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Abstract

We describe a general stochastic processes-based approach
to modeling user-contributory web sites, where users create,
rate and share content. These models describe aggregate mea-
sures of activity and how they arise from simple models of
individual users. This approach provides a tractable method
to understand user activity on the web site and how this activ-
ity depends on web site design choices, especially the choice
of what information about other users’ behaviors is shown to
each user. We illustrate this modeling approach in the context
of user-created content on the news rating site Digg.

Introduction

The Web is becoming more complex and dynamic as sites
allow users to contribute and personalize content. Such sites
include Digg, Flickr and YouTube where users share and rate
news stories, photos and videos, respectively. Additional ex-
amples of such web sites include Wikipedia and Bugzilla,
enabling anyone to contribute to encyclopedia articles or
help develop open source software. These social web sites
also often allow users to form explicit links with other users
whose contributions they find interesting and highlight the
activity of a user’s designated friends (Lerman and Galstyan
2008) to help users find relevant content.

Web sites often provide users with aggregate summaries
of recent activity. For example, both Digg and Flickr have
a front page that features ‘hot’ (popular or interesting) con-
tent. News organizations, such as The New York Times,
allow users to subscribe to or embed RSS feeds of their
most popular (e.g., emailed) stories in the users’ own pages.
Feedback between individual and collective actions can lead
to nonlinear amplification of even small signals. For ex-
ample, the ‘Digg effect’ refers to the phenomenon where a
‘hot’ story on the social news aggregator Digg brings down
servers hosting the story that are not equipped to deal with
heavy traffic that a popular story on Digg generates.

Aggregate activity of many users determines the structure
and usefulness of user-participatory web sites. Understand-
ing this emergent behavior will enable, for example, predict-
ing which newly contributed content will likely become pop-
ular, identifying productive ways to change how information
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is displayed to users, or how to change user incentives so as
to improve the content.

The behavior of an individual user on a user-contributory
web site is governed by a myriad of social, economic,
emotional and cognitive factors, and often subject to un-
predictable environmental influences, such as the weather
or the economy. Nevertheless, the combined activities of
many users often produce remarkably robust aggregate be-
haviors (Wilkinson 2008; Wu and Huberman 2007).

In this paper, we present a stochastic processes-based
framework for relating aggregate behavior of web users to
simple descriptions of their typical individual behavior. The
models can be written directly from the individual behavior
descriptions, and quantified with empirical observations of a
representative sample of users.

The methodology we describe applies to behaviors that
can be modeled as Markov processes, i.e., where the rele-
vant changes depend only on the current state of the system,
not the detailed history of how it arrived at that state. In
principle such models can always be applied by extending
the complexity of the “state” describing the system. How-
ever, such complexity can lead to models requiring estimates
for an impractically large number of parameters characteriz-
ing how the state changes. Instead, the Markov modeling
assumption is useful primarily in connection with systems
requiring only a few variables to define their current state.

At first glance an assumption of Markov processes and
simple states may appear overly restrictive for describing
human behavior. However, many online activities provide
only a fairly limited set of actions for users and present in-
formation based on little or no historical context of particular
individuals. In these cases, a few state variables can capture
the main context involved in user actions. Furthermore, we
discuss simplifying approximations to the models that read-
ily enable identifying how key system behaviors relate to
user actions. These simplifications come at a cost: while the
resulting models correctly describe the typical aggregate be-
haviors, they say little about their extreme cases, e.g., where
web site use is suddenly and briefly much larger than aver-
age. Even with this limitation, however, simplified models
are often preferred over full models, which frequently re-
quire multiple simulation trials, which are computationally
expensive and whose typical behaviors can be challenging
to identify (Lerman et al. 2001).

50

Proceedings of the Third International ICWSM Conference (2009)



The paper is organized as follows. The next section re-
views the stochastic modeling framework. We then illus-
trate the framework for the news aggregator Digg (Lerman
2007a), which allows users to submit and rate news sto-
ries by voting for the stories they like. Digg promotes
highly rated stories to the front page, in essence allowing
it to emerge from the decisions made by its users. We de-
scribe the modeling steps: specifying an individual’s be-
havior on a site, estimating model parameters and solv-
ing for aggregate behaviors. We show stochastic mod-
els can correctly explain several features of this collective
user behavior. Because other user-contributory web sites
have features and aggregate behaviors (Wilkinson 2008;
Wu and Huberman 2007) similar to Digg, the stochastic
modeling approach could be useful in describing a variety
of sites in addition to Digg. This paper also provides a brief
tutorial of useful guidelines for applying the stochastic mod-
eling framework to the behavior of user-participatory sites.

