Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media

Coping With Noise in a Real-World Weblog Crawler and Retrieval System

James Lanagan and Paul Ferguson and Neil O’Hare and Alan F. Smeaton
Clarity: Centre For Sensor Web Technologies
Dublin City University
Dublin 9, Ireland
{jlanagan, pferguson, nohare, asmeaton }computing.dcu.ie

Abstract

In this paper we examine the effects of noise when creating a
real-world weblog corpus for information retrieval. We focus
on the DiffPost (Lee et al. 2008) approach to noise removal
from blog pages, examining the difficulties encountered when
crawling the blogosphere during the creation of a real-world
corpus of blog pages. We introduce and evaluate a number
of enhancements to the original DiffPost approach in order
to increase the robustness of the algorithm. We then extend
DiffPost by looking at the anchor-text to text ratio, and dis-
cover that the time-interval between crawls is more impor-
tant to the successful application of noise-removal algorithms
within the blog context, than any additional improvements to
the removal algorithm itself.

1. Introduction

The changing make-up of the web means that in recent years
there has been a shift away from the mass consumption of
information generated by a small number of highly-regarded
sources. Contributions from web-users in general have also
begun to be recognised as useful and important sources of
information which are both diverse in nature and collective
in their impact (Surowiecki 2004).

It has been shown in the TREC blog track (Ounis et al.
2006) that noise is a major problem when returning rele-
vant search results to a user’s query. When we talk about
noise, we are referring to the content within a blog’s web-
page that is not part of the post i.e. advertising, structural
content (such as the title banner, archive information, pre-
vious posts etc.), or automatically-generated related content
based on the post itself.

In this paper we extend the work of (Nam et al. 2009)
that builds on the work of (Lee et al. 2008) by applying their
Diffpost algorithm to a dynamic corpus of documents. This
corpus is created by the continual crawling and retrieval of
new blog posts from a large selection of financial websites.
The webpages that we crawl contain dynamic content and so
the content on a webpage may change between two crawls,
along with the noise that surrounds the post. A consequence
of this is that the Diffpost approach will fail in its attempts
to find repeated content. We present one solution to this in
Section 3.

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

271

THINK TANK VioEo B00K CLUB WEEKEND X

MACRO PERSPECTIVE ON THE CAPITAL MARKETS,
ECONOMY, TECHNOLOGY & DIGITAL MEDIA*

[=

THE BIG
PICTURE

gobiz

Too Few Bears S

more small businesses
forward with Visa.

ells T-R-O-U-B-L-E
N By Barry Ritholtz - December 9th, 2009, 12:007"

& print This Pag

4 FusionlQ

Industrial Strength
Quant Tools
For Individual Investors.

wmber of equity bears (the lowest since the market top of 2007 - see
), the likelihood is that the next leg of the long-term structural valuation bear market is
dloser than people might realise.”

Hereis Edward's chart:

Figure 1: Pagelets Within an Example Webpage.

2. Related Work

Much work has been done in the past on separating the con-
tent that is interesting or content-bearing from within a web-
page (in our case the blog posting itself) from the content
which surrounds it. In separating these two distinct types
of content within a webpage, (Bar-Yossef and Rajagopalan
2002) refers to ‘pagelets’ or the pages within a page (Fig-
ure). Much of the content that is not of direct interest is
structural or navigational in style makes up the template for
a website, and is likely to be repeated in the same basic form
across the site’s constituent webpages leading to intra-page
redundancy. The separation of a website’s content and struc-
tural information falls within the field of boilerplate detec-
tion. An excellent overview of the current state-of-the-art is
given in (Kohlschiitter, Fankhauser, and Nejdl 2010).

Template detection has been an active area of research
in recent years. (Bar-Yossef and Rajagopalan 2002) uses
a shingling technique to account for slight perturbations in
template consistency. Both (Vieira et al. 2006) and (Y1, Liu,
and Li 2003) use an HTML Document Object Model (DOM)
‘style-tree’ approach to differentiate between webpage ele-
ments, looking for both contextual and style-based unique-
ness to attribute importance (or noise) attributes to a specific
element. (Kushmerick 2000) advocates the more generic use
of wrapper induction to create templates that are site agnos-
tic, creating a ‘wrapper’ class that may be used to extract the
desired content.

