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Abstract

We present a novel problem of searching for ‘familiar
strangers’ in a social network. Familiar strangers are individ-
uals who are not directly connected but exhibit some similar-
ity. The power-law nature of social networks determines that
majority of individuals are directly connected with a small
number of fellow individuals, and similar individuals can be
largely unknown to each other. Moreover, the individuals of
a social network have only a local view of the network, which
makes the problem of aggregating these familiar strangers a
challenge. In this work, we formulate the problem, show why
it is significant to address the challenge, and present an ap-
proach that innovatively employs the social identities of the
individuals with competitive approaches. A blogger and cita-
tion network are used to showcase technical details and em-
pirical results with related issues and future work.

Introduction

Familiar strangers as defined by Stanley Milgram (Milgram
1972) in physical world are those individuals who do not
know each other but share some common attributes like in-
terests, occupation, location etc. For instance, people taking
the same train daily find familiar faces but do not know each
other. Analogous to physical world, it is equally interest-
ing and challenging to define and study the existence of fa-
miliar strangers in virtual or online world. Social networks
represent a complex set of human relations through inter-
actions expressed via a spectrum of social media websites
like blogs, online friendship networks, wikis, media sharing
websites, social tagging websites etc. In an online world, fa-
miliar strangers could be defined as those individuals who
are not friends with each other, i.e., they are not in each
other’s social network, but they share some common set of
attributes like hobbies, community affiliations, workplace,
location, etc. A more formal definition is given later.

Identifying familiar strangers has profound applications
in online social networks. Since the online social networks
are shown to have long tail distribution, i.e., most of the
members have very few contacts and very few members
have a large number of contacts, which means that most of
these members do not know each other. Although many of
them could have a lot in common but due to the long tail
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distribution it is quite likely that they may not know each
other. Aggregating such familiar strangers could form a crit-
ical mass such that (1) the understanding of one member
gives us a sensible and representative glimpse to others, (2)
more data about familiar members can be collected for better
customization and services (e.g., personalization and recom-
mendation), (3) the nuances among them suggest new busi-
ness opportunities, and (4) knowledge about them can fa-
cilitate predictive modeling and trend analysis in new prod-
uct/market development. Connecting them to form a crit-
ical mass can potentially expand their social network, i.e.,
job searching, special interest group formation. Aggregat-
ing familiar strangers can encourage participation due to the
crowd effect (Kumar et al. 2004). People usually trust those
with similar interests. Knowledge transfer or information
flow among friends and acquaintances becomes smoother
and more receptive.

Identifying familiar strangers in online social networks is
interesting and involves several key challenges. Individuals
have only local view, i.e., individuals know their contacts but
may not know their contacts’ contacts and so on. Search-
ing for all the contacts of a node, his contacts’ contacts and
so on, to identify familiar strangers incurs an exponential
cost. Each individual is associated with some content or
attributes. The challenge lies in intelligently putting that
information to the benefit of searching familiar strangers.
Evaluation and validation of the proposed approaches is a
big issue due to the absence of an established ground truth.

Problem Formulation

Here we define familiar strangers and formulate the problem
of searching them using local information. Given a social
network G where V is the set of vertices (nodes) or the mem-
bers of the social network. The nodes are associated with an
attribute. The attribute can take one or more values from a
domain D = {a1, a2, ..., al}. We call this the attribute-value
set of a node and is denoted by Au for a node u (u ∈ V ).
Each node u has a local view of the network (also known
as an egocentric view (Wasserman and Faust 1994)), that
means the node only knows its adjacent nodes denoted by
Cu = {m1, m2, ...,my | edge(u, mp) �= 0, 1 ≤ p ≤ y},
also known as u’s contacts. Here edge(c, d) �= 0 denotes
an edge between nodes c and d. This is similar to a sce-
nario where one knows his/her friends but doesn’t know
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A: Interest
D: {Academic, Arts, Blogging, Business, Computers, Exercise, History, Internet, 

Music, News, Personal, Political, Recreation, Technology, Travel}
u: Seed Blogger
Cu: {v1,v2,v3,v4}

Au: {Exercise, History, Recreation}

Av1: {Internet, News}

Av2: {Blogging, Internet}

Av3: {Blogging, Internet, Technology}

Av4: {Recreation, Travel}

Find Tu: familiar strangers of u given goal �: Sports = {Exercise, Recreation}

Local knowledge 
that u has of the 

network

Figure 1: Searching familiar strangers for a node u given the local network information that u has and the goal γ.

his/her friends’ friends and so on. In order to define familiar
strangers of u, it is essential to define the notion of similarity.