Stochastic Models
Rather than account for the inherent variability of individ-
uals, stochastic models focus on the behavior of average
quantities representing aggregate properties of the system.
In the context of a participatory web site, such quantities in-
clude average rate at which users contribute new content and
rate existing content. Such macroscopic descriptions often
have a simple form and are analytically tractable. Stochastic
models do not reproduce the results of a single observation
— rather, they describe typical behavior. These models are
analogous to the approach used in statistical physics, demo-
graphics and macroeconomics where the focus is on rela-
tions among aggregate quantities, such as volume and pres-
sure of a gas, population of a country and immigration, or
interest rates and employment.

We represent each user as a stochastic process with a
small number of states. This abstraction captures much of
the relevant individual user complexity by casting their de-
cisions as inducing probabilistic transitions between states.
This modeling framework applies to stochastic processes of
varying complexity. In this paper, we focus on simple pro-
cesses that obey the Markov property, namely, a user whose
future state depends only on her present state and the input
she receives. A Markov process can be succinctly captured
by a diagram showing the possible states of the user and
conditions for transition between those states.

With the representation of users based on a small set of
relevant states, the same set of states for all users, and tran-
sitions depending only on the state and not the individual
user, the system as a whole is described simply by the num-
ber of users in each state at a given time. That is, the
system configuration is defined by the occupation vector:
�n = (n1, n2, . . .) where nk is the number of users in state k.

The occupation vector changes as people use the web site,
e.g., to view, post and rate content. In principle, one could
follow the history of the system, giving a sequence of occu-
pation vectors. However, to investigate typical behavior we
consider a collection of histories of similar content (as deter-
mined through a few characteristic properties). This group-
ing allows the model to generalize from simply describing

what has already been observed to predicting behavior of
similar situations that may arise in the future.

The next step in developing the stochastic model summa-
rizes the variation within the collection of histories with a
probabilistic description. That is, we characterize the possi-
ble occupation vectors by the probability, P (�n, t), the sys-
tem is in configuration �n at time t. The evolution of P (�n, t)
is given by the Stochastic Master Equation (Kampen 1992).

Solving the Master Equation analytically is almost al-
ways intractable. Monte Carlo simulations can determine
the model’s predictions, and are often feasible for evalu-
ating relatively small group behavior (Steglich, Snijders,
and Pearson 2007; Robins et al. 2007). However, simula-
tions are computationally challenging for large groups, such
as the thousands to millions of users of contributory web
sites. Moreover, the requirement to repeat the simulation
many times to identify typical behavior makes it difficult to
identify the key features of information available to users
and their choices leading to the observed aggregate behav-
ior of the web site. An alternative is a simple, but approxi-
mate, method working with the average occupation number,
whose evolution is given by the Rate Equation

d〈nk〉

dt
=

∑
j

wjk(〈�n〉)〈nj〉 − 〈nk〉
∑

j

wkj(〈�n〉) (1)

where 〈nk〉 denotes the average number of users in state k at
time t, i.e.,

∑
�n nkP (�n, t), and wjk(〈�n〉) is an approximate

expression for the average transition rate, 〈wjk(�n)〉, from
configuration j to configuration k, with wjk(�n) the transi-
tion rate when the occupation vector is �n. The transition
rates can also depend explicitly on time. In the Rate Equa-
tion, occupation number nk increases due to users’ transi-
tions from other states to state k, and decreases due to transi-
tions from the state k to other states. Each state corresponds
to a dynamic variable in the mathematical model — the av-
erage number of users in that state — and it is coupled to
other variables via transitions between states.

Using the average of the occupation vector in the tran-
sition rates, i.e., wjk(〈�n〉), rather than the average of the
transition rates for the possible occupation vectors, i.e.,
〈wjk(�n)〉, is a common simplifying technique for stochas-
tic models. A sufficient condition for the accuracy of this
approximation is that variations around the average are rel-
atively small, so the average is a fair description of the typ-
ical behavior. In stochastic models with many components,
variations are often small due to many independent inter-
actions among the components. More elaborate versions
of the stochastic approach give improved approximations
when variations are not small, particularly due to correlated
interactions (Opper and Saad 2001). Even in these cases,
however, the averaged rate equations usually provide useful
qualitative relations between user behaviors and aggregate
properties of the system. User behavior on the web often
involves distributions with long tails, whose typical behav-
iors differ significantly from the average (Wilkinson 2008).
In this case we have no guarantee that the averaged approxi-
mation is adequate. Instead we must test its accuracy for par-
ticular aggregate behaviors by comparing model predictions
with observations of actual behavior, as we report below.
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In summary, this stochastic modeling approach to typical
aggregate behavior requires specifying the aggregate states
of interest and how individual user actions cause transitions
among these states. The modeling approach is best suited
to cases where the users’ decisions are mainly determined
by a few characteristics of the user and the information they
have about the system. These system states and transitions
give the rate equations. Solutions to these equations then
give estimates of how aggregate behavior varies in time and
depends on the characteristics of the users involved.

