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Abstract

Reaching hundreds of millions of users, major social net-
works have become important target media for spammers.
Although practical techniques such as collaborative filters
and behavioral analysis are able to reduce spam, they have
an inherent lag (to collect sufficient data on the spammer)
that also limits their effectiveness. Through an experimen-
tal study of over 1.9 million MySpace profiles, we make a
case for analysis of static user profile content, possibly as
soon as such profiles are created. We compare several ma-
chine learning algorithms in their ability to distinguish spam
profiles from legitimate profiles. We found that a C4.5 de-
cision tree algorithm achieves the highest accuracy (99.4%)
of finding rogue profiles, while naı̈ve Bayes achieves a lower
accuracy (92.6%). We also conducted a sensitivity analysis
of the algorithms w.r.t. features which may be easily removed
by spammers.

1. Introduction

Social networks have grown to become an important part of
social interactions for personal and business reasons. Con-
sequently, spammers have targeted social networks as me-
dia for propagating spam. Unlike email, interactions within
current social networks such as MySpace and Facebook are
restricted to members of the same social network. Conse-
quently, spam must originate from a profile inside the so-
cial network. Although the maintenance of such rogue pro-
files (usually called “spam profiles”) is a deterrent, it has not
stopped the proliferation of spam in social networks (Webb,
Caverlee, and Pu 2009).

Anecdotal evidence indicates that techniques used by
social network operators to detect rogue profiles in prac-
tice include collaborative filtering and behavioral analy-
sis. Dynamic methods such as collaborative filtering (where
users vote on the nature of profiles) and behavioral analysis
(where logs of interactions are used to detect spamming pat-
terns) may be eventually able to detect rogue profiles, but
they require a non-trivial amount of lag time to accumu-
late sufficient evidence. In this paper, we study the anal-
ysis of static user profile content, which complements the
dynamic methods. The main advantage of using machine
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learning analysis is that it can be applied as soon as the pro-
files are created, thus detecting suspect spam profiles before
they have active propagated spam. In compensation, anal-
ysis based on machine learning depends on the quality of
training data for an accurate prediction.

This paper explores the limits and potential of machine
learning analysis on static profile content at creation time
(or within a small time period). To test the limitations on the
accuracy of such analysis, we collected a large corpus of 1.9
million MySpace profiles, including approximately 1,500
confirmed spam profiles (Webb, Caverlee, and Pu 2009).
Our analysis considers two kinds of data in a social network
profile:

• Categorical data - fields that can take only a limited num-
ber of values, for example: “Sex”, “Age”, and “Relation-
ship Status”.

• Free-form data - usually text information entered by users,
for example: “About me” and “Interests”.

This distinction allows appropriate machine learning algo-
rithms to be applied to different sections of the data (e.g.,
decisions trees for categorical data and naı̈ve Bayes for free-
form data). To measure the discriminatory power of features
and find the most important features in the identification of
spam profiles, we apply the χ2 test to measure the correla-
tion (or lack of independence) between the features being
studied and predicted class (whether a profile is rogue).

We also compare supervised machine learning techniques
in their ability to detect spam profiles. On categorical data,
the classifiers tested are: (1) AdaBoost algorithm (with a
DecisionStump weak-classifier), (2) C4.5 decision tree, (3)
Support Vector Machine, and (4) a neural network-based al-
gorithm. In addition, we use naı̈ve Bayes on the free-form
data to classify rogue profiles.

Lastly, we perform a sensitivity analysis of the classifiers
with respect to the evolution of spam profile content. Evo-
lution of spam content is due to adversarial classification,
where detection measures adopted by a social network can
be countered with spammer’s adaptive modification of the
spam profiles to escape detection. Spam content evolution
is a well known and documented phenomenon (Irani et al.
2008; Pu and Webb 2006). We evaluate the robustness of
classifiers by simulating adversarial action (e.g., removing
the highest discriminative features) and re-evaluating the ef-
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Figure 1: Example of a social spam profile

fectiveness of classifiers under the new assumptions.