Definition 1 (Similarity) Nodes u and v are similar iff Av∩
γ �= ∅, where γ is a goal described as γ ⊆ Au.

Definition 2 (Familiar Strangers) Given u and γ, Tu is
the set of familiar strangers of u iff (1) for all the nodes
v ∈ Tu, edge(u, v) = 0 i.e., all the nodes v are non-adjacent
to u - stranger1 and (2) all the nodes v are similar to u with
respect to γ as defined above - familiar.

The problem of searching for familiar strangers given a
node u can be illustrated in Figure 1 where a blogger so-
cial network is presented in the left, snippet of which is pre-
sented in the middle. Here the attribute A is “Interest” and
D is the domain for the values of “Interest”. Cu represents
the contacts of u and Au represents the attribute-value set
of u. Av1 , Av2 , Av3 , Av4 represent the attribute-value sets
of v1,v2,v3, and v4 respectively. We need to find Tu, famil-
iar strangers of u for the goal γ (“Sports”) defined by the
combination of “Exercise” and “Recreation”.

The challenge lies in searching for familiar strangers effi-
ciently, i.e., in minimum number of edge traversals with lo-
cal information. To compute the lower bound on the search
space for finding the familiar strangers, consider the central-
ized version of the problem, in which the node u has global
or whole view of the network and the objective is to find the
smallest set of edges that will connect all the nodes in Tu

starting at node u. This centralized version of the familiar
strangers problem corresponds to the Steiner tree problem.
Given a subset of nodes V ′ ⊂ V in a graph G = (V,E), the
Steiner tree (T ) spans the node set V ′ with least number of
edges. The node set V ′ is referred to as the required nodes
or terminal nodes and the set of nodes in V \ V ′ is referred
to as the optional nodes or Steiner vertices. It may be noted
that tree T contains all the nodes in set V ′ and zero or more
nodes in set V \V ′. The Steiner tree in a social network that
spans the node u and the familiar strangers Tu provides the
least number of edges that need to be traversed to find all the
familiar strangers of u and thus provides a lower bound on
the search space of the familiar strangers problem.

The problem of finding the Steiner tree is known to be
NP-complete (Du and Hu. 2008). We provide an Integer

1This definition of stranger nodes is borrowed from the famous
concept of weak ties (Granovetter 1973).

Linear Programming (ILP) formulation to solve the Steiner
tree problem optimally. Given the undirected social net-
work graph G = (V,E), we first construct the correspond-
ing directed graph H = (V, F ), in which two directed
edges {(vi, vj), (vj , vi)} ∈ F for each undirected edge
(vi, vj) ∈ E. Let the number of required nodes be de-
noted by n, i.e., |V ′| = n and let an arbitrary vertex say,
the node u ∈ V ′ be designated as the root node. The ILP
views the directed graph H as a flow graph, in which (n−1)
units of flow are routed from the root u towards the nodes in
V ′ \ {u} through minimum number of edges. Each node
in V ′ \ {u} consumes exactly one unit of flow. The edges
of graph H through which a positive (unit) flow exists form
the minimum-edge arborescence2 in H spanning the vertices
V ′. The undirected edges in graph G corresponding to the
arborescence edges forms the required Steiner tree in G.

Let indicator variables xvivj
= 1, if edge (vi, vj) belongs

to the required minimum-edge arborescence T in H , other-
wise, xvivj = 0. Let variables fvivj ≥ 0 represent non-
negative flow on the edges. The variables xvivj and fvivj

are defined for all edges (vi, vj) ∈ F . The objective is to
minimize the number of edges in the arborescence in H ,

Minimize
∑

(vi,vj)∈F

xvivj

• There are exactly (n − 1) units of flow emanating out of
the root node u and 0 units of flow going into it. That is,

∑
(u,vj)∈F

fuvj
= n − 1,

∑
(vj ,u)∈F

fvju = 0

• Every other required node, i.e., vi ∈ V ′ \ {u} consumes
1 unit of flow. That is,

∀vi ∈ V ′ \ {u},
∑

(vj ,vi)∈F

fvjvi −
∑

(vi,vj)∈F

fvivj = 1

• A positive flow exists on an edge, iff the edge is selected
in the arborescence which is ensured by:

∀(vi, vj) ∈ F, fvivj
≤ (n − 1)xvivj

Because solving ILP in general takes exponential time, we
employ a 2-Approximation algorithm based on Minimum

2An arborescence T of a graph H is a directed, rooted tree sub-
graph of H in which all edges point away from the root.
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Spanning Tree approach (Du and Hu. 2008) for computing
Steiner trees. The 2-Approximation algorithm produces a
solution that is guaranteed to be within 2 times the optimal
solution in terms of the edge traversals.