The aggregate behavior described by the Rate Equations
is universal, i.e., the same formalism describes a variety
of systems governed by the same abstract principles. This
approach successfully models several distributed robot sys-
tems (Lerman et al. 2001; Martinoli, Easton, and Agas-
sounon 2004; Galstyan, Hogg, and Lerman 2005). Stochas-
tic models also describe group behavior in social science,
with parameters estimated from social surveys (Robins et
al. 2007), e.g., the formation of network connections among
teen peer groups (Steglich, Snijders, and Pearson 2007).

At the heart of this argument is the concept of separa-
tion of scales, which holds that the details of microscopic
(user-level) interactions are only relevant for computing the
values of parameters of the macroscopic model. This prin-
ciple applies broadly to naturally evolved systems, as found
in biology and economics, and designed technological arti-
facts (Courtois 1985; Simon 1996). From the perspective of
large-scale group behaviors, this decomposition often arises
from processing, sensory and communication limitations of
the individuals and their limited set of actions. In effect,
these limits mean users can only pay attention to a relatively
small number of variables (Hogg and Huberman 1987).

Example: Stochastic Model of Digg
As an example of stochastic modeling, we examine aggre-
gate behavior on Digg, a social news aggregator whose users
submit and rate stories. When a user submits a story, it goes
to the upcoming stories queue. There are a few new submis-
sions every minute and they are displayed in reverse chrono-
logical order of their submission time. A user votes on a
story by “digging” it. A newly submitted story is visible on
the upcoming stories pages for 24 hours after the submis-
sion. If the story accumulates enough votes within this 24-
hour period, it is promoted to the front page, and becomes
visible there. Otherwise, the story is removed after 24 hours.
Although the exact promotion mechanism is kept secret and
changes occasionally, it appears to take into account the
number of votes the story receives and how rapidly. Digg’s
popularity is fueled in large part by the emergent front page.

Digg allows users to track friends’ activities (stories they
recently submitted or voted for). The friend relationship is
asymmetric. When user A lists user B as a friend, A can
watch the activities of B but not vice versa. We call A
the fan of B. With each vote, a story becomes visible to
the voter’s fans through the “dugg upcoming” part of the
friends interface, which shows the newly submitted stories
that user’s friends voted for.

While in the upcoming stories queue, a story accrues
votes slowly. Once it is promoted to the front page, it ac-
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Figure 1: State diagram of user behavior for a single story. A
user starts in the ∅ state at the left, may find the story through
one of the three interfaces and may then vote on it. Users in
the friends, front or upcoming states may choose to leave
Digg, thereby returning to the ∅ state (with those transitions
not shown in the figure). Users reaching the “vote” state
remain there indefinitely and can not vote on the story again.
Parameters next to the arrows characterize state transitions.

cumulates votes at a much faster rate. As the story ages,
accumulation of new votes slows down (Wu and Huberman
2007), and the story’s number of votes saturates.

We collected data by scraping Digg over a period of sev-
eral days in May 2006. We determined the number of diggs
for the stories as a function of the time since each story’s
submission. We collected at least 4 such observations for
each of 2152 stories, submitted by 1212 distinct users. Of
these stories, 510, by 239 distinct users, were promoted to
the front page. To focus on promoted stories, we sampled
more extensively from the front pages, so our data set has
a larger fraction of promoted stories than Digg as a whole.
We also determined the number of fans of a subset of users,
including those who submitted the stories we followed.

In this section we illustrate the stochastic approach with
a model describing how the number of votes received by
stories changes in time and depends on parameters charac-
terizing individual user behavior, on average. Our goal is to
produce a model that explains — and predicts — the voting
patterns on Digg and how these aggregate behaviors relate
to the ways Digg enables users to discover new content.

Behavioral Model

A user visiting Digg can choose to browse its front pages
to see the recently promoted stories, upcoming stories pages
for the recently submitted stories, or use the friends interface
to see the stories her friends have recently submitted or voted
for. She can select a story to read and, if she considers it
interesting, vote for it. Fig. 1 shows the state diagram for
user’s behavior. The user’s environment, the stories she is
seeing, changes in time, due to the actions of all the users.

