
TweetMotif: Exploratory Search and Topic Summarization for Twitter

Brendan O’Connor
Carnegie Mellon University

brenocon@gmail.com

Michel Krieger
Meebo, Inc.

mikekrieger@gmail.com

David Ahn
Microsoft, Inc.

daviddahn@gmail.com

Abstract

We present TweetMotif, an exploratory search applica-
tion for Twitter. Unlike traditional approaches to in-
formation retrieval, which present a simple list of mes-
sages, TweetMotif groups messages by frequent signif-
icant terms — a result set’s subtopics — which facili-
tate navigation and drilldown through a faceted search
interface. The topic extraction system is based on syn-
tactic filtering, language modeling, near-duplicate de-
tection, and set cover heuristics. We have used Tweet-
Motif to deflate rumors, uncover scams, summarize
sentiment, and track political protests in real-time. A
demo of TweetMotif, plus its source code, is available
at http://tweetmotif.com.

Introduction and Description

On the microblogging service Twitter, users post millions of
very short messages every day. Organizing and searching
through this large corpus is an exciting research problem.
Since messages are so small, we believe microblog search
requires summarization across many messages at once.

Figure 1: Screenshot of TweetMotif.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our system, TweetMotif, responds to user queries, first
retrieving several hundred recent matching messages from a
simple index; we use the Twitter Search API.

Instead of simply showing this result set as a list, Tweet-
Motif extracts a set of themes (topics) to group and summa-
rize these messages. A topic is simultaneously characterized
by (1) a 1- to 3-word textual label, and (2) a set of messages,
whose texts must all contain the label.

TweetMotif’s user interface is inspired by faceted search,
which has been shown to aid Web search tasks (Hearst et
al. 2002). The main screen is a two-column layout. The
left column is a list of themes that are related to the current
search term, while the right column presents actual tweets,
grouped by theme. As themes are selected on the left col-
umn, a sample of tweets for that theme appears at the top
of the right column, pushing down (but not removing) tweet
results for any previously selected related themes. This al-
lows users to explore and compare multiple related themes
at once.

The set of topics is chosen to try to satisfy several criteria,
which often conflict:

1. Frequency contrast: Topic label phrases should be fre-
quent in the query subcorpus, but infrequent among gen-
eral Twitter messages. This ensures relevance to the query
while eliminating overly generic terms.

2. Topic diversity: Topics should be chosen such that their
messages and label phrases minimally overlap. Overlap-
ping topics repetitively fill the same information niche;
only one should be used.

3. Topic size: A topic that includes too few messages is bad;
it is overly specific.

4. Small number of topics: Screen real-estate and concomi-
tant user cognitive load are limited resources.

The goal is to provide the user a concise summary of themes
and variation in the query subcorpus, then allow the user
to navigate to individual topics to see their associated mes-
sages, and allow recursive drilldown. The approach is re-
lated to document clustering (though a message can belong
to multiple topics) and text summarization (topic labels are
a high-relevance subset of text across messages). We heuris-
tically proceed through several stages of analysis.

384

Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media

Step 1: Tokenization and syntactic filtering

Tokenization is difficult in the social media domain, and
good tokenization is absolutely crucial for overall system
performance. Standard tokenizers, usually designed for
newspapers or scientific publications, perform poorly. Our
regex-based tokenizer treats hashtags, @-replies, abbrevia-
tions, strings of punctuation, emoticons and unicode glyphs
(e.g. musical notes) as tokens.

Unigrams are too narrow a unit of analysis; ideally, we
want to extract all phrases and subphrases. We begin with all
unigrams, bigrams, and trigrams, discarding unigrams that
are function words, and discarding bigrams and trigrams that
cross syntactic boundaries. These rules flag n-grams includ-
ing certain types of punctuation tokens in certain positions,
and ones that end with certain right-binding function words
like “the” and “of.” This simple syntactic filtering greatly
improves the coherency of extracted n-grams.