Social Identity Theory

Real-world social networks of people have been shown to
exhibit properties of searchability, which means a target can
be found quickly even in the absence of global network
view (Watts, Dodds, and Newman 2002). Searchability in
social networks has been attributed to the tendency of peo-
ple to cluster their contacts into meaningful groups based
on different attributes and selecting relevant cluster of con-
tacts to advance the search at each hop which would take the
search closer to the destination. This arrangement of neigh-
bors in groups gives a sense of social identity (Tajfel 1978).

Social identity theory has been widely studied in real-
world social networks in terms of observing searchability
property of the network. In this paper, we attempt to utilize
the social identity theory in online social networks to iden-
tify familiar strangers, which is the first of its kind to the best
of our knowledge. Directly connected neighbors of a node
form the set of its contacts and the attribute-value set of the
nodes are used to construct the social identity. More details
on social identity construction using the attribute-value set
is described in the Social Identity Construction.

Approaches for Egocentric View

Here we present strategies to find familiar strangers Tu of a
node u given goal γ using an egocentric view of the network.

Social Identity Approach

According to social identity theory, people cluster their con-
tacts into meaningful groups and pick the cluster that has
maximum similarity with the goal γ. So we prune some
contacts at each level and propagate the search with the se-
lected cluster of contacts to ensure that the search remains
closer to the specified γ instead of wandering away.

Social Identity Construction Social identity based
search relies on the ability of a node u to cluster its contacts.
Each node in the network is represented as a vector space
model of its attributes and simple cosine similarity based
measures could be used to compute affinity matrix between
contacts of node u. Then conventional clustering algorithms
like k-means could be used to cluster the contacts of node
u. The clustering approach could be more sophisticated if
more data is available about the nodes of the network be-
sides the attribute-value set. For a blogger social network
dataset along with the blogger network and their attribute-
value set3 we also have their blog posts and the metadata
associated with the blogger like tags, categories, and blog
post text. This rich metadata about the bloggers is used to
construct the vector space model for each of the contact s of
a node u in blogger network. Here the terms of the vector
space model are the words in the vocabulary after removing

3Bloggers’ attribute-value set construction is explained in more
detail in the BlogCatalog section.

stop words and stemming. However, this is a very sparse
and high-dimensional vector. So this sparse vector could be
transformed to concept space vector using latent semantic
analysis (Deerwester et al. 1990). The transformed vector is
less sparse and low dimensional.

Clustering of the contacts could be performed either of-
fline or online while searching. We perform the clustering
offline. So the social identity of the nodes of the network
are constructed a priori to speedup the search process. On-
line clustering takes care of the dynamics of the network,
nevertheless, it increases the response time while searching.
We can also bypass the construction of social identities to
search for familiar strangers. Perhaps this would mean that
the search phase will look at all the contacts of a node to
find the most relevant nodes to propagate the search. How-
ever, by constructing social identity we cluster the contacts
and pick the relevant cluster, hence pruning the search space
early on. Since clustering is done offline, which does not
incur clustering overhead costs while searching.

Example 1: To illustrate with an example, refer to Figure 1,
where we need to find the familiar strangers of the node u
with respect to the goal, γ = {Exercise, Recreation}. We
can either search all his contacts viz., v1, v2, v3, v4 to find
the contacts that are similar to the γ. This would result in v4

as the contact whose attribute-values match with the γ. Or
we can cluster the contacts offline and pick the relevant clus-
ter. Clustering resulted in two clusters one with v1, v2, v3

and the other with v4. Now the second cluster with v4 is
more similar to the γ, so we pick the contacts in this cluster,
which in this case is v4. The latter strategy greatly prunes the
search space, especially when the nodes have much larger
number of contacts4 and the clustering is performed offline.

Social Identity based Search for familiar strangers of a
node u and γ can be summarized in the pseudo code in Al-
gorithm 1. Given a node: u, its contacts: Cu, its contacts’
attribute-value set: BCu

, and γ as input, it outputs a set of
node(s) Tu that are the familiar stranger(s) for u. Algorithm
first clusters the contacts Cu of node u and selects the cluster
that has maximum similarity with γ, i.e., C ′

u. Then among
the node(s) in C ′

u, node(s) whose attribute-value set matches
with γ are selected and we call this set of node(s) C ′′

u . The
node(s) in C ′′

u are then added to a data structure Q. For each
node t in Q search is repeated by first clustering the contacts
Ct of node t and then selecting the cluster that has maximum
similarity with γ, i.e., C ′

t. Then further filter C ′
t by selecting

the node(s) whose attribute-value set matches with γ. As-
sign these node(s) to the set C ′′

t . Node(s) in C ′′
t are added

to the set Tu and Q. Q is a FIFO data structure to ensure a
breadth-first search. We do not add C ′′

u to Tu since these are
the adjacent contacts of u and not strangers.