Our results show that analysis of static profile content
based on machine learning methods has the potential to im-
prove significantly the detection of rogue profiles in social
networks with non-trivial user profile content (e.g., MyS-
pace and Facebook). This is particularly the case for recently
created rogue profiles that have not engaged in spamming
activity. Since this analysis complements dynamic methods,
it has good potential for practical impact.

2. Social Spam Profiles

Social networks allow users to meet new friends, keep in
touch with old friends, and participate in various social in-
teractions. A user’s presence in a social networking site is
represented by a social profile, which allows him to maintain
an identity within a social network and participate in it.

Spammers looking to propagate spam through a social
network need to create a social profile. Using this so-
cial spam profile, they send users spam using mediums of-
fered within the community (e.g., friend requests, messag-
ing, and commenting). Such spam has already been seen
in the wild (Webb, Caverlee, and Pu 2009), and previous
work (Webb, Caverlee, and Pu 2008) has focused on gather-
ing and characterizing such profiles.

An example of a MySpace social spam profile is shown1

in Figure 1. The profile contains a large amount of per-
sonal information, including various deceptive properties.
As typical of spam profiles, this profile portrays an attrac-
tive, young, single woman with a provocative image to en-
tice users to view them. Once the profiles have attracted
visitors, they direct them to perform an action on an exter-
nal website, usually by providing an alluring story in their
“About me” section. For example, the profile in Figure 1
provides a link to an external website to “see woman pic-
tures”.

1Provocative images have been blurred to avoid offending read-
ers.

2.1 Motivation

Once a rogue profile is created, spam can easily be sent out
to other users. Early and accurate detection of such spam
profiles is essential to reducing the amount of spam on social
networks. Detection at the zero-minute or at profile creation
is critical for long-term efficacy.

We explore the benefits and limitations of profile classifi-
cation using static user content entered during profile cre-
ation (or modification) to determine whether a profile is
spammy or not. Ideally, this technique would be accurate
enough to allow zero-minute determination about whether a
profile is spammy or not and prevent a spammer from gain-
ing an entry point into the social network. In practice, we
submit that this technique would most likely have to be used
to lower or raise another technique’s decision boundary, al-
lowing it to come to a quicker decision.

Current techniques of social spam profile detection (Zin-
man and Donath 2007; Markines, Cattuto, and Menczer
2009), rely heavily on detecting the spamminess of artifacts
created by a user profile. For example, they analyze mes-
sages, comments, and friend requests. This approach must
wait for the social spam profile to impact the social network
with spam. Also, depending on the discriminatory power of
features based on such artifacts, a large number of artifacts
may be required before a definitive decision can be made.

Some social network sites use collaborative filtering or
administrator-based reporting to manually identify social
spam profiles. These techniques also suffer from a lag time
between profile creation and identification, which can result
in spam already having impacted users. Additionally, col-
laborative filters require that the profiles attract enough votes
from other users to be marked as spam. Higher requirements
in the number of votes will result in longer certainty in the
evaluation of spam with a longer time required to reach the
threshold, and vice versa. The benefit to using these dy-
namic techniques is usually a higher accuracy.

2.2 Related Work

Heymann et al. (Heymann, Koutrika, and Garcia-Molina
2007) provide an overview of social spam fighting mech-
anisms, categorizing them broadly into: Detection-,
prevention-, and demotion-based strategies. In the pa-
per, they group classification approaches as detection-based
strategies, likely due to the fact that previous work (Zinman
and Donath 2007; Markines, Cattuto, and Menczer 2009)
mostly makes use of features which require spammy behav-
ior to be present, before classification is possible. We focus
on a prevention-based strategy using machine learning, to
try and identify social spam profiles before they can be used
to propagate spam.

A lot of work has been done in the area of demotion [or
promotion] strategies, namely trust. TrustRank (Gyongyi,
Garcia-Molina, and Pedersen 2004) and SocialTrust (Caver-
lee, Liu, and Webb 2008) look at graph-based techniques to
ranking nodes within a network. SocialTrust looks explicitly
at trust in a social network, whereas TrustRank approaches
the problem from a web spam perspective, both of which are
modifications of the PageRank algorithm (Page et al. 1998).
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A specialized look into the trust of CouchSurfing.com and
Del.icio.us is done by Lauterbach et al. (Lauterbach et al.
2009) and Noll et al. (Noll et al. 2009), which use additional
attributes between friends provided by the social network to
facilitate trust calculations.

