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Abstract

A particularly challenging task for recommender sys-
tems (RSs) is deciding whether to recommend an item
that received a variety of high and low scores from its
users. RSs that incorporate a trust network among their
users have the potential to make more personalized rec-
ommendations for such controversial items (CIs) com-
pared to collaborative filtering (CF) based systems, pro-
vided they succeed in utilizing the trust information to
their advantage. In this paper, we formalize the concept
of CIs in RSs. We then compare the performance of
several well-known trust-enhanced techniques for effec-
tively personalizing the recommendations for Cls ver-
sus random items in the RS. Furthermore, we introduce
a new algorithm that maximizes the synergy between
CF and its trust-based variants, and show that the new
algorithm outperforms other trust-based techniques in
generating rating predictions for Cls.

Introduction

The wealth of information available on the web has made it
increasingly difficult to find what one is really looking for.
This is particularly true for exploratory queries where one
is looking for opinions and views. Hence, it comes as no
surprise that personalization applications to guide the search
process are gaining tremendous importance. One particulary
interesting set of applications that address this problem are
online recommender systems (RSs), which, based on infor-
mation about their users’ profiles and relationships, suggest
items of interest (Resnick & Varian 1997).

RSs are often used to accurately estimate the degree to
which a particular user (from now on termed the target user)
will like a particular item (termed the target item). Most
widely used methods for making recommendations are ei-
ther content-based or collaborative filtering (CF) methods.
Content-based methods suggest items similar to the ones
that the user previously indicated a liking for. Hence, these
methods tend to have their scope of recommendations lim-
ited to the immediate neighbourhood of the users’ past pur-
chase history or rating record for items. RSs can be im-
proved significantly by (additionally) using CF (Resnick
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et al. 1994), which typically works by identifying users
whose tastes are similar to those of the target user (i.e.,
neighbours) and by computing predictions that are based
on the ratings of these neighbours. The advanced recom-
mendation techniques that we discuss in this paper adhere
to the CF paradigm, in the sense that a recommendation
for a target item is based on ratings by other users for that
item, rather than on an analysis of the content of the item.

The growing popularity of open social networks and
the trend to integrate e-commerce applications with RSs
have generated a rising interest in trust-enhanced RSs.
Recommendations generated by such systems are based on
information coming from an (online) trust network, i.e., a
social network in which the members of the community can
express how much they trust each other. A typical example
is the e-commerce site Epinions.com, which maintains a
trust network by asking its users to indicate which mem-
bers they trust, i.e., their personal ‘web of trust” (WOT).
Trust-enhanced RSs use the knowledge that originates from
such networks to generate recommendations: users receive
recommendations for items rated highly by people in their
WOT, or even by people who are trusted by these WOT
members, etc. (see e.g. (Golbeck et al. 2005; Massa et
al. 2007; O’Donovan et al. 2005))

If all users who have rated an item liked it very much,
it is reasonable to assume that a new user might like it too.
In such cases, a trivial algorithm can achieve high accuracy.
However, the more challenging items are those that receive
a variety of high and low scores, reflecting disagreement
about them. We call such items controversial items (CIs).
More than in any other case, a recommendation from a
target user needs to be truly personalized when the target
item under consideration is controversial; i.e., when an item
has both ‘ardent supporters’ and ‘motivated adversaries’.

In order to be effective as well as efficient, a recommender
system needs to be able to identity whether the target item
is controversial or not, and to apply the most suitable rec-
ommendation method. Our first step in this direction is the
proposition of an operational definition of the CI concept
that is applicable to a wide variety of RSs. Furthermore, we
compare the performance of CF and several trust-enhanced
algorithms on ClIs, including the proposals by (Golbeck
2005), (Massa & Avesani 2007) and (O’Donovan & Smyth



2005), along with a new approach that combines aspects of
CF with trust information.

In the following section, we analyze the controversiality
level of two Epinions data sets and explain why a classical
measure like standard deviation is insufficient to detect their
true CIs. In the third section, we discuss the rationale behind
the aforementioned algorithms, while their coverage and ac-
curacy performance is analyzed in the fourth section, on a
set of CIs and of randomly selected items.