3. Implementation

In place of a web crawl, we use the Really Simple Syndica-
tion (RSS) feeds for the blogs in order to find new content
that has been added. So as to capture each new blog posts,
we poll a subset of 50 financial blogs of varying article pro-
lificness based on statistics from previous work (O’Hare et
al. 2009). In order to find content that is of interest to us
on the page, we use the Diffpost algorithm as introduced by
(Lee et al. 2008). This algorithm uses the common elements
within the pages of a website to filter out repeated content.
(Nam et al. 2009) found that a rather simple approach of re-
moving lines that appear in multiple HTML pages of a site
can reduce noise significantly. The requirement that lines be
repeated across webpages seems too vague and contingent
on the correct parsing, download, or processing of the re-
spective webpages. We change this requirement to consider
an HTML element’s content as a whole creating a more for-
mal and robust method of assessment.

Diffpost suffers from a significant drawback when used in
areal-world setting: The requirement for HTML elements to
be replicas in order to be removed means dynamic content
(advertising based on time, related stories, comments etc.)
will not be detected. To combat dynamic content/noise, we
introduce the requirement of a minimum number of ‘new’
postings being downloaded from a source during any one
crawl by the system. If the minimum number of new articles
have not been posted since the last polling of the source’s
RSS, we download the balance of articles required from the
RSS item list. Whilst the dynamic content/noise may change
over time, the change will be consistent across pages that are
crawled consecutively.

Though Diffpost is shown to work well in the case of ad-
vertising/template noise, it does not do so well in the cases
of dynamic contextual content. This is content created as a
result of the blog post itself; links to related posts or stories,
and comments on the post. In the particular use-case of our
system, these features were considered noise, though this is
not always the case. We address the issue of user comments
by varying the frequency of crawls: If there is no time for
comments to be made on a post before they are crawled,
the problem in theory no longer exists. Lists of related sto-
ries, top stories, and other linked content within a blog post’s
webpage can result in a large decrease in retrieval perfor-
mance if not removed. These links by their nature contain
related keywords and terms that can cause a related but non-
relevant post to be returned incorrectly in response to users’
queries. We use the fact that these lists are predominantly
made up of anchor-text links to other webpages to aid in
there removal.

4. Experiments

In the experiments that we have performed, our aim was to
see firstly how well we can eliminate noise automatically,
and secondly to measure what effect the remaining noise has
on our retrieval performance. In order to do so, we have cre-
ated a number of different search indexes on our blog cor-
pus, each based on variations in crawl frequency, Diffpost
noise comparison document numbers, and HTML element

272

anchor-text proportion thresholding.

During the collection of our initial corpus of 150 blog
feeds and sources for a related project (O’Hare et al. 2009),
we have seen that the vast majority of blogs within our initial
corpus use one of a select number of blogging template ser-
vices. The most common of these are Wordpress and Blog-
ger!, making up 42% and 36% respectively. (16% of blogs
either use no generator template, or do not specify.) Once
the template is known, we can use the HTML DOM to re-
trieve just the content of the HTML element containing the
post text.

We first took a cross-section of 120 documents from
within our corpus that came from 20 distinct sources. These
documents were then marked up on a word-token level as
noise and non-noise, evaluating both blog post as ‘non-
noise’, and also the comments as ‘non-noise’. When only
considering the blog-post itself as ‘non-noise’, only 0.098%
of the noise remains in the document, whilst 0.004% of the
content is incorrectly removed at a word-token level. Con-
sidering comments as ‘non-noise’ reduces the percentage of
noise remaining to 0.080%, though incorrect removals in-
creases marginally to 0.312%. Again however, within our
current context, we continue to consider comments to be
noise.

We call the ‘Template’ corpus of documents containing
only the text from the filtered blog webpages our ground
truth. These documents are then indexed by a Lucene search
engine?, and used for searches. We also create indexes us-
ing the Diffpost processed and unprocessed ‘Original” doc-
uments. Using the approach outlined we are able to mea-
sure the effectiveness of the Diffpost algorithm, as well as
the improvements that are possible through extensions to it.
The blogs used in our experiments are a subset of our initial
corpus of 150 blogs comprised of the 34 top sources ranked
by prolificness. While it is true that Wordpress and Blogger
blogs may be parsed using only a simple parser, using this
technique as a comparison standard we are able to look at
the effectiveness of our various system configurations.

In order to generate a list of queries to judge the accu-
racy of our different system configurations, we first queried
the ‘“Template’ index with the names of the 500 stocks from
the Standard and Poor’s (S&P) index?. We only consider
queries that return a minimum of 20 relevant documents
from our ‘“Template’ index. In doing this our list of queries is
reduced to 25, but is sufficient for a through investigation of
the differences between the system configurations (Harman
1993).

4.1 Comparison Documents

The requirement for comparison documents used in the Diff-
post algorithm to find repeated content blocks means that
it is necessary to ensure at least two documents are down-
loaded from any source on the same crawl. It can not be

"http://www.wordpress.com; http://www.blogger.com

*http://lucene.apache.org/

3The stocks included in the S&P 500 are those of large pub-
licly held companies that trade on either the NYSE Euronext or the
NASDAQ OMX

Precision
o
3
3

A \Y
AU < S)

G
%
&&o
.