A social network could be a cyclic graph so a person
might get multiple requests to search his contacts to find fa-
miliar strangers. We assume that a node searches his con-
tacts only once. This is realistic because once a person has

4It has been found that on average people have approximately
over 150 contacts, also known as the Dunbar number (Bialik 2007).
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Input : Node: u,
Contacts of u: −→Cu,
Attribute-value set of contacts of u: BCu ,
A goal: γ

Output: Set of nodes Tu familiar strangers to node u

Tu ← ∅;1

Cluster the contacts Cu of node u;2

C′
u ← select the cluster of contacts that has maximum3

similarity with γ;
C′′

u ← select the nodes from C′
u whose attribute-value set4

match with γ;
Add selected nodes C′′

u to a FIFO data structure Q;5

Set participatedFlag for u ← true;6

while Q �= ∅ do7

t ← dequeue a node from Q;8

if participatedFlag for node t = false then9

Ct ← All contacts of t;10

Cluster the contacts Ct of node t;11

C′
t ← select the cluster of contacts that has12

maximum similarity with γ;
C′′

t ← select the nodes from C′
t whose13

attribute-value set match with γ;
Add selected nodes C′′

t to Q;14

Add C′′
t to Tu;15

Set participatedFlag for node t ← true;16

end17

end18

Return Tu;19

Algorithm 1: Searching familiar strangers of u.

searched his contacts and forwarded the search request to his
contacts he has no incentive to do it again. This is realized
by associating a participatedFlag to each node which
is set to false by default and is set to true once the node gets a
search request and forwards it to his contacts (line 16 in the
Algorithm 1). A node checks the participatedFlag
before searching its contacts and propagating the search to
the next hop (line 9 in the Algorithm 1).

Exhaustive Search Approach

Here a node explores all his contacts and his contacts ex-
plores all their contacts and so on to search for the nodes
that have maximum similarity with the goal γ. This proce-
dure continues till all the familiar strangers Tu of the node
u are found. This exhaustive search procedure incurs an ex-
ponential computational cost. Approximately, for an aver-
age degree d of the network, and h hops needed to find all
the familiar strangers, the total number of edges the exhaus-
tive approach needs to traverse is O(dh) which is exponential
to the search depth. However, exhaustive search guarantees
that all the familiar strangers of a node are found.

Random Search

The search starts from u and propagates by randomly se-
lecting some nodes at each hop. A user-specified selectivity
fraction σ ∈ R and σ ∈ [0, 1] controls the number of con-
tacts randomly selected at each hop. This is different than
the social identity based search because of (1) no clustering

Table 1: Summary of BlogCatalog and DBLP datasets.
Statistics BlogCatalog DBLP
Number of nodes 23,566 35,001
Number of node-node links 1,165,622 1,067,447
Link density 0.002 0.0009
Average degree of nodes 98 9
Diameter of the network 5 10
Attribute name Categories Venues
Size of domain of the attribute 60 3198
Average size of attribute-value
set per node

1.6 28.7

of the contacts of a node, and (2) no intelligent selection of
contacts in random search approach. Exhaustive search is a
special case of random search where σ = 1.

Datasets

A blogger network, BlogCatalog5 and citation network
DBLP6 is used for the evaluation of different approaches

BlogCatalog A blog in BlogCatalog is associated with
various information pieces like the categories the blog is
listed under, blog level tags, snippets of 5 most recent blog
posts, and blog post level tags. A blogger also specifies his
social network of other bloggers. A blogger’s interests could
be gauged by the categories he publishes his blogs in. There
are in total 60 categories in BlogCatalog. Each blogger
could list his blog under more than one categories. On av-
erage each blogger lists their blog under 1.6 categories. All
the categories his blog has been published are agglomerated
to construct his profile vector. This profile vector forms the
attribute-value set for this blogger. However, in case where
the category information is unavailable, we can use various
existing author-topic model extraction approaches (Rosen-
Zvi et al. 2004) to extract topics of the author from the text
in blog posts, tags, and comments. Note that the blogger’s
social network vector is extremely sparse as also depicted by
the average degree of nodes and link density in Table 1.

