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Abstract

Textual sentiment classifiers classify texts into a fixed num-
ber of affective classes, such as positive, negative or neutral
sentiment, or subjective versus objective information. It has
been observed that sentiment classifiers suffer from a lack of
generalization capability: a classifier trained on a certain do-
main generally performs worse on data from another domain.
This phenomenon has been attributed to domain-specific af-
fective vocabulary. In this paper1, we propose a voting-based
thresholding approach, which calibrates a number of exist-
ing single-domain classifiers with respect to sentiment data
from a new domain. The approach presupposes only a small
amount of annotated data from the new domain. We evaluate
three criteria for estimating thresholds, and discuss the ram-
ifications of these criteria for the trade-off between classifier
performance and manual annotation effort.

Introduction
It is widely known (e.g. Aue and Gamon (2005); An-
dreevskaia and Bergler (2008)) that sentiment classifiers suf-
fer from domain specificity: while they may perform well
for the domain they are trained on, their performance usually
drops when applied to other domains. This is not surprising,
as sentiment is often subtly expressed with domain-specific
vocabulary. Yet, it seems intuitive that a large portion of the
sentimental vocabulary is shared across domains: affective
terms like awkward, bad, good, terrible, terrific are univer-
sally applicable to all imaginable domains, with urban ex-
ceptions like ’that’s a bad car’ in a positive sense. If textual
domains do indeed show overlap of sentiment vocabulary,
then it would make sense to attempt to identify these patterns
of shared expression, and combine them into aggregate data
sets. In this paper, we propose a calibration technique that
can be used for thresholding a classifier, and which factors
out hard cases that cannot be reliably assigned to one of the
classes the classifier is trained on. This procedure addition-
ally generates a trade-off between classifier performance and
manual inspection. Our method compares favorably with
previous work, and has low computational complexity.
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Related work
Applying classifiers to ’out-of-domain’ test data is a prob-
lem known as the domain-transfer problem (e.g. Ben-David
et al. (2009); Wu et al. (2009)). Li and Zong (2008) put
forward a classifier fusion approach, comparing feature fu-
sion with classifier combination. The latter option signifi-
cantly outperforms single-domain classification. Their ap-
proach is akin in aim and philosophy to ours, with the dif-
ference that our approach aims to alleviate an engineer’s
workflow by factoring out hard cases and exempting them
from classification. Blitzer et al. (2007) use a structural
correspondence learning (SCL) model for sentiment classi-
fication. SCL identifies correspondences between features
from different domains by finding correlations of these fea-
tures domain-independent pivot features, such as features
addressing common frequency among domains, and mutual
information with class labels. Depending on the domain, a
small number (50) of labeled examples allows their model to
adapt itself to a new domain. However, performance and the
minimum number of labeled in-domain examples was found
to depend on the similarity between the old and new do-
mains. Li et al. (2009) use constrained non-negative matrix
factorizations of term-document matrices in order to trans-
fer knowledge from one sentiment domain to another. An-
dreevskaia and Bergler (2008) advocate the use of WordNet
features for cross-domain sentiment classification, in com-
bination with a precision-based voting strategy.

Calibration technique
In our experiments, we deployed Support Vector Machines
with the Negative Geodesic Kernel proposed by Zhang et
al. (2005) (see also Raaijmakers (2009) and Raaijmakers
and Kraaij (2009))2. Kraaij et al. (2008) have proposed
a thresholding technique for classifier calibration that op-
timizes a classifier for a pre-specified minimum accuracy.
This mechanism allows for balancing the trade-off between
classifier performance and manual effort. In order to cali-
brate our SVMs, we used a similar two-threshold estimation
technique. The algorithm estimates two thresholds on the
raw output of the SVM decision function: a lower threshold
(θl) below which data points belong to the negative class,

2We implemented this kernel using LIBSVM; see Chang and
Lin (2001).
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and an upper threshold (θu) above which data points belong
to the positive class. Data for which the SVM produces a
value in between the two thresholds are considered to be
’out of domain’ (OOD): these are the hard cases the classi-
fier cannot reliably allocate to one of the two classes. It is
defined as

OOD =| {di ∈ D | θl < C(di) < θu} | (1)

The OOD class of observations typically could be handed
over to an analyst for manual inspection in the case of la-
beled data, or manual annotation in the case of unannotated
test data. The threshold estimation algorithm optimizes a
performance function f defined on the quantities TP (true
positives), FP (false positives), TN (true negatives), FN
(false negatives), OOD; f can be either accuracy, F-score
or yield:

yield =
TP + FP + TN + FN

TP + FP + TN + FN + OOD
(2)