&<
3

.
&

Stock Symbol

o < < N
S E &S

“1hr
W 3hr

“11hr
“17hr
24hr

Figure 2: Precision Values for All Stock Queries Based on Different Crawl Frequencies.

assumed however that every source will publish at least two
new posts per-crawl interval. We must therefore download
older posts again, although these documents are used for
comparison purposes only and are not added to the indexes.
We know ask how many of these comparison documents are
needed/optimal for Diffpost comparisons ?

Table 1: Retrieval Statistics for Different Number of Com-
parison Documents Using a 60 Minute Crawl Frequency.

i Diffpost Original
Docs —p R MAP P R MAP
T 0746 0996 090 0591 0998 0.6675
3 0747 0982 0775 0591 0998 0.6675
5 0751 0980 0757 0591 0998 0.6675

Table 1 shows that the performance of the Diffpost algo-
rithm is initially very good in terms of subsequent retrieval,
providing a massive boost in precision whilst leaving recall
practically untouched. This boost in precision is significant,
whilst the drop in recall is not. (As with all significance test-
ing carried out in this paper, we use a two-tail paired t-test,
with o = 0.01.) With 3 comparison documents, recall drops
significantly and using 5 comparison documents results in
significant increases and drops respectively for precision and
for recall. The significant boost in precision is perhaps not
as important as the drop in recall, since this shows that as we
add comparison documents, more of the ‘non-noise’ content
is removed. It would appear that using a single comparison
document for Diffpost calculation is enough to achieve a sig-
nificant boost in precision, and a comparable level of recall,
to the original documents.

Table 2: Content and Noise Removal Statistics for Different
Numbers of Diffpost Comparison Documents

Documents Content Noise
Stripped — Remaining® Removed
1 0.044 0.111 0.857
3 0.053 0.105 0.866
5 0.054 0.103 0.867

!'As a percentage of the new document.

273

In terms of noise removal, the use of additional compari-
son documents does result in a significant increase in noise
removed as shown in Table 2, however there is also a corre-
spondingly significant increase in the amount of real content
that is stripped. It would seem therefore that the noise that
remains in the documents is not as detrimental to retrieval
performance as the removal of content that results from the
use of additional Diffpost comparison documents.

4.2 Polling Frequency

Our second consideration is how often to crawl the source
RSS feeds for new content. Comments are always specific to
posts and so will not be repeated across them, meaning Diff-
post will not eliminate them. It was our assumption therefore
that more frequent crawls would reduce the opportunity for
comments to be made.

Figure 2 shows the precision for each of the 25 stock
queries using each of the different time-based indexes,
sorted by decreasing value of average precision. There is no
significant difference in the rankings created across the in-
dexes compared with that from the 1 hour frequency, except
in the case of the 11 and 17 hour frequency crawls. These
two crawls appear to produce significantly better rankings
(p = 0.066 and p = 0.059 respectively) than the others, but
as with the 24hour crawl, the number of queries has been re-
duced. The reason for this is that RSS feeds may be limited
in the number of posts contained within the feed, meaning
posts from sources that publish often may not remain on the
RSS feed for more than a few hours. Once again, we be-
lieve this presents a strong additional argument for the use
of a 1-hour crawl frequency so as to retain as many posts as
possible.

With regards to recall, performance is significantly better
using a 1-hour crawl frequency (p < 0.1) than all other fre-
quencies except the 3-hour frequency. Again however we
can see that one stock (INTC) is not found within the 3-hour
index. We therefore feel that with regards to both precision
and recall, the optimal crawl frequency must remain that of
1 hour. It is important to be aware of the etiquette of crawl-
ing weblogs: We have shown that crawling for new content
on an hourly basis is best for preventing comment inclusion
etc., but one must also consider that a popular weblog/RSS

may not be appreciative of crawlers that constantly crawl the
site.

4.3 Anchor-Text Ratios

The last consideration we make when dealing with the possi-
ble affects of noisy content is that of anchor- or link-text. Of
the factors taken into account during our study, this is per-
haps the most context-specific of the three. We noticed that
both precision and recall are strongly affected by documents
that mention the query within a list of ‘related stories/posts’.
These lists are mostly made up of anchor-text and are easily
detectable as such.