DBLP dataset presents information on computer science
publications. We construct social network of authors using
the co-author relation. Two authors are connected through
an edge if they have collaborated on at least one paper. So
all the co-authors of an author constitute his social network.
Each author publishes his work in the choice of his venue,
which also tells us about his interests. Based on the venue
information of the publications we construct the attribute-
value set of each author. We use a part of DBLP dataset
which is the largest connected component of the graph gen-
erated using the co-author relation. The average degree of
the author social network is 9. This shows that on average
an author collaborates with 9 authors, much smaller than the
BlogCatalog dataset, due to which the diameter is twice as
large as the BlogCatalog as summarized in Table 1.

Dataset Characteristics

For BlogCatalog and DBLP, we investigate characteristics
like power-law degree distribution and small-world assump-

5http://www.blogcatalog.com
6http://kdl.cs.umass.edu/data/dblp/dblp-info.html
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Figure 2: Degree distribution for BlogCatalog.

tion which are necessary for searchability in the network
with local information (Watts, Dodds, and Newman 2002).

Degree Distribution We study the degree distribution of
the nodes in BlogCatalog and DBLP dataset. We display the
log-log graph of this distribution with log(degree) on the x-
axis and log(frequency) on the y-axis, for BlogCatalog in
Figure 2. We omit the degree distribution plot for DBLP due
to space constraints. We observe that both BlogCatalog and
DBLP dataset follow power law distribution P (x) ∼ x−k

with scaling exponent k of 1.1693 and 2.7896, respectively.
Small-World Assumption Networks conforming to

small world assumption are characterized by short average
path lengths and high clustering coefficient (Watts and Stro-
gatz 1998). The distance between any two nodes in the net-
work is defined as the number of edges along the shortest
path connecting them. Average path length of a network is
defined as follows (Watts and Strogatz 1998):

lG =
1

n × (n − 1)
×

∑
i,j

d(vi, vj) (1)

where n is the number of vertices in the graph G and
d(vi, vj) denotes the shortest path between two nodes vi and
vj . For BlogCatalog and DBLP, we computed the average
path length using the above formulae and was found to be
2.379 and 5.083, respectively.

Clustering coefficient is a common property of social net-
works representing circles of friends in which every member
knows every other member. If a node v in graph G is con-
nected to kv other nodes then the clustering coefficient of
node v is defined as (Watts and Strogatz 1998):

Cv =
2Ev

kv(kv − 1)
(2)

where Ev is the actual number of edges that exist between
the kv vertices. We compute Cv for all the vertices v of the
graph G and compute the average value. We compare the
clustering coefficient values of the two datasets with that of
random networks generated using the same set of nodes as in
BlogCatalog and DBLP but the edges are rewired according
to Erodös-Rényi model(Erdös and Rényi 1959). We report
the results for clustering coefficient for both the datasets and
their random network counterparts in Table 2, which shows
that clustering coefficient values for the original datasets
(Actual Networks) is much higher than their random coun-
terparts (Random Networks). Low average path length and

Table 2: Clustering coefficient results for both datasets.
Actual Network Random Network

BlogCatalog 0.51 0.001 ± 0.0002
DBLP 0.69 0.001 ± 0.0002

high clustering coefficient implies that the two datasets in-
deed exhibit small- world characteristics.

Experiments - Constructing Social Identity

Social identities of the nodes are not available in the on-
line social networks, so we construct the social identities
of the nodes using conventional clustering algorithm - k-
Means. BlogCatalog dataset has very rich metadata for the
bloggers, including blog posts and tags. We construct the
social identities of the bloggers using the metadata as men-
tioned in the section on Social Identity Construction. The
DBLP dataset doesn’t have any details about the authors be-
sides their venues. So we cluster the contacts of an author
using the venue information.

Here we present the results of social identity construc-
tion of the nodes of the blogger network from BlogCat-
alog dataset. To avoid the high-dimensionality and syn-
onymy and polysemy issues we use latent semantic analy-
sis to transform the term space vector to concept space as
mentioned before in the Social Identity Construction sec-
tion. Since we use k-Means algorithm to construct the clus-
ters, we need to find the optimal value of k to compute the
clusters. To determine the cluster number k, we try to maxi-
mize the following ratio:

1
k

∑
ci

(
2

‖ci‖×(‖ci‖−1)

∑
vm∈ci,vn∈ci

Cosine(vm, vn)
)

2
k(k−1)

∑
ci,cj ,i<j

(
1

‖ci‖×‖cj‖
∑

vm∈ci

∑
vn∈cj

Cosine(vm, vn)
)