3. Experiment Setup
MySpace is one of the largest and most popular social net-
works, making it a prime target for social spam. It also fea-
tures a large amount of personal user content per profile, and
most of the information is publicly viewable by default.

3.1 Data Collection

With over 200 million profiles on MySpace, collection of
all the profiles would be infeasible due to computational,
storage, and network loads. We previously collected, in June
to September 2006, a small subset of profiles from MySpace
using two different sampling strategies:

• Top 8 - Starting with a seed list of random profiles, the top
8 most popular friends were crawled, and subsequently
their top 8 most popular friends were crawled in a breath
first search (BFS) manner. This resulted in a collection of
891,167 connected profiles.

• Random - Profiles were crawled by generating random
userid’s and retrieving the profile represented by that user.
This resulted in a collection of 960,505 profiles.

More details regarding these crawls, including an analysis of
demographic information and language model characteriza-
tion, can be found in our previous work (Caverlee and Webb
2008).

Spam profiles from MySpace were previously collected
by setting up honeypot accounts and collecting profiles that
sent friend requests to these accounts. Fifty-one identi-
cal honeypot accounts portraying a fictitious, young, single
male were spread over geographical locations in the United
States resulting in 1,496 spam profiles collected from Octo-
ber 2007 to February 2008. The details of the honeypots,
the exact methodology used and a study of demographics of
the spam profiles are in our previous work (Webb, Caverlee,
and Pu 2008).

3.2 Datasets

To use supervised learning, we need to provide spam and le-
gitimate (non-spam) labels for a training set of profiles. We
assign labels based on the method of collection with profiles
collected via the honeypots being marked as spam and pro-
files collected via the top 8 or random sampling strategies as
non-spam. As it was possible that during the top 8 or ran-
dom sampling some spam profiles may have been inadver-
tently crawled, we ran various heuristics to detect spam pro-
files within these collections. For example, we used features
from some of the previous work (Zinman and Donath 2007;
Markines, Cattuto, and Menczer 2009) in our detection of
spam profiles, and we looked for keywords in free-form text
fields with external spammy-looking links. Furthermore,
during our classification experiments, we paid close atten-
tion to any misclassification and manually verified some of
the labels.

Field Field Type Description

Age Categorical
Gender Categorical
Marital Status Categorical
Smoke Categorical Does smoke?
Drink Categorical Does drink?
Kid Categorical Want kids?
Zodiac Categorical Zodiac sign
Education Categorical Level of education
Orientation Categorical Sexual orientation
About Me Free-form text

Table 1: Subset of fields parsed from a MySpace profile and
a brief description of non-obvious fields.

Classifier Algorithm Type
AdaBoostM1 (w/ DecisionStump) AdaBoost
J48 C4.5 Decision Tree
SMO (w/ PolyKernel) Support Vector Machine
Multilayer Perceptron (MLP) Neural Network

Table 2: List of classifiers used with categorical features.

We created two datasets for classification based on the
above features and labels: the top 8 dataset includes a ran-
dom sample of 15,000 non-spam (legitimate/ham) profiles
from the top 8 sampling and all 1,496 spam profiles from
the honeypot profiles; the random dataset includes a random
sample of 15,000 legitimate profiles from the random sam-
pling and 1,496 spam profiles from the honeypot profiles.
The rationale for using a subset of all the data available is
that as legitimate profiles are so dominant, a majority clas-
sifier (i.e. a classifier which picks the dominant label for all
profiles), would achieve over a 99.8% accuracy rate.

3.3 Feature extraction

Using a custom parser, we extract fields from the MySpace
profiles. A subset of these fields can be found in Table 1
along with a brief description and whether we treat the field
as a categorical feature or a free-form text feature. Most of
the categorical data can, with minimal processing, be used as
categorical features for classification. Using a bag-of-words
approach, a free-form text field is broken into multiple fea-
tures (with each word being a feature) after the application
of stemming and the removal of stop-words. More details
on the features used can be found in Section 4.