We characterize the changing state of a story by three val-
ues: the number of votes, Nvote(t), the story has received by
time t after it was submitted to Digg, the queue the story is
in at time t (upcoming or front pages) and its location within
that queue, which we denote by q and p for upcoming and
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front page queues, respectively.
With Fig. 1 as a modeling blueprint, we relate the users’

choices to the changes in the state of a single story. In terms
of the general rate equation (Eq. 1), the occupancy vector �n
describing the aggregate user behavior at a given time has
the following components: the number of users who see a
story via one of the front pages, one of the upcoming pages,
through the friends pages, and number of users who vote for
a story, Nvote. Since we are interested in the number of users
who reach the vote state, we do not need a separate equation
for each state in Fig. 1: at a given time, a particular story
has a unique location on the upcoming or front page queues.
Thus, for simplicity, we can group the separate states for
each queue in Fig. 1, and consider just the combined transi-
tion for a user to reach the page containing the story at the
time she visits Digg. These combined transition rates de-
pend on the location of the story in the queue, i.e., the value
of q or p for the story. With this grouping of user states, the
rate equation for Nvote(t) is:

dNvote(t)

dt
= r(νf(t) + νu(t) + νfriends(t)) (2)

where r measures how interesting the story is, i.e., the prob-
ability a user seeing the story will vote on it, and νf, νu and
νfriends are the rates at which users find the story via one of
the front or upcoming pages, and through the friends inter-
face, respectively.

In this model, the transition rates appearing in the rate
equation depend on the time t but not on the occupation vec-
tor. Nevertheless, the model could be generalized to include
such a dependence if, for example, a user currently view-
ing an interesting story not only votes on it but explicitly
encourages people they know to view the story as well.

Story Visibility

Before we can solve Eq. 2, we must model the rates at which
users find the story through the various Digg interfaces.
These rates depend on the story’s location in the queue. The
parameters of these models depend on user behaviors that
are not readily measureable. Instead, we estimate them us-
ing data collected from Digg, as described below.

Visibility by position in queue A story’s visibility on the
front page or upcoming stories queues decreases as recently
added stories push it further down the list. The stories are
shown in groups: the first page of each queue displays the
15 most recent stories, page 2 the next 15 stories, and so on.

We lack data on how many Digg visitors proceed to page
2, 3 and so on in each queue. However, when presented with
lists over multiple pages on a web site, successively smaller
fractions of users visit later pages in the list. One model
of users following links through a web site considers users
estimating the value of continuing at the site, and leaving
when that value becomes negative (Huberman et al. 1998).
This model leads to an inverse Gaussian distribution of the
number of pages m a user visits before leaving the web site,

e
−

λ(m−μ)2

2mμ2

√
λ

2πm3
(3)

with mean μ and variance μ3/λ. This distribution matches
empirical observations in several web settings (Huberman
et al. 1998). When the variance is small, for intermediate
values of m this distribution approximately follows a power
law, with the fraction of users leaving after viewing m pages

decreasing as m−3/2.

To model the visibility of a story on the mth front or up-
coming page, the relevant distribution is the fraction of users
who visit at least m pages, i.e., the upper cumulative distri-
bution of Eq. 3. For m > 1, this fraction is

fpage(m) =
1

2

(
Fm(−μ)− e2λ/μFm(μ)

)
(4)

where Fm(x) = erfc(αm(m − 1 + x)/μ), erfc is the com-

plementary error function, and αm =
√

λ/(2(m− 1)). For
m = 1, fpage(1) = 1.

The visibility of stories decreases in two distinct ways
when a new story arrives. First, a story moves down the
list on its current page. Second, a story at the 15th posi-
tion moves to the top of the next page. For simplicity, we
model these processes as decreasing visibility, i.e., the value
of fpage(m), through m taking on fractional values within a
page, i.e., m = 1.5 denotes the position of a story half way
down the list on the first page.

Queue position of a story Fig. 2(a) shows how the page
number of a story on the two queues changes in time for
three randomly chosen stories from our data set. The behav-
ior is close to linear, so we take a story’s page number on the
upcoming page q and the front page p at time t to be1:

p(t) = (kf(t− Th) + 1)Θ(t− Th) (5)

q(t) = kut + 1 (6)

where Th is the time the story is promoted to the front page
(before which p(t) = 0) and the slopes are given in Table 1.
Since each page holds 15 stories, these rates are 1/15th the
submission and promotion rates, respectively.