(3)
s.t. 2 ≤ k ≤ ‖D‖

In the above formula, ci, cj represent two different clus-
ters i and j. vm, vn are two different vectors representing
two different bloggers. k varies from 2 to the number of
contacts a node has, i.e. ‖D‖. Cosine(bi, bj) gives the
cosine similarity between the two bloggers, bi, bj . Each
blogger has two vectors: the content vector (bc

i , b
c
j) and tag

vector (bt
i, b

t
j). We compute the cosine similarity between

the two bloggers by linearly combining the cosine similar-
ity of each of the two corresponding vectors by assigning
0.3 and 0.7 weight to content and tag vector respectively7.
The numerator is the average similarity within the clusters,
and the denominator is the average similarity between dif-
ferent clusters. We call them Within Similarity and Be-
tween Similarity, respectively. We plot the differential i.e.,
d
dk

WithinSimilarity
BetweenSimilarity for different values of k averaged over

100 nodes in Figure 3. We fit a polynomial trendline to help
visualize the trend of the increase in the ratio of Within Sim-
ilarity and Between Similarity. It is evident from Figure 3
that after a certain value of k (= 30), the increment in this
ratio is small. This means that the ratio increases faster when

7These values of weights give the best result. Due to space con-
straint we do not present the results with different weight values.
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Figure 3: Differential of the ratio of Within Similarity and
Between Similarity vs. k.
k is small, and the trend becomes flat for larger values of k.
We simply set the number of clusters to 30.

To evaluate the effectiveness of k-Means, we cluster the
contacts by k-Means and random partition, by setting the k
to 30. For k-Means, we randomly choose the nodes to start
clustering. For random partition, the contacts are distributed
into 30 clusters randomly. The average Within Similarity
and Between Similarity values are computed for the clusters
obtained from both k-Means and random partition. Table 3
shows the average Within Similarity and Between Similarity
values for k-Means and random partition method over 100
runs. It is evident from Table 3 that k-Means clustering gives
dense or cohesive and well-separated clusters as implied by
higher Within Similarity and lower Between Similarity as
compared to random partition.

Experiments - Searching Familiar Strangers

In this section we compare the proposed social identity
based search approach with other alternatives, viz., Steiner
tree approach, exhaustive search approach and random
search approach. We compare these approaches in terms of
accuracy and search space complexity as explained next.

Evaluation Criteria

To compare the above-mentioned approaches we need to es-
tablish a ground truth. As mentioned in the Problem Formu-
lation section, Steiner Tree based approach has the global
view of the network G with V vertices, so we construct the
ground truth using Steiner Tree based approach. For a given
goal γ, Steiner Tree based approach extracts a subgraph G′

γ
from the original graph containing nodes that share a part or
whole of the γ (required vertices), V ′

γ , as well as some nodes
that do not share γ at all (Steiner vertices or optional ver-
tices), V SV

γ . This subgraph could be used to identify the fa-
miliar strangers of any node which is a part of this subgraph.
Basically, the required nodes that are not directly connected
to a node u in this subgraph are the familiar strangers of u
or Tu and forms the ground truth, denoted by V FS

γ and is
computed as V ′

γ − V SV
γ .

Accuracy To evaluate an approach E (where E could be
one of the social identity based search approach, random
search approach, and exhaustive search approach), we pick

Table 3: Within Similarity and Between Similarity by dif-
ferent clustering methods

k-Means Random
Within Similarity 0.71 0.52

Between Similarity 0.51 0.52

Table 4: Comparison of the approaches in terms of Accuracy
and Search Space Complexity for BlogCatalog dataset.

Approach (E) Accuracy (%) Search Space Complex-
ity (edge traversals)

Steiner Tree 100% 3, 565 ± 560
Exhaustive 100% 4, 531, 967 ± 891, 831
Random 1.0283% ± 0.862 1, 823 ± 1, 833
Social Identity 79.2908% ± 9.052 6, 032 ± 2, 117

a node u from the given network such that the attribute val-
ues Au of u and the goal γ are similar. This constraint is
realized by setting γ ⊆ Au as also defined in the Problem
Formulation section. Recall that this is the same γ that was
used to generate the ground truth of familiar strangers us-
ing Steiner Tree based approach. Then we use the strategy
E to generate the familiar stranger nodes for u denoted by
V E

u,γ . We repeat this process for all such possible nodes and
aggregate the familiar strangers identified for each node, de-
noted by