Step 2: Score and filter topic phrase candidates

TweetMotif takes a simple language modeling approach to
identifying topic phrases that are most distinctive for a tweet
result set, scoring them by the likelihood ratio:

Pr(phrase | tweet result set)
Pr(phrase | general tweet corpus)

As is usually the case in language modeling, a given phrase
does not necessarily occur in a corpus, so probabilities must
be estimated with smoothing. We tried several simple esti-
mation methods, settling on Lidstone smoothing:

Pr(phrase | corpus) =
phrase count in corpus + δ

N + δn

where for a phrase of length m, N is the count of all phrase
instances of length m in the corpus, δ = 0.5 is the smoothing
parameter, and n is the count of all phrase types of length m
in the corpus. Essentially, there are independent models for
unigram, bigram, and trigram phrases.

The background corpus consists of 150,000 Twitter mes-
sages collected in April 2009 from search queries for the, of
and several other common English function words.

It is interesting to compare our approach to TF/IDF for
document retrieval, which estimates document relevance by
balancing the frequency of query terms against their fre-
quencies in a background corpus. Note that the average
Twitter message is 11 words long, and words rarely occur
more than once in a message; thus, the count of a word is vir-
tually the same as the count of messages it occurs in (DF and
TF are the same). If messages are considered documents, the
notion of document TF is not very useful. Our approach is
more like TF for one giant document consisting of the con-
catenation of all query subcorpus messages. This too is an
odd analogy. In general, we believe the microblog search
problem will require creative formulations of cross-message
phonemena beyond current paradigms in IR.

Step 3: Merge similar topics

Every candidate phrase defines a topic, a set of messages
that contain that phrase. Many phrases, however, occur in

roughly the same set of messages, thus their topics are repet-
itive. We seek to merge similar topics.

First, there are easy merges between subsumed n-gram
phrases of differing sizes. Each of an n-gram’s label-
subsumed (n-1)-grams must conversely subsume its mes-
sage set. For example, the message set for the bigram topic
“swine flu” must be a subset or equal to the two unigram
topics “swine” and “flu.” If the “swine flu” topic is in fact
equal to the “flu” topic, then we discard the “flu” topic, since
“swine flu” is strictly more informative.

Furthermore, ignoring topic labels, we merge topics if
their message sets have more than 90% Jaccard similarity.
All pairs of topics are compared, so final topics are con-
nected components of the pairwise Jacc ≥ 0.9 graph — i.e.,
single-link clustering. When several topics are merged, only
the intersection of messages is included in the new topic.
There is a label choice problem/opportunity for merged top-
ics: any of the old topics’ labels are now legitimate. Our
heuristic solution usually picks longer and higher scoring
labels, and sometimes combines short labels into a skip n-
gram.

Step 4: Group near-duplicate messages

Grouping messages by topic reveals a massive amount of
message duplication on Twitter. People forward (“retweet”)
interesting messages such as jokes and news headlines; and
furthermore, a seemingly huge number of bots repeat adver-
tisements, spam, weather reports, news feeds, other people’s
tweets, songs being played on personalized Internet radio
stations, templated messages, etc. It is a waste of space to
always show near-duplicates to the search user; therefore we
detect clusters of near-duplicates, display them with a single
representative and numeric size, and allow them optionally
to be viewed. The algorithm groups messages whose sets of
trigrams have a pairwise Jaccard similarity exceeding 65%.
(For this and the topic merging step, using phrase-message
indexes cuts down on the potentially quadratic runtime.)

This technique seems to reliably find retweets and other
forms of repetition; it also naturally groups together spam.
This was very important in mid-2009 when we developed
TweetMotif, when spam was very prevalent and retweets
were not explicitly marked in the data.

Step 5: Finalize topics

We are now left with a ranked list of topics containing mes-
sages in near-duplicate clusters. After eliminating topics that
contain only one near-duplicate cluster, the list is cut off to
the top 40 topics, and all messages that did not end up in a
topic are put in a catch-all “more...” topic.

All the above analysis is conducted on the result set while
the user waits. A demo, examples, and source code are avail-
able at http://tweetmotif.com.

References

Hearst, M.; Elliott, A.; English, J.; Sinha, R.; Swearingen,
K.; and Yee, K. 2002. Finding the flow in web site search.
Commun. ACM 45(9):42–49.

385