Controversial Items in Epinions

Epinions.com is a popular e-commerce site where users can
write reviews about consumer products and assign a rating
to the products and the reviews. Two Epinions data sets are
often used for experimenting with trust-enhanced RSs. The
first one was collected by (Massa & Bhattacharjee 2004) in
a 5-week crawl and contains 139 738 products that are rated
by 49290 users in total. The second data set was compiled
by (Guha et al. 2004): this large set contains 1560 144 re-
views that received 25 170 637 ratings by 163 634 different
users. Both products and reviews are rated on a scale from 1
to 5. Most items receive very high scores, in fact, 45.3% of
all products in Massa’s data set received the highest possible
evaluation, and over 75% of all ratings in Guha’s data set
are ‘most helpful’. This means that a trivial algorithm that
always predicts 5, or that uses the average score for the item
as its prediction, can achieve high accuracy. However, such
recommendation strategies have difficulties coping with ClIs.

A straightforward way to detect a controversial item
in a data set is to inspect the standard deviation of the
ratings for each item ¢ (see e.g. (Massa & Avesani 2007));
we denote this by o (7). However, o (i) does not convey the
full picture of controversiality. E.g., consider the ratings for
items iy, io and i3 in Table 1; f;(k) denotes the number of
times item ¢ received rating k. Intuitively, item iy seems
the most controversial since it received ratings all over the
range, while there is more agreement on ¢; and ¢3 that are
liked by a majority of the users. Still, in this example the
most controversial item according to intuition has the lowest
o, which illustrates that by itself standard deviation does
not always reflect the controversiality of an item adequately.

We propose a new measure that looks at how often adja-
cent scores appear w.r.t. the total number of received ratings.
The underlying intuition is that different scores that are close
to each other reflect less disagreement than different scores
that are on opposite ends of the scale. In a system with dis-
crete ratings on a scale from 1 to M, the size of the window
in which adjacent scores are being considered can vary from
1 to M. In the definition below, the granularity of the win-
dow is controlled by a parameter A.

Definition 1 (Level of Disagreement) For a system with
discrete ratings on a scale from 1 to M, let A €
{1,...,M}. The A-level of disagreement for an item 1 is
defined as

(a@A) (i) =1 — M)

max M
ae{l...M-a+1} \ M f(k)
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Table 1: Example of three items and their ratings.

| () (2 £B) fi@) £i6) | o) | (a@2)()
i1 1 1 0 3 5 1.34 0.20
i2 1 2 3 2 1 1.15 0.44
i3 1 0 0 4 4 1.20 0.11

Figure 1: (i) vs. (i) in Guha et al.’s data set

with f;(k) the number of times that item i received rating k.

A window size of A = 1 means that scores are considered
in isolation. A window size of A = 2 means each score
is considered with a neighbouring score, i.e. scores are con-
sidered in groups of 2. If A = M, then («@A) = 0, since
there can be no disagreement when all ratings are considered
together. The last column of Table 1 displays the 2-level of
disagreement for items 1, ¢2 and %3, indicating that there is
more disagreement on ¢o than on 4 and 3.

Fig. 1 depicts the standard deviation (horizontal axis)
and the 2-level of disagreement (vertical axis) of items in
Guha’s data set. While a small o(7) typically entails a small
a@A2) (1), there is considerable variation for high values
of o (and vice versa). This highlights that o and «@A are
significantly different measures that can be used together to
define the concept of a controversial item.

Since the controversiality of items with few ratings may
be due to chance, we include a popularity threshold in our
definition (in which f; denotes the number of times item ¢
has been evaluated) to ensure real controversiality:

Definition 2 ((c*, a*, §*)-controversial) We call item i
(o*, a*, 5*)-controversial iff o(i) > o*, (a@2)(i) > a*
and f; > B*.

Applying this definition to the data set requires a parameter
selection that is adapted to its characteristics, e.g., the pre-
dominance of rating value 5. For example, for Massa’s data
set, we choose a o* value of 1.4, an o* value of 0.4, and a
(* = 20 times, which yields 266 Cls.

Recommendation Strategies
RSs come in many flavours, including content-based,
collaborative filtering and trust-based methods; the latter
two being the ones most relevant to our current efforts.

In CF algorithms (Resnick et al. 1994), a rating of



target item ¢ for target user a can be predicted using a
combination of the ratings of the neighbours of a (similar
users) that are already familiar with item ¢. The classical
CF-formula is given by (CF). The unknown rating p, ;
for item 7 and target user a is predicted based on the
mean 7, of ratings by a for other items, as well as on
the ratings r, ; by other users u for 7. The formula also
takes into account the similarity w,, between users a
and u, usually calculated as Pearson’s Correlation Co-
efficient (PCC) (Herlocker et al. 2004). In practice,
most often only users with a positive correlation wg,
who have rated i are considered. We denote this set by RT.