3.4 Classification Setup

A standard set of machine learning algorithms are used from
Weka (Witten et al. 1999) 3.6.1. For categorical fields, we
use the classifiers listed in Table 2. For free-form fields, due
to our independence assumption, we use a naı̈ve Bayes clas-
sifier. All classifiers are used with their default settings and
are run with 10-fold cross-validation to avoid over-fitting.

We compare classifier performance using the false-
positive (FP) errors, false-negative (FN) errors, and area un-
der the curve (AUC) as our evaluation metrics. The FP and
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Figure 2: Discriminatory power of features measured by the χ2 test for both categorical features and free-form text features.

FN represent the number of spam instances classified as non-
spam and the number of non-spam instances misclassified
as spam, respectively. The AUC can be intuitively thought
of a measure of how good the detection trade-off between
FPs and TPs. It is calculated based upon the received oper-
ator characteristic (ROC) curve, which measures the trade-
off between FP-rate and TP-rate. Using a classifier which
produces a probability of an instance belonging to a partic-
ular classes, the trade-off can simply be adjusted by vary-
ing a decision threshold, adjusting one’s tolerance towards
higher FPs and TPs or vice-versa. Examples of such clas-
sifiers are neural networks and naı̈ve Bayes. ROC curves
can also be applied to discrete classifiers (output binary de-
cisions instead of probabilities), but this usually results in a
graph with a single point. Due to the skewed number of pos-
itive (non-spam) instances versus negative (spam) instances,
the AUC might not always be proportional to the total num-
ber of FPs and TPs because it relies on the rate of such FPs
and TPs.

4. Feature Analysis

Before looking at classification, we take a closer look at
the zero-minute features available for classification. These
features based on static profile content are evaluated on
their discriminative power and their robustness to adversar-
ial classification.

Discriminative power of a feature can be seen as how
strong of a signal it provides in determining the resulting
class. To compare the discriminative power of features, we
use the χ2 test, which measures the lack of independence
between a feature f and the class c. The χ2 test takes into
account values from a two-way contingency table between
f and c, which represents the number of times f and c co-
occur, the number of times f occurs without c, and so-forth.
Higher values of the χ2 test indicate a stronger discrimina-
tive power.

Robustness to adversarial classification, to a certain ex-
tent, is a subjective measure that we manually assign. It is

based upon how easy or difficult it would be for an adversary
to change a feature in a spam profile in order to evade a clas-
sifier. To evade a classifier, the features need to blend in with
the distribution of non-spam profile values without reducing
the effectiveness of the spam profile. This can be seen as
how easy it is for an adversary to “switch off” a signal.

The reason we use these two characteristics to distinguish
features is that a highly discriminatory feature with low ro-
bustness would yield very good classification results, but it
would not be very useful over a long period of time against
an adversary. This is because a feature that is not robust
could be easily removed by an adversary and would likely
degrade the classification results due to its high discrimina-
tory power. Ideal features would have both a high discrim-
inative power and high robustness to adversarial classifica-
tion.

4.1 Categorical features

Categorical features are obtained by extracting values from
the respective categorical fields. Categorical fields with text
values such as “Gender” and “Orientation” are converted to
nominal values simply by assigning each distinct text value a
nominal counterpart. Categorical fields with numeric values
such as “Age” are left as numeric features. Two fields which
are treated in a binary fashion are “IsPrivate” and “De-
faultIM” because the only possible values for those fields
are true or false. Although fields like “Smoke”, “Drink”,
and “Kid” could also be treated in this manner, we choose
to make a distinction between whether or not those fields are
unanswered by assigning a value of “undef” if the field is not
answered. If a numeric field is unanswered, it is assigned a
value of “-1”.