Table 3: Precision and Recall Values for Different Minimum
Non-Anchor-Text Ratios Across All Stock Queries

Min. Non-Anchor Precision Recall
0(D.P) 0.747 0.988
0.1 0.745 0.980
0.2 0.763 0.978
0.3 0.775 0.978
0.4 0.781 0.978
0.5 0.780 0.974
0.6 0.781 0.974
0.7 0.808 0.930
0.8 0.846 0.895
0.9 0.864 0.858
1.0 0.840 0.690

Table 3 shows the precision and recall values as the per-
missible amount of anchor-text within each HTML entity of
a blog posting’s webpage is decreased. The first value of 0
is representative of the standard Diffpost algorithm. While
there is a highly significant increase (p < 0.8e~?) in preci-
sion for all values greater than 0.1, the decrease in recall only
becomes significant when the anchor-text is greater than 0.7
(p = 1.375). It would appear from our results that the added
pre-Diffpost step of removing all entities of less than 60%
non-anchor-text can significantly increase precision whilst
leaving recall unaffected.

5. Conclusions

Noise in the data that is crawled from a web page can play a
large part in the effectiveness of a retrieval system. We have
based our work on the Diffpost approach to document tem-
plate removal, aiming to improve on the previous results. We
have shown that through the use of both content analysis and
system design it is possible to improve on the results gained
by implementing a standard Diffpost algorithm. These re-
sults are not as positive as those shown in past work on a
static corpus (Nam et al. 2009). They do show that it is
possible to use the techniques proven in a laboratory setting
within a real-world system, albeit with some modifications.

The problems of dynamically changing temporal content
(as well as content that is not available indefinitely) do not
exist within the laboratory setting. It is therefore important
to highlight these weaknesses within the original approach
since they present significant challenges in the real-world
scenario. Our work aims to address these issues.

274

6. Acknowledgments

The authors would like to thank the reviewers of this docu-
ment for their valuable input. This work is supported by Sci-
ence Foundation Ireland under grant number 07/CE/I1147.

References

Bar-Yossef, Z., and Rajagopalan, S. 2002. Template De-
tection via Data Mining and its Applications. In WWW °02:
Proceedings of the 11th International Conference on World
Wide Web, 580-591. Honolulu, Hawaii, USA: ACM.

Harman, D. 1993. Overview of the First TREC Conference.
In SIGIR’93: Proceedings of the 16th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 36-47.

Kohlschiitter, C.; Fankhauser, P.; and Nejdl, W. 2010. Boil-
erplate Detection Using Shallow Text Features. In WSDM
'10: Proceedings of the Third ACM International Confer-
ence on Web Search and Data Mining, 441-450. New York,
NY, USA: ACM.

Kushmerick, N. 2000. Wrapper Induction: Efficiency and
Expressiveness. Artificial Intelligence Review 118(1-2):15—
68.

Lee, Y.; Na, S.; Kim, J.; Nam, S.; Jung, H.; and Lee, J.
2008. KLE at TREC 2008 Blog Track: Blog Post and Feed
Retrieval. Proceedings of TREC-08S.

Nam, S.-H.; Na, S.-H.; Lee, Y.; and Lee, J.-H. 2009. Dift-
Post: Filtering Non-relevant Content Based on Content Dif-
ference between Two Consecutive Blog Posts. In ECIR
'09: Proceedings of the 31st European Conference on IR
Research on Advances in Information Retrieval, 791-795.
Toulouse, France: Springer-Verlag.

O’Hare, N.; Davy, M.; Bermingham, A.; Ferguson, P;
Sheridan, P.; Gurrin, C.; and Smeaton, A. F. 2009. Topic-
Dependent Sentiment Analysis of Financial Blogs. In TSA
'09: Proceeding of the Ist International CIKM Workshop
on Topic-Sentiment Analysis for Mass Opinion, 9-16. Hong
Kong, China: ACM.

Ounis, I.; De Rijke, M.; Macdonald, C.; Mishne, G.; and
Soboroff, I. 2006. Overview of the TREC-2006 Blog Track.
In Proceedings of TREC. NIST.

Surowiecki, J. 2004. The Wisdom of Crowds: Why the
Many are Smarter Than the Few and How Collective Wis-
dom Shapes Business, Economies, Societies, and Nations.
Doubleday Books.

Vieira, K.; da Silva, A. S.; Pinto, N.; de Moura, E. S.; Cav-
alcanti, Jo a. M. B.; and Freire, J. 2006. A Fast and Robust
Method for Web Page Template Detection and Removal. In
CIKM °06: Proceedings of the 15th ACM International Con-
ference on Information and Knowledge Management, 258—
267. Arlington, Virginia, USA: ACM.

Yi, L.; Liu, B.; and Li, X. 2003. Eliminating noisy informa-
tion in web pages for data mining. In KDD ’03: Proceed-
ings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 296-305. Wash-
ington, D.C.: ACM.