⋃
u∈V,γ⊆Au

V E
u,γ . Then accuracy for approach E is

computed as the intersection between the ground truth com-
puted by using Steiner Tree based approach and the familiar
strangers identified by E for the γ normalized by the to-
tal number of the familiar strangers identified by the Steiner
Tree based approach as the ground truth. Mathematically,
we can represent accuracy of an approach E with respect to
a goal γ as,

AccE
γ =

|V FS
γ

⋂
(
⋃

u∈V,γ⊆Au
V E

u,γ)|
|V FS

γ | (4)

Search Space Complexity We define the search space
complexity of an approach E as the number of hops tra-
versed to find the set of familiar stranger nodes with respect
to a goal γ (

⋃
u∈V,γ⊆Au

V E
u,γ). Since Steiner Tree based ap-

proach finds the set of familiar stranger nodes with respect
to a goal γ by traversing minimum number of edges. We ex-
ploit this property to establish the lower bound on the search
space complexity for various approaches.

Results and Analysis

In our experiments we test for 1000 goal (γ) values. For each
value of γ we generate the set of familiar stranger nodes us-
ing the approaches mentioned above. We compute the accu-
racy for each of the mentioned approaches as explained in
the section on Accuracy and also compute the search space
complexity in terms of the hops traversed as described in the
section on Search Space Complexity. We average the ac-
curacy values over all the goals, i.e., 1000 γ values. We re-
port the average accuracy values along with the search space
complexity for all the approaches in Tables 4 and 5.

From the Tables 4 and 5 it can be observed that, though
exhaustive approach gives 100% accuracy it bears an over-
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whelming search cost to discover all the familiar stranger
nodes. On the other hand social identity based search ap-
proach achieves 79.2908% accuracy for BlogCatalog and
91.3495% accuracy for DBLP dataset. However, the social
identity based approach searches approximately 0.1331%
of the space as searched by exhaustive search approach in
BlogCatalog and 0.1136% for DBLP. This shows a phenom-
enal reduction in the search space using social identity of the
nodes while searching for familiar strangers.

We present the results for Steiner Tree based approach as
a lower bound for search space complexity in Tables 4 and 5.
Since Steiner Tree based approach assumes global informa-
tion of the network, it can discover all the familiar stranger
nodes, hence it achieves an accuracy of 100% for both Blog-
Catalog and DBLP dataset in minimum search steps. How-
ever, social identity based search approach, which does not
have global information about the network, searches only a
couple of factors more of the search space (precisely, 1.69
and 2.56 for BlogCatalog and DBLP, respectively). Since
the social identity based search approach has egocentric
view of the network, it cannot achieve 100% accuracy, but
it still performs reasonably well as compared to Steiner tree
approach for both the datasets.

Deeper analysis explains the reason for such a drastic re-
duction in search space complexity. We computed the aver-
age number of contacts selected at each hop for the social
identity based search, which comes out to be 0.030 ± 0.006
and 0.039 ± 0.011 for BlogCatalog and DBLP dataset, re-
spectively. This means that as few as 3% and 4% of nodes
are selected on average at each hop that propagates the
search at the next hop, respectively for BlogCatalog and
DBLP datasets. This extremely small fraction of nodes se-
lected at each hop is the reason why social identity based
search approach has such a small search space complexity.

To test the effectiveness of the social identity based ap-
proach we compare it with the random search approach.
Random search approach selects a percentage of nodes at
each hop randomly and propagates the search to the next
hop. This doesn’t involve any intelligent selection of the
contacts. For a fair comparison we assigned σ (the selectiv-
ity parameter for random search approach) as the selectivity
for social identity based search approach, which was found
to be 0.030± 0.006 and 0.039± 0.011 for BlogCatalog and
DBLP dataset, respectively. A comparison of accuracy val-
ues between the random search approach and social identity
based search approach (in Tables 4 and 5) clearly shows that
intelligent selection of contacts based on social identity the-
ory improves the accuracy phenomenally. Note that random
search approach selects the contacts randomly at each hop
so for each goal γ value we run the random search 1000
times and report average accuracy and search space com-
plexity results for a particular γ. Finally for all the 1000
goal γ values we compute the average accuracy and search
space complexity results.

Next we compare the various approaches at different ac-
curacy values in terms of search complexity. This experi-
ment is performed to observe the search space complexity
behavior as we attempt to find increasingly larger number
of familiar strangers. We report the results in Figure 4 for

Table 5: Comparison of the approaches in terms of Accuracy
and Search Space Complexity for DBLP dataset.