_?u)

ZuER+ wa,u (ru,i

2 uer+ Wayu

1)

Pai =Ta+ (CF)

Trust-enhanced RSs often use information coming from a
trust network in which users are connected by trust scores in-
dicating how much they trust each other; in general, ¢, ,, is a

number between 0 and 1 indicating to what extent a trusts u.

Trust-based weighted mean refines the baseline recom-
mendation strategy of simply computing the average rating
for the target item, it is natural to assign more weight to
ratings of highly trusted users. See (T1), in which RT repre-
sents the set of users who evaluated 7 and for which the trust
score t, ,, exceeds a given threshold value. This formula is
at the heart of Golbeck et al.’s TidalTrust (2005).

3) _ ZueRT ta,uru,i
pa,i - t
EuERT a,u

Another class of trust-enhanced systems is tied more
closely to the collaborative filtering algorithm. O’Donovan
et al.’s trust-based filtering (2005) adapts Formula (CF) by
only taking into account trustworthy neighbours, i.e., users
in Rt = RT N RT.

(T1)

—7)

4) 4 ZueRT+ wa,u(ru,i
pa,i =Ta Z
ueERT+ Wa,u

In other words, we only consider the users who are trusted
by the target user a, and have a positive correlation with a.
Instead of a PCC-based computation of the weights, one
can also infer the weights through the relations of the target
user in the trust network, as in (T1). We call this alterna-
tive for CF trust-based CF; see (T3) which adapts (T2) by
replacing the PCC weights w, ,, by the trust values ¢, ,,.

(T2)

ZuGRT ta,u(ru,i - E)
> uerr tau
This method is known as Massa et al.’s MoleTrust (2007).

P}

=T+ (T3)

A very important feature of trust-enhanced RSs is
their use of trust propagation operators: mechanisms to
estimate the trust transitively by computing how much
trust an agent has in another agent. Both TidalTrust and
MoleTrust invoke trust propagation to expand the set RT.
However, the way they implement this operation differs
significantly, see (Golbeck 2005) and (Massa & Avesani
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Table 2: Performance of trust-based algorithms

ALGORITHM Controversial items (Cls) Random items (RIs)
cov MAE RMSE cov MAE RMSE
CF 81 1.34 1.58 79 0.84 1.12
Trust-based weighted mean 41 1.33 1.70 34 0.87 1.24
Trust-based filtering 25 1.35 1.71 22 0.85 1.18
Trust-based CF 40 1.32 1.65 34 0.86 1.19
EnsembleTrustCF 84 1.32 1.57 81 0.83 1.11
Prop Trust-based weighted mean 76 1.37 1.69 72 0.90 1.23
Prop Trust-based filtering 57 1.36 1.64 53 0.86 1.16
Prop Trust-based CF 76 1.32 1.56 72 0.84 1.12
Prop EnsembleTrustCF 84 1.32 1.57 81 0.83 1.11
2007). Although trust propagation is not used in (T2)

(O’Donovan & Smyth 2005), it is of course possible to do
so; since trust scores are not used explicitly in (T2), we
only need to specify how propagation enlarges the set R” .

It has been demonstrated that including trust in the
recommendation process significantly improves accuracy
(Golbeck 2005; Massa & Avesani 2007). On the other hand,
the coverage of algorithms (T2) and (T3) remains lower
than their classical counterpart (CF) (Massa & Avesani
2007). In order to maximize the synergy between CF and
its trust-based variants, we propose EnsembleTrustCF:

P =74 (T4)

ZueRT ta,u(T’u,,i - ﬁ) + ZuER+\RT wa,u(ru,i _ ﬁ)
ZuGRT ta,u + Eu€R+\RT Wa,u

The rationale behind this strategy, which combines (CF) and
(T3), is that we take into account all possible ways to obtain
a positive weight for a user who has rated the target item,
favouring a trust relation over a PCC-based one; in partic-
ular, if a user can be reached by a direct or indirect trust
relation, we use this value instead of the PCC to obtain the
user’s weight. In this way, we retain the accuracy benefit by
first looking at the trusted users, while on the other hand the
coverage can increase by taking into account neighbours for
which no trust information is available. This new strategy is
guaranteed to perform as least as good as (CF) and (T3) in
terms of coverage.