Discriminatory power Figure 2(a) shows the results of
the χ2 test on the Categorical features for the random and
top 8 datasets. Each feature is represented by a cluster of
two bars on the x-axis (one bar for each dataset), and the
y-axis represents the χ2 test score.
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The features with the highest overall discriminatory
power for both the random and top 8 datasets were “Kid”,
“Smoke”, “Drink”, and “DefaultIM”. The “Kid”, “Smoke”,
and “Drink” features are highly discriminative because over
95% of the spam profiles left this value blank (i.e., they have
a value of “undef”), whereas only 15-25% of the non-spam
profiles in the random dataset and 35-50% of the non-spam
profiles in the top 8 dataset had these fields blank. The fewer
non-spam profiles in the random dataset having this blank
explains why the discriminatory power was higher as com-
pared to the top 8 dataset. The “DefaultIM” feature had a
very high discriminatory power in the top 8 dataset because
1% of the non-spam profiles left the field blank, whereas
the spam profiles and the random dataset non-spam profiles
had a mix of having a blank value or being filled out. It
is surprising to see the “Age” feature as a good discrimina-
tor. However, we found that most non-spam profiles in the
random dataset are under the age of 30 (with a peak at 17
years), and non-spam profiles in the top 8 dataset are under
the age of 33 (with a peak at 18 years). The spam profiles,
on the other hand, mimic profiles of young women with ages
between 17 and 34 and a peak at 24 years (with over 85%
between the age of 21 to 27).

Categorical features with the lowest overall discrimina-
tory power for both the random and top 8 datasets were “Zo-
diac” and “IsPrivate”. The reason “Zodiac” has a very low
discriminatory power was that it seemed that the spam pro-
files had randomly chosen a zodiac sign with approximately
8% of profiles falling into each of the zodiac star signs. All
the spam profiles had “IsPrivate” set as false, which coin-
cided mostly with the non-spam profiles in the random and
top 8 datasets.

Robustness of features As the categorical features are
simply values of fields, most of them can be easily changed.
The robustness, in this case, mainly comes from if chang-
ing a value of a field, and thereby value of a feature, would
make the spam profile less effective (i.e., getting fewer users
to click on a link). As mentioned in Section 2, most spam
profiles portray young, single women and present other char-
acteristics that make them more likely to be successful in
spamming. Thus, the features “Age”, “Gender”, and “Sta-
tus”, would have a high robustness as they must take on
certain values to be effective. Examples of low robustness
features are “Kid”, “Smoke”, “Drink”, and “DefaultIM”.

4.2 Free-form text features

To convert the free-form text fields into features, we com-
bine all the free-form text fields and use a bag-of-words
approach where each word is treated as a binary feature
(present or not). Before being treated as a feature, each
word is stemmed and checked if it is a stop-word. Porter’s
stemming algorithm (Porter 1980) first reduces the words to
their root, e.g., “jumping”, “jumper”, and “jumped” are all
reduced to their root “jump”. Stop-words are words com-
monly used in a natural language and do not contain any
significant meaning. We remove these words as they can
confuse classifiers due to their high occurrence. Examples
of stop words are “a”, “the”, and “it”.

We also removed words which had less than 20 occur-
rences (a tunable threshold) in the entire dataset, leaving us
with 2,289 words and 3,535 words in the random and top 8
datasets respectively.

Not all profiles contained free-form text features because
they were blank or private profiles, and a few contained un-
parsable free-form fields. In the random dataset, approx-
imately 9000 non-spam profiles (55%) did not contain any
text in the free-form fields; similarly, in the top 8 dataset, ap-
proximately 4300 non-spam profiles (26%) did not contain
any text in the free-form fields. There were 789 spam pro-
files which did not contain any text in the free-form fields.

Discriminatory power Once again, we use the χ2 test to
find the most discriminative features separating the spam
and non-spam classes. Figure 2(b) shows some of the words
with the highest and lowest discriminatory power using the
χ2 test. As expected, the words with the highest discrimina-
tive power are spammy words because these words likely oc-
cur in most spam profile free-form text but not in legitimate
profile free-form text. A few of the non-spam words that
do occur in the most discriminative top 20 words are words
used in conjunction with spammy terms such as [check out
my] “picture”, “watch” [pictures/videos], and “heard” [of a
drug].

Although the individual χ2 test scores of the most pow-
erful discriminative free-form text features is lower than
the categorical, we have over 2,000 free-form text fea-
tures present for each dataset. Some features might be co-
dependent, but we assume independence as this a standard
assumption when dealing with text classification.