The yield of a classifier is the proportion of data that is not
classified as OOD. Optimizing for accuracy will possibly
generate a relatively large proportion of OOD data, whereas
this proportion will be lower when optimizing for F-score
or yield, which, in turn, will lead to lower accuracies. This
trade-off between accuracy (or more general: classifier per-
formance) and the amount of data that cannot be analyzed
automatically with high accuracy has been closely investi-
gated in a wide array of experiments, described in the next
Section. We used a stepsize of 0.01 for thresholding in all
experiments.

Experiments and results
Our data consists of the multi-domain sentiment dataset pro-
vided by Blitzer et al. (2007). This dataset3 contains senti-
ment review data (polarity) from Amazon.com for four dif-
ferent product domains: books, dvd, electronics and kitchen
(2,000 reviews each). We used the balanced, preprocessed
version that was also used by Blitzer et al. (2007), where
each data set contains exactly 1,000 positive and 1,000 neg-
ative reviews. Features consist of L1-normalized unigram
and bigram frequencies. In our test data sets, the balanced
class distribution was preserved (average 50/50), which is
why we report accuracy. Another reason is that we com-
pare our results to Blitzer et al. (2007)), who report accu-
racy as well. We performed three types of experiments with
this data. First, we assessed the performance of uncalibrated
classification, both within domains (training and test data are
taken from the same domain) and across domains (training
data is taken from a different domain than test data). These
results set a baseline for our subsequent experiments, which
fall into two categories: in-domain thresholding and cross-
domain thresholding. For in-domain thresholding, we esti-
mate thresholds on development data from a certain domain,
train on the corresponding training data, and test on the cor-
responding test data. After the test data has been classified,

3See http://www.cs.jhu.edu/∼mdredze/
datasets/sentiment.

we threshold the raw decision values produced by the classi-
fier and allocate the test data points to three classes: the pos-
itive class, the negative class, and an ’out of domain’ class.
For our uncalibrated classification experiments, we applied
the same splitting strategy as Blitzer et al. (2007) and di-
vided the four data sets into a training portion of 1,600 re-
views, and a test part of 400 reviews. For the calibrated
experiments, that depend on development data for threshold
estimation, we split the 1,600 data points of the training sets
into 1,000 (training) and 600 (development data). The lat-
ter data sets were split into a development training set (500)
and a development test set (100). On the latter two types
of data sets, the thresholds for the calibrated classifiers were
estimated: training took place on the development training
part, after which the trained classifier was applied to the de-
velopment test set. Subsequently, the output decision val-
ues for the development test data set were thresholded w.r.t.
the ground truth of that test data set in order to optimize ei-
ther accuracy, F-score or yield. Effectively only 100 data
points were used for calibration. For cross-domain calibra-
tion, the procedure was as follows. Given two domains, de-
velopment test data was produced as just described. Subse-
quently, the decision values produced for both test sets af-
ter separate classification were combined and thresholded,
using the combined two development test sets as ground
truth. After thresholded classification, we measured both
accuracy and the percentage of data points that are out of
domain (’OOD’). A good classifier clearly minimizes OOD
and maximizes accuracy. In order to derive an aggregate,
unbiased performance measure (’P ’), we use the harmonic
mean of the percentage of ’in-domain’ data points (’ID’) and
accuracy:

ID = 1 − OOD
TP+FP+TN+FN+OOD

P = 2×ID×Accuracy
ID+Accuracy

(3)

Maximum values of P are obtained only when both ID and
accuracy are high. The measure assigns equal weight to ID
and accuracy, and reaches 100 only when both quantities are
100. The P -measure can be used as a criterion for select-
ing a domain that adapts well to a new target domain. Spe-
cial weighted versions can be devised that penalize certain
quantities, such as false positives, or the amount of OOD.
This relates to so-called intrinsic (task-specific) cost mea-
sures (e.g. Teufel (2007)). Tables 1 and 2 contain accu-
racy results obtained using uncalibrated classifiers: either
in-domain (e.g. training on dvd, and testing on dvd) or cross-
domain (e.g. training on dvd and testing on books). In ad-
dition, we merged the training data of all four domains, and
tested on the four test sets. The in- and cross-domain results
in Table 1 show that, in a number of cases, a classifier trained
on a different domain than it is tested on is competitive with
a classifier trained and tested on the same domain data4.
For instance, dvd reviews appear akin to book reviews, and
kitchen reviews to electronics. This relation apparently is