Experimental Results

In Epinions, users can evaluate other users by including
them in their WOT, which is a list of users whose reviews
and ratings were consistently found to be valuable. Massa’s
data set contains 487 003 such trust statements. Due to space
restrictions, we only report results on this set; results on
Guha’s can be found in (Victor et al. 2009). Note that the
data sets only contains binary trust values, hence in our ex-
periments t,_,, in (T1)-(T4) can take on the values O (ab-
sence of trust) and 1 (full presence) only.

To measure the performance of RSs, we work with the
leave one out method. In particular, we use two well-known
accuracy measures, viz. mean absolute error (MAE) and
root mean squared error (RMSE) (Herlocker ef al. 2004).
Since reviews are rated on a scale from 1 to 5, the extreme
values that MAE/RMSE can reach are 0 and 4. Besides



accuracy, we also consider coverage: during the leave one
out we count how many predictions can be generated for the
hidden scores. To compare the performance achieved for
CIs with the performance that can be obtained in general,
we also present the average coverage and accuracy for 266
randomly selected ‘popular’ items (RIs) (that have been
evaluated at least 20 times). Table 2 shows the relative
coverage (COV) and accuracy (MAE, RMSE) for Massa’s
data set. For simplicity, we only consider one-step propa-
gation in this paper. For (PT1) and (PT3), we maintained
the propagation strategy used in TidalTrust and MoleTrust
respectively, while for (PT2) we added a user to R” if he
belongs to the WOT of the target user a, or is directly trusted
by a WOT member of a. For (PT4), we assign gradual
propagated trust weights ¢, , = (PCC + 1)/2. In this way,
users u who cannot be reached through a direct trust relation
are still rewarded for their presence in a’s propagated WOT.

Without propagation, it is clear that the coverage of (CF)
and (T4) is superior to that of the others, and approaches the
maximal value. This is due to the fact that PCC information
is, in general, more readily available than direct trust infor-
mation (there are normally more users for which a positive
correlation with the target user a can be computed than
users in a’s WOT). Our new algorithm EnsembleTrustCF
(T4) is most flexible, since having either some trust or a
positive correlation is sufficient to make a prediction. On the
other hand, (T2), which also uses PCC weights, is the most
demanding strategy because it requires users in a’s WOT
who have already rated two other items in common with
a (otherwise the PCC can not be computed). In between
these extremes, the coverage for (T1) is a bit higher than
that of (T3) because the latter can only generate predictions
for target users who have rated at least two items (otherwise
the average rating for the target user can not be computed).

This ranking of approaches in terms of coverage still
applies when propagated trust information is taken into
account, but note that the difference with CF has shrunk
considerably. In particular, thanks to trust propagation, the
coverage increases with more than 30%, except for Ensem-
bleTrustCF, for which the unpropagated version continues
to score better than the propagated versions of (T1)—(T3).

It is clear that generating good predictions for contro-
versial items is much harder than for randomly chosen
items. When focusing on the MAE for CIs, we notice that,
without propagation, almost all trust-enhanced approaches
yield better results than CF, which is in accordance with the
observations made in (Golbeck 2005; Massa and Avesani
2007). This can be attributed to the accuracy/coverage
trade-off: a coverage increase is usually at the expense of
accuracy, and vice versa. It also becomes clear when taking
into account trust propagation: as the coverage of (PT1-3)
nears that of (CF) and (T4), so do the MAEs. However,
the RMSEs give us a different picture: those of the trust-
enhanced approaches are generally higher than that of CF;
recall that a higher RMSE means that more large prediction
errors occur. Also remark that the propagated algorithms
achieve lower RMSEs than their unpropagated counterparts.
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We can also observe that our new algorithm is a valuable
asset in the domain of trust-enhanced techniques. Ensem-
bleTrustCF beats or matches all other algorithms on accu-
racy; MAE and RMSE, with and without propagation, and
for both CIs and RIs. Moreover, taking into account the
much higher coverage that (T4) achieves (for unpropagated
algorithms at least the double), it is fair to state that Ensem-
bleTrustCF is the real winner on Massa’s data set.

Conclusions

We have provided a comparative analysis of the performance
of collaborative filtering (CF) and trust-enhanced recom-
mendation algorithms for controversial and random items.
A coverage and accuracy based comparison shows no clear
winner among the three state-of-art trust-enhanced strate-
gies proposed by (Massa & Avesani 2007), (O’Donovan &
Smyth 2005), and (Golbeck 2005). However, by combin-
ing the best of both the CF and the trust world, we have
introduced EnsembleTrustCF, a new algorithm that achieves
higher coverage than other trust-based methods while it still
retains the accuracy benefit of the latter strategies.
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