Robustness of features As previously mentioned, as most
of the free-form text features with the highest discrimina-
tory power are spammy words, an adversary could change
the free-form text to not include spam words. This isn’t
very practical as: a) removing spam tokens from the free-
form text fields would make the spam profiles less effective,
and b) to be most effective, the free-form text fields must be
well written, which requires spammers to manually rewrite
the text. Although an adversary might attempt to replace
the words with the highest discriminatory power with a syn-
onym or another form of camouflage (e.g. replacing “click”
with “c1ick”), our detection techniques could similarly be
tuned to detect synonyms and adjust for this.

To be conservative, we assign 30% of the most discrim-
inatory words a low robustness, as even with the low prac-
ticality for the adversary, these words are most likely to be
changed first. Words after this are assigned a medium to
high robustness.

5. Analysis of Classification Results

We separately evaluate the effectiveness of using categorical
and free-form text features, followed by an evaluation using
a combined classifier. As a baseline, we compare our results
to a basic majority classifier, which on both datasets results
in a 90.9% accuracy with an AUC of 0.499. The majority
classifier classifies all profiles as non-spam, which results in
1496 (9.1%) false-positives and 0 false-negatives.
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Classifier Feature Set
AUC False-Positives False-Negatives

Random Top 8 Random Top 8 Random Top 8

Majority Classifier (Baseline) N/A 0.499 0.499 1496 1496 0 0

AdaBoostM1 (w/DecisionStumps) Categorical 0.991 0.982 98 1347 151 4
J48 Categorical 0.994 0.994 24 23 55 85
SMO (w/PolyKernel) Categorical 0.986 0.984 34 34 66 136
Multilayer Perceptron (MLP) Categorical 0.994 0.992 24 37 48 98

Naı̈ve Bayes Free-form Text 0.718 0.886 849 866 635 71

Table 3: Results of classification based on the different feature sets.

Table 3 shows the result of classification of social spam
profiles on the random and top 8 datasets. Results in bold
highlight the best results for a particular classifier and mea-
sure (averaged over both datasets).

5.1 Categorical features

We first look at the results of the classifiers that use only the
categorical set of features. Based on Table 3, we see that the
J48 classifier performs the best, misclassifying only 79 and
108 profiles (accuracy of 99.6% and 99.4%) on the random
and top 8 dataset respectively. This is followed closely by
MLPs. SMO (with PolyKernel) and AdaBoostM1 (with De-
cisionStumps) perform well in terms of AUC but have a lot
of FPs and FNs, comparatively.

J48 performs the best as there are some very discrimi-
natory features, which allow it to quickly detect “obvious”
spam or non-spam in the early levels of the tree, followed by
refinement at the lower levels. As an example, the root of the
J48 tree for the random dataset simply checks if “Smoke” is
“undef” and if not, detects the instance as non-spam. This
correctly classifies 78% (11,734 of 15,000) non-spam pro-
files with an error of less than 1%. For the same reason,
we expected AdaBoostM1 (with DecisionStumps) to per-
form much better than it did. DecisionStumps are simply
single branch trees, and they should have been able to clas-
sify the spam profiles even using only 10 iterations of boost-
ing. In fact, for the default ROC threshold used by Weka,
the AdaBoostM1 (with DecisionStumps) classifier performs
only marginally better than the baseline majority classifier
in terms of the number of misclassified spam profiles on the
top 8 dataset.

Most classifiers also tended to perform better on the ran-
dom dataset than on the top 8 dataset. This can be explained
by the profiles in the top 8 dataset being more similar to
the spam profiles (based on the overall lower χ2 test score),
causing more misclassifications.

On investigating the misclassifications, we found that
most of the false-positives were due to a particular “strain”
of spam profiles, which were more complete and contained
legitimate looking categorical features. Additionally, unlike
other spam profiles, this strain seemed to be selling male
enhancement drugs, and the profiles were in a relationship.
It is likely that the classifiers attributed the strain of spam
profiles as noise and avoided over-training.

Empty or partially filled out profiles resulted in a small
number of false-negatives for all the classifiers, followed by
additional false-negatives for some classifiers that mistook

partially filled out profiles of young women as spam. Some
of the empty profiles were the result of profiles “Undergoing
construction” at the point of crawling.

