Dempster, Laird,
and Rubin 1977).

In our case, we have to take into account the truncation
from equation 1 when computing the new estimate μ(s+1),

σ(s+1) of the parameters for each component in the M-step
of the algorithm (for a description of EM refer to (Bishop
2006)). To do this, we do employ the following approxima-
tion, based on the moments of the truncated normal (John-
son, Kotz, and Balakrishnan 1994):

σ(s+1) =
(
σ̂(s)

)2

[
1 − b′φ(b′) − a′φ(a′)

Φ(b′) − Φ(a′)
+

−
(

φ(a′) − φ(b′)

Φ(b′) − Φ(a′)

)2]
(2)

μ(s+1) = μ̂(s) − σ(s+1) φ(b′) − φ(a′)

Φ(a′) − Φ(b′)
(3)

here φ refers to the density of the standard Gaussian distri-

bution, while μ̂(s) and σ̂(s) refer to the estimates of the non
truncated distribution based on the old weights.

In most non-pathological cases,1 we find that this approxi-
mation procedure produces asymptotically unbiased estima-
tors.

Results

The data we have analyzed comprise the meta-data of the
whole history of revisions (in all namespaces) for five lo-
calized versions of the Wikipedia project: the English, the
German, the Italian, the French and the Portuguese versions.

We consider only revisions from non-robot, registered
users. We define the lifetime τ of an user account as the
period between the times τi and τf of the first and last revi-
sion performed by the user, respectively.

In order to consider only those users who have ceased
their activity, which we call inactive, we define as inactive
all users whose last revision τf dates back more than τmax

given days from the date of the most recent revision recorded
in the data. This of course does not guarantee that a user
classified as inactive would be permanently so in the future.

1The ‘troublesome’ cases arise when multiple components
overlap significantly, so to make them undistinguishable from a sin-
gle component, or when one (or both) of the truncation extremes
fall very shortly (ie. less than one standard deviation) from one or
more components’ center. We don’t think this problem endangers
too much the quality of our results, as our data don’t seem to fall in
any of these cases (see table 1).

Moreover, the analysis might be influenced by the choice of
τmax. We carefully address both issues later in this section.

Lifetime distribution: we can infer the parameters of our
truncated mixture of log-normals by applying our custom
EM technique to u = ln(τ). Table 1 and Figure 1 display the
results of the parameter estimation. In all cases, a K-S test
does not reject the hypothesis that the data are drawn from
the same distribution.

Table 1: Estimated parameters for the truncated normal
model. In parenthesis the significant digit of the standard
error of the estimator. p-values for statistically significant
estimates (≥ 0.1) are quoted in bold.

language μ1 μ2 σ1 σ2 p-val.

Italian -5.4(3) 4.3(3) 1.7(3) 1.9(3) 0.688
German -2.2(2) 5.6(2) 3.8(2) 1.1 (3) 0.632
French -5.5(2) 4.6(3) 1.8(2) 1.8(3) 0.464

Portuguese -5.5(4) 3.5(3) 1.5(4) 2.2(4) 0.612
English -5.3(5) 3.2(4) 1.6(5) 2.2(5) 0.54

On the other hand, table 2 shows there is no support for a
power law behavior in the data, as the p-values from a K-S
test reject the hypothesis that the data are drawn from this
distribution in all cases except for the German. Moreover,
the power law decay is found only in the very tail of the dis-
tribution, thus this second model fails completely to charac-
terize the structure in the data for all but the largest values of
τ . The exponent α and the starting point τmin of the power
law decay are estimated with an MLE method (Clauset, Shal-
izi, and Newman 2009).

Table 2: Power law fit. p-values for statistically significant
estimates (≥ 0.1) are quoted in bold.

language α τmin n(> τmin) p-value

Italian 3.99 ± 0.14 688.525 (461) 0.09
German 4.84 ± 0.1 1013.89 (1342) 0.1
French 3.58 ± 0.14 681.01 (351) 0.09

Portuguese 3.91 ± 0.11 619.37 (693) 0.08
English 6.95 ± 0.08 1119.43 (5376) 0.04

We believe there are two reasons for the fact the power
law is not a satisfactory model of these data while ours is.
First, since there cannot be any user whose participation in
the project is longer than the age of the project itself, the
data must be naturally bounded, which explains the sharp
cutoff for high values of τ . Second, the structure for values
of τ < τmin might be due to the superposition of two dif-
ferent regimes: one comprising users whose interest fades
away quickly, as a result of the few interactions they have
with the rest of the community, and the long-term users,
whose motivation for participating are not anymore affected
by the daily outcomes of their editing actions, but rather by
some stronger form of incentives (e.g. ideology in free, open
projects).