4Following Blitzer et al. (2007) we use the notation A → B
for training on the training data of domain A and testing on the test
data of domain B.
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Acc SCL SCL-50
books→ books 78.8 80.4 80.4
dvd→ books 78.8 79.7 -
electronics→ books 69.5 75.4 76
kitchen→ books 76.3 70.9 73.2
Average books 75.9 76.6

books→ dvd 76.8 77.2 78.5
dvd→ dvd 82.3 82.4 82.4
electronics→ dvd 71 76.2 -
kitchen→ dvd 77.3 76.9 76.6
Average dvd 76.9 78.2

books→ electronics 68.3 77.5 76.6
dvd→ electronics 71.8 74.1 77.9
electronics→ electronics 86.5 84.4 84.4
kitchen→ electronics 83.3 86.8 -
Average electronics 77.5 80.7

books→ kitchen 70 78.9 80.7
dvd→ kitchen 75 81.4 -
electronics→ kitchen 82.3 85.9 85.9
kitchen→ kitchen 88.8 87.7 87.7
Average kitchen 78.7 83.5

Table 1: Accuracy results for in- and cross-domain classifi-
cation. The SCL columns contain the maximum results ob-
tained by Blitzer et al. (2007), either without (SCL) or with
(SCL-50) addition of 50 labeled target domain instances for
a selected number of domains.

Accuracy
Leave-domain-out

all minus books→ books 79.5
all minus dvd → dvd 81.3
all minus electronics → electronics 82.3
all minus kitchen → kitchen 87.3

Use-all
all → books 82
all → dvd 83
all → electronics 87.3
all → kitchen 88.8

Table 2: Multi-domain classification.

not symmetric: training a classifier on dvd reviews and ap-
plying it to book reviews yields better results than vice versa.
This phenomenon was also observed by Blitzer et al. (2007).
Yet, the overall picture is that data from different domains
may be useful for classifying another domain. This under-
lines our intuition that the sentiment vocabulary, while being
to some extent domain dependent, is to a much larger extent
domain independent. Table 2 shows that it is beneficiary to
combine different data sources. We tested two conditions:
a ’leave-domain-out’ condition where we used all domains
except the domain the test data belonged to, and a ’use-all’
condition where we used the training data for all four do-
mains to classify a particular test set. The results show that
in all cases, using all data improves on leaving out the test
domain data, and that in all cases, except for kitchen, using
all data improves on a single-source, domain-specific clas-
sifier (Table 1). We investigated the effect of calibration on
single-source, in-domain classifiers (e.g. training on books
and testing on books). Results are in Table 3. Optimizing
for accuracy leads to relatively large proportions of OOD
for these in-domain classifiers, separating hard cases from
easy cases. Comparing these results to the in-domain clas-
sification results in Table 1, we notice performance gains:
results are higher for books (accuracy rises from 78.8 to 83
for thresholding with F and a low OOD), dvd (82.3 rises to
83). For electronics and kitchen, performance is maintained.

Dataset Thresholding % OOD Accuracy P
books accuracy 42.3 88.5 69.9

F 0.8 83 90.4
yield 0.03 80.3 89.1

dvd accuracy 46.3 92.5 68
F 0.08 82.8 90.6
yield 0.13 83 90.7

electronics accuracy 48 93.8 66.9
F 0.08 86.8 92.9
yield 0.08 86.8 92.9

kitchen accuracy 48 94 67
F 0.05 89 94.2
yield 0 88.8 94.1

Table 3: In-domain thresholding.

θAcc % OOD Acc P
d→ b 50.5 86.8 63.1
e→ b 41.8 78 66.7
k→ b 52.8 84 60.4
Average b 48.4 82.9 63.6

b→ d 37.5 84.8 72
e→ d 43 83.5 67.8
k→ d 43.5 85 67.9
Average d 41.3 84.4 69.2

b→ e 33.3 76.8 71.4
d→ e 36.5 78.8 70.3
k→ e 44.5 88.5 68.2
Average e 38.1 81.4 70.3

b→ k 52.8 77 58.5
d→ k 46 86.3 66.4
e→ k 49.5 92 65.2
Average k 49.4 85.1 63.5

θF % OOD Acc P
d→ b 1.5 73.5 84.2
e→ b 26.5 76.3 74.9
k→ b 29.5 81.5 75.6
Average b 19.2 77.1 78.9