5.2 Free-form Text features

We now explore the classification of profiles based on the
free-form text-based sections of their profiles. From Table 3,
we see that a naı̈ve Bayes classifier using only free-form text
features does poorly in comparison to the classifiers using
only categorical features.

The large number of false-positives were due to 789 of
1496 spam profiles (53%) containing blank free-form text
sections (or the free-form text sections not being parsable),
which resulted in the majority non-spam label applied to
such profiles. From a sample of profiles, we manually in-
vestigated and found the false-negatives were mainly due to
non-spam profiles using spammy tokens in their about me
section. For example, we looked at the most discriminatory
spam features in a subset of non-spam profiles used in the
random dataset; we found 47, 36, 457, and 90 occurrences
of the spam tokens “click”, “adult”, “sexi”, and “c**k”, re-
spectively.

5.3 Categorical and Free-form Text features

A natural question which arises is whether the independent
predictions of the classifiers on the categorical and free-form
text features can be combined to improve our classification
results. The aim here would be to use classifiers which are
best at classifying their respective feature set (and allow for
co-dependence in the case of free-form text features).

To do this we experimentally examine the results of ap-
plying the ‘AND’ and ‘OR’ operators to the predictions of
the classification based on the default ROC threshold. When
classifying spam profiles, in the case of the ‘AND’ operator,
only if both categorical and free-form text classifiers pre-
dicted the profile to be “spam” will the profile to be marked
as spam. In the case of the ‘OR’ operator, either categorical
or free-form text feature classifier predicting the profile as
“spam” will result in the profile being marked as such. To
reduce the number of false-negatives, we only considered
the outcome of the free-form text classifier if the text feature
set was not empty.

Intuitively, the ‘AND’ operator should reduce the number
of false-negatives as both classifiers will have to predict a
“spam” classification before one is assigned. The ‘OR’ op-
erator on the other hand should reduce the number of false-
positives as either classifier predicting “spam” will cause
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Classifier Feature Set
AUC False-Positives False-Negatives

Random Top 8 Random Top 8 Random Top 8

Majority Classifier (Baseline) N/A 0.499 0.499 1496 1496 0 0

AdaBoostM1 (w/DecisionStumps) Categorical 0.916 0.980 1496 1496 0 0
J48 Categorical 0.942 0.987 219 39 953 225
SMO (w/PolyKernel) Categorical 0.500 0.965 1496 76 0 285
Multilayer Perceptron (MLP) Categorical 0.912 0.988 950 53 807 237

Naı̈ve Bayes Free-form Text 0.718 0.886 848 863 612 67

Table 4: Results of classification under assumption of an adversary. Features with high discriminatory power and low robustness
are removed.

“spam” to be assigned. On the flip-side, the ‘AND’ oper-
ator will increase the number of false-positives due to more
“spam” being classified as “non-spam” and similarly the
‘OR’ operator will increase the number of false-negatives.

We do not show results here because, as intuitively ex-
plained, applying the above operators to predictions simply
reduced either false-negatives or false-positives but not both
simultaneously. We hypothesize that building a new clas-
sifier over the combined categorical and free-form text fea-
tures would alleviate this problem and leave investigating
this as future work.

6. Analysis of Adversarial Classification

Results

Previous evolutionary studies (Irani et al. 2008; Pu and
Webb 2006) have shown that once techniques are developed
to counter particular types of spam, spammers evolve and
deploy new types of spam to bypass those techniques. As-
suming the presence of an adversary with an ability to probe
our classifier for most discriminatory features, we evaluate
the effectiveness of our classifiers with the low robustness
and high discriminatory power features removed—as adver-
saries are likely to remove most spammy easy-to-change
(low-impact on spam) features first. To emulate this, we
use the χ2 test score of the features over both datasets and
remove the highest discriminatory features with low robust-
ness.

As a baseline, we again use a basic majority classifier,
which on both datasets results in a 90.9% accuracy with an
AUC of 0.499. The majority classifier classifies all profiles
as non-spam, which results in 1496 (9.1%) false-positives
and 0 false-negatives—the results remain the same as we do
not change the number of profiles, only reduce the set of
features.