We would like to note that we find an equally good fit
for a mixture of 3 or 4 components, but given the empirical
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Figure 1: Truncated normal model fit. (a) German, (b) Italian, (c) French, (d) Portuguese, (e), English Wikipedia. Solid blue
line, empirical CDF; dot-dashed red line, model prediction.

evidence for the existence of two distinct classes of users,
we preferred to opt for the hypothesis of a model with 2
components.

We note that the fit of the German data is not in perfect
agreement with the others. Indeed, the EM algorithm is only
guaranteed to converge to a local maximum of the likeli-
hood, but this discrepancy might be also due to the choice of
τmax. 2 In the following, we address the general problem of
evaluating how much our analysis depends on the choice of
the parameter τmax.

Inactivity periods: let us denote with t the time of the
most recent revision. A simple criterion for selecting the
inactive users is to consider the time from the last revision
τf − t and classify as inactive those user for which τf − t >
τmax, where τmax is some threshold past which an inactive
account can be safely considered as being permanently so.

A better understanding of the implication of taking this
criterion can be achieved by looking at the statistics of the
maximum YN = max{S0, . . . , SN−1} of the inter-edit time
S of the users with N edits, for any given N . Figure 2 show
how < YN > grows as a function of N .

If the underlying distribution of the inter-edit times had
a tail decaying faster than a power law (ie. exponentially or
like a Gaussian), the maximum would be a slowly increasing
function of N (Sornette 2004). Here, instead, we see that for
small values of N the maximum is growing faster than that,
hinting at the fact that the inter-edit time distribution must
be decaying with an heavy tail.

Figure 2 also illustrates that a fixed threshold classifica-
tion might be skewed towards the high-activity users.

Temporal evolution: given all these questions it is nat-
ural to ask whether the results we get differ if a different
value of τmax is chosen. Figure 3 depicts a comparison of
the results of our analysis for several choices of the value
of τmax. For each pair of parameters π1,2, μ1,2, σ1,2, we plot
their values estimated with EM at various ages of the system.
More specifically, we took yearly-spaced points in the pe-
riod that goes from an initial timestamp to the last recorded

2In order to increase the chances of hitting a good maximum of
the log-likelihood function, our estimation procedure is repeated
25 times for each data set.

Figure 2: Analysis of the inter-edit time distribution. (a)
French, (b) Portuguese Wikipedia. Filled blue circles: scal-
ing of the average maximum statistics as a function of the
number of edits (i.e. sample size). Axes are on the log-log
scale. The grouping is count dependent so that in each bin
there are at least 100 observations. The relative standard er-
ror bars are all smaller than the data points. Horizontal solid
lines: from bottom to top, median, 75th, 95th and 99th per-
centile of the full distribution of the maxima, ie. not grouped
by number of edits.

timestamp in our datasets. The initial timestamp is chosen
so that the system contained at least 100 users at that time.
At each of this dates, we restrict our datasets to the users
whose last revision is precedent to such date.

The plots reveal very interesting patterns in the evolution
of the systems: first, μ1 is quite insensitive to the choice
of τmax; second, it stabilizes to the value of ≈ −5.5 after
some time, which means that this is possibly the characteris-
tic time scale of involvement of occasional contributors. The
average log-lifetime μ2 has instead a qualitatively similar
behavior across different choices of τmax, exemplifying the
dynamics of aging of the system (from approximately one
month at the beginning of the project, up to over one year for
recent measurements). We note that occasionally the esti-
mates sharply diverge from this common trend which might
explain the disagreement for the German case at τmax = 180.
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Figure 3: Evolution of the fitted parameters. (a) German, (b) Italian, (c) French, (d) Portuguese. Colors correspond to different
values of the time τmax used to classify an user as inactive: 7 (blue), 30 (red), 90 (cyan), 180 (magenta), 365 (green), 730
(yellow). Solid lines: π1, μ1, σ1 (short-lived users). Dashed lines: π2, μ2, σ2 (long-lived users). Error bars are the 95%
confidence intervals of the estimator.

Further investigation will be needed to better understand the
source of these divergences.

Discussion

In this paper we analyzed the evolution of five of the largest
language versions of Wikipedia over their history. We found
strong support for the fact that the period of participation of
users to the community is distributed according to the mix-
ture of two log-normal laws. A possible criticism to our
methodology could be that the comparison with a simple
power law without any form of cutoff was not totally fair.
Still, what we think to be truly interesting in this study is
that all versions of the wikis we analyzed show the presence
of some form bi-modality in the lifetime statistics: the mere
empirical observation that some users live more than others
would not be sufficient to explain this fact, so we believe that
is far from being a trivial finding. In principle, our analysis
depends on the arbitrary choice of one parameter, namely the
threshold of inactivity τmax. In practice the estimation is sta-
ble enough to discern clear temporal trends in the evolution
of these systems. An explanation for this might be that we
are estimating a property of the whole community of users,
so that a robust notion of “inactivity” emerges from our sta-
tistical description, no matter how problematic it might be
to define it at the level of the single individual.
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