b→ d 1.8 79.8 88
e→ d 9.3 75 82.1
k→ d 9 79.3 84.8
Average d 6.7 78 85

b→ e 6.8 72.8 81.8
d→ e 6.3 73.5 82.4
k→ e 0.8 82.8 90.3
Average e 4.6 76.4 84.9

b→ k 29.5 66 68.2
d→ k 7.8 80.3 85.8
e→ k 0.5 83.8 91
Average k 12.6 76.7 81.7

θyield % OOD Acc P
d→ b 1.5 73.5 84.2
e→ b 1 70 82
k→ b 1.5 71.5 82.9
Average b 1.3 71.7 83.1

b→ d 1.3 75.5 85.6
e→ d 0.8 71 82.8
k→ d 1.3 75 85.2
Average d 1.1 73.8 84.5

b→ e 1.3 70 81.9
d→ e 1.3 71.5 82.9
k→ e 1 81.5 89.4
Average e 1.2 74.3 84.8

b→ k 1.3 75.5 85.6
d→ k 1.5 77 86.4
e→ k 0.8 83.5 90.7
Average k 1.2 78.7 87.6

Table 4: Cross-domain thresholding (b=books, d=dvd,
e=electronics, k=kitchen), no voting.

Factoring out the hard cases using accuracy-based threshold-
ing leads to significant accuracy gains for all four domains.
Also, comparing these results to the results of Blitzer et al.
(2007), we notice accuracy gains. F-score based thresh-
olding yields low values of OOD, and accuracies that ex-
ceed the best results of Blitzer et al. (2007): for books,
we obtain an accuracy of 83 (against 80.4 by Blitzer et al.
(2007)), for dvd, we obtain 82.8 (against 82.4), for electron-
ics 86.8 (against 84.4) and for kitchen 89 (against 87.7). For
cross-domain thresholding, we observe significant accuracy
gains compared to uncalibrated cross-domain classification
for accuracy-based thresholding, at the expense of relatively
low yield. Yield increases however significantly for F-score
based thresholding, while preserving the accuracy gains.

Comparing our cross-domain calibration results to the
results of Blitzer et al. (2007), we observe that our re-
sults when optimizing for accuracy are better throughout,
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θAcc % OOD Acc P
books 45.5 82.8 65.8
dvd 41.8 85.8 69.4
electronics 37.3 81 70.7
kitchen 47.5 90 66.3

θF % OOD Accuracy P
books 23.3 80.8 78.7
dvd 6 79.8 86.3
electronics 7 77.3 84.4
kitchen 8 85.5 88.6

θyield % OOD Accuracy P
books 0.3 72.5 84
dvd 0.5 77.5 87.1
electronics 0.5 73.8 84.7
kitchen 0.5 83.3 90.7

Table 5: Cross-domain thresholding, voting.

of course with the drawback of a large portion of out of do-
main data: we obtain an average increase of 3.75% in accu-
racy. For F-score based thresholding, we observe improve-
ment in 3 out of 8 cases: for kitchen to books, we obtain
81.5 against 73.2 of Blitzer et al. (2007); for books to dvd,
we have 79.8 against 78.5, and for kitchen to dvd, we have
79.3 against 76. Table 5 lists results obtained by majority
voting over classes. Compared to the non-voting results in
Table 4, classifier combination appears effective for all three
types of thresholding.

Conclusions
We have outlined a novel procedure for multi-domain senti-
ment classification based on cross-domain classifier calibra-
tion. Using a small fragment of annotated data from a new
domain, we estimated thresholds for classifiers based on ex-
isting training data and this new data fragment. We proposed
three performance measures for finding these thresholds: ac-
curacy, F-score and yield, and demonstrated that these mea-
sures allow for workflow-oriented trade-offs between classi-
fier performance and human effort. F-score based threshold-
ing appears a good compromise between accuracy and man-
ual inspection: accuracies obtained are relatively high, out-
performing in-domain classification, and the amount of data
that can be analyzed automatically is relatively large. From
the perspective of a practical workflow, adding a new senti-
ment domain to an existing multi-domain classifier (which,
in its simplest form, consists of a set of single-domain clas-
sifiers) would involve annotating a small portion of new
data, computing thresholds for all existing sentiment do-
mains with respect to this new data, and combining results
through majority voting. In future work, we intend to inves-
tigate the use of transductive learners to alleviate the need
for manual annotation of out of domain data.
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