Table 4 shows the result of classification of social spam
profiles, assuming an adversary, on the random and top 8
datasets. Results in bold highlight the best results for a par-
ticular classifier and measure (averaged over datasets).

6.1 Categorical features

For the categorical set of features, the four features with the
strongest discriminatory power and low robustness are “De-
faultIM”, “Smoke”, “Drink”, and “Kid”. Based on Table 4,
we see that the J48 classifier performs the best, misclassify-
ing 1172 and 264 profiles (accuracy of 92.9% and 98.4%)

on the random and top 8 dataset respectively. AdaBoostM1
(with DecisionStumps) and MLPs, also do well based on the
resulting AUC, but AdaBoostM1 (with DecisionStumps) has
a significantly higher number of misclassifications. SMO
(with PolyKernel) performs the poorest, with the classifica-
tion on the random dataset being similar to that of the base-
line majority classifier.

J48 performs the best, for reasons similar to it doing the
best at regular classification as well—it is able to use the
highest remaining discriminatory features to detect “obvi-
ous” spam or non-spam in the early levels of the tree. As the
most discriminatory features have been removed, the J48 de-
cision tree resulting from this classification is more complex
with the number of leaves in the tree growing by about 45%.
Even with the best classification results, the J48 classifier
misclassifies over 1400 profiles (4.3%) on both advesarial
datasets, as compared to a misclassification of less than 200
profiles (0.6%) on both non-advesarial datasets. Although
the lack of expressiveness of the PolyKernel is the likely rea-
son for SMO with PolyKernel classifier performing badly on
the random dataset, we are investigating this fruther.

On investigating the misclassifications we found that
in-addition to the false-positives incurred by the non-
adversarial classifier, profiles of women around the age of
30 started being marked as legitimate. Additional false-
negatives incurred by the adversarial classifier were due to
partially complete profiles of women which had filled in cer-
tain categorical fields which previously would have identi-
fied them as non-spam, but which are no-longer considered.

6.2 Free-form Text features

To pick which free-form text features to remove we averaged
the discriminatory power of the free-form text features be-
tween datasets and chose features with the strongest discrim-
inatory power and lowest robustness. We set a limit of dis-
regarding 900 features per dataset, which left us with 1,389
features and 2,635 features in the random and top 8 datasets
respectively. The results of running the classifiers over the
new set of features, gives us the results shown in Table 4.

The naı̈ve Bayes classifier performs similarly over the full
feature set. This indicates that although the features with
the strongest discriminatory power were removed, there is a
large enough set of weaker features available for classifica-
tion.

Once again, a large number of the false-positives were
due to spam profiles not containing a free-form text section,
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and the false-negatives due to spammy tokens being used in
legitimate profiles.

7. Conclusion and Future Work

In this paper, we present an exploration of the limits of clas-
sifying social spam profiles on MySpace. Specifically, we
focus on zero-minute fields or static fields present when a
profile is created to try and determine whether such a tech-
nique would be feasible in preventing spammers from gain-
ing a foothold inside a social network to send spam. We start
with an analysis of features that includes a statistical analy-
sis to determine the discriminatory power of a feature as well
as the robustness of features to adversarial attack. Then we
compare the effectiveness of classifiers that were built with
these features.

Our classification results show that a standard C4.5 deci-
sion tree performs the best with an AUC of 0.994 and an
average of approximately 24 false-positives and 70 false-
negatives. The number of false-positives is acceptable as
most of the non-spam profiles misclassified were partially
filled out profiles. A subset of the false-positives are a new
“strain” of spam profiles that expose one of the weaknesses
of our classification technique—namely, a weakness in de-
tecting new types of spam profiles without sufficient training
examples. To further explore the potential of new types of
spam profiles evading our classifiers, we use our earlier sta-
tistical analysis to disregard features that are most likely to
be camouflaged by an adversary and analyze the effects this
has on the classifier’s performance.

We believe that the classification results are positive
enough to justify building a system in which a classifier can
automatically detect most spam profiles with a high confi-
dence, and mark others as gray profiles. Collaborative fil-
tering (with a lower threshold) or administrator reporting,
can be used to confirm the correct class label for these gray
profiles, which in turn could be used in a feedback loop to
improve future classification results.
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