Approach (E) Accuracy (%) Search Space Complex-
ity (edge traversals)

Steiner Tree 100% 4, 752 ± 907
Exhaustive 100% 909, 543 ± 162, 651
Random 2.304% ± 0.1264 58 ± 159
Social Identity 91.3495%±4.4398 12, 182 ± 4, 716

BlogCatalog dataset. Note that since the random search
approach does not give reasonable accuracy (< 10%) in
both the datasets, we do not include it in these experiments.
It is evident from the figure that exhaustive search based
approach has an exponential behavior. The overwhelming
search space complexity of the exhaustive search approach
overshadows the search space complexity behavior for so-
cial identity and Steiner Tree approach. To observe the
search space complexities of social identity and Steiner Tree
based search approach we plot accuracy vs. log of search
steps in Figure 5 for BlogCatalog. It shows that social iden-
tity and Steiner Tree based search approach are comparable
in terms of search space complexity. However, exhaustive
search approach is almost 2-3 orders of magnitude higher
than both the social identity and Steiner Tree based approach
for both the datasets. This shows that social identity based
search is closer to Steiner Tree based search approach in
terms of search space complexity although social identity
based search assumes only egocentric view unlike Steiner
Tree based search approach that assumes global view of the
network. Similar behavior is observed for DBLP, however
due to space constraints the results are not presented here.

Related Work

To the best of our knowledge no work uses the social identity
theory to search for familiar strangers, so we review extant
literature in identifying latent friends and clustering nodes
of a social network.

Identifying Latent Friends Authors in (Schwartz and
Wood 1993) use Social Network Analysis (SNA) to dis-
cover groups of individuals sharing the same connectivity
properties of networks. Since this does not consider the tex-
tual information of the entities, it limits the applications of
SNA. Authors in (Rosen-Zvi et al. 2004)(McCallum et al.
2005) use LDA and its variations to mine relationships be-
tween people based on the content. These approaches de-
velop topic models on the documents submitted by the au-
thors. Authors may produce several documents often with
coauthors, making it unclear how the topics generated for
these documents might be used to describe the interests of
the authors. Moreover, it is challenging to learn the param-
eters in these approaches even though well-established ap-
proximation techniques exist. Considering the limitations of
author-topic model based approaches to identify latent rela-
tions, authors in (Shen et al. 2006) train an SVM to pre-
dict the topics for bloggers from external topic taxonomies.
Based on the topic similarity, further refined by the cosine
similarity of actual blog content, similar bloggers can be rec-
ommended. As topic taxonomies keep evolving, it requires
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Figure 4: Accuracy vs. Search Steps for BlogCatalog.
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Figure 5: Accuracy vs. Log of Search Steps for BlogCatalog.

re-training the classifier that adds complexity to the solution.
Moreover, detecting bloggers true interests in some of their
writings could be a big challenge at times. Unlike the fa-
miliars strangers, the latent bloggers identified by (Shen et
al. 2006) could possibly know each other. Other key differ-
ences are, the constraint of egocentric network view and use
of social identity theory in searching familiar strangers.

Clustering in Social Networks Girvan and New-
man (Girvan and Newman 2002) proposed a divisive algo-
rithm by measuring “edge betweenness” based on the ob-
servation that the inter cluster edges have a large “edge be-
tweenness” value if the communities are loosely intercon-
nected. (Radicchi et al. 2004) improves the former work by
considering the “edge-clustering coefficient” as the number
of triangles to which a given edge belongs, divided by the
number of triangles that might potentially include it, which
is similar to the definition of “clustering coefficient” first in-
troduced by (Watts and Strogatz 1998). Another measure to
detect the community is modularity(Newman 2006) which
estimates the fraction of in-links in a community minus the
expected value of in-links in a network with the same com-
munity structure but random connections between the nodes.
Unlike above methods which search for the non-overlapping
communities, (Palla et al. 2005) explores overlapping com-
munities based on the idea that a community consists of sev-
eral complete subgraphs that share several nodes.

Conclusion

In this paper, we studied the familiar strangers in online so-
cial networks and identify the numerous research opportuni-
ties and business advantages of identifying and aggregating
the familiar strangers. We formulate the problem and pro-
pose a social identity theory based solution with other alter-
natives. We also show that under certain circumstances, the
problem of identifying familiar strangers can be reduced to a
well-known np- complete Steiner tree problem and study its
2-approximation solution to estimate the lower bound on the
search space. The Steiner tree solution is also used to gen-
erate the ground truth. We performed extensive experiments
on a real world blogger social network dataset, BlogCatalog
and citation network dataset, DBLP to show that the pro-
posed social identity based approach outperforms the other
alternative approaches and is quite close to the Steiner tree
based search approach in terms of search space complexity.
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