Front page and upcoming stories queues Digg promi-
nently shows the stories on the front page. The upcoming
stories queue is less popular than the front page. We model
this fact by assuming a fraction c < 1 of Digg visitors pro-
ceed to the upcoming stories pages.

Promotion to the front page We use a simple threshold
to model how a story is promoted to the front page. Initially
the story is visible on the upcoming stories pages. If and
when the number of votes a story receives exceeds a pro-
motion threshold h, the story moves to the front page. This
threshold model approximates Digg’s promotion algorithm
as of May 2006, since in our data set we did not see any front
page stories with fewer than 44 votes, nor did we see any up-
coming stories with more than 42 votes. We take h = 40 as
an approximation to the promotion algorithm.

1Θ(x) is a step function: 1 when x ≥ 0 and 0 when x < 0.
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Figure 2: (a) Current page number on the upcoming and front pages vs. time for three different stories. Time is measured from
when the story first appeared on each page, i.e., time it was submitted or promoted, for the upcoming and front page points,
respectively. (b) Increase in the number of distinct users who can see the story through the friends interface with each group of
five new votes for the first 46 users to vote on a story. The points are mean values for 195 stories, including those shown in (a),
and the curve is based on Eq. 7. The error bars indicate the standard error of the estimated means.

Friends interface The friends interface allows the user to
see the stories her friends have (i) submitted, (ii) voted for,
and (iii) commented on in the preceding 48 hours. Although
users can take advantage of all these features, we only con-
sider the first two. These uses of the friends interface are
similar to the functionality offered by other social media
sites: e.g., Flickr allows users to see the latest images his
friends uploaded, as well as the images a friend liked.

The fans of the story’s submitter can find the story via
the friends interface. As additional people vote on the story,
their fans can also see the story. We model this with s(t),
the number of fans of voters on the story by time t who have
not yet seen the story. Although the number of fans is highly
variable, the average number of additional fans from an extra
vote when the story has Nvote votes is approximately

Δs = aN−b
vote (7)

where a = 51 and b = 0.62, as illustrated in Fig. 2(b),
showing the fit to the increment in average number of fans
per vote over groups of 5 votes as given in the data. Thus
early voters on a story tend to have more new fans (i.e., fans
who are not also fans of earlier voters) than later voters.

The model can incorporate any distribution for the times
fans visit Digg. We suppose these users visit Digg daily, and
since they are likely to be geographically distributed across
all time zones, the rate fans discover the story is distributed
throughout the day. A simple model of this behavior takes
fans arriving at the friends page independently at a rate ω.
As fans read the story, the number of potential voters gets
smaller, i.e., s decreases at a rate ωs, corresponding to the
rate fans find the story through the friends interface, νfriends.
We neglect additional reduction in s from fans finding the
story without using the friends interface.

Combining the growth in the number of available fans and
its decrease as fans return to Digg gives

ds

dt
= −ωs + aN−b

vote

dNvote

dt
(8)

with initial value s(0) equal to the number of fans of the
story’s submitter, S. This model of the friends interface
treats the pool of fans uniformly. That is we assume no
difference in behavior, on average, for fans of the story’s
submitter vs. fans of other voters.

Summary In summary, the rates in Eq. 2 are:

νf = νfpage(p(t))Θ(Nvote(t)− h)

νu = c νfpage(q(t))Θ(h−Nvote(t))Θ(24hr− t)

νfriends = ωs(t)

where t is time since the story’s submission and ν is the
rate users visit Digg. The first step function in νf and νu

indicates that when a story has fewer votes than required for
promotion, it is visible in the upcoming stories pages; and
when Nvote(t) > h, the story is visible on the front page.
The second step function in νu accounts for a story staying
in the upcoming queue for at most 24 hours. We solve Eq. 2
subject to initial condition Nvote(0) = 1, because a newly
submitted story starts with a single vote, from the submitter.

Model Parameters and Behavior

The solutions of Eq. 2 show how the number of votes re-
ceived by a story changes in time. The solutions depend on
the model parameters, of which only two parameters — the
story’s interestingness r and number of fans the submitter
has S — change from one story to another. Therefore, we
fix values of the remaining parameters as given in Table 1.

As described above, we estimate some of these parame-
ters (such as the growth in queue location, promotion thresh-
old and fans per new vote) directly from the data. The re-
maining parameters are not directly given by our data set
(e.g., how often users view the upcoming pages) and instead
we estimate them based on the model predictions. The small
number of stories in our data set, as well as the approxi-
mations made in the model, do not give strong constraints
on these parameters. We selected one set of values giving
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parameter value

rate general users come to Digg ν = 10 users/min
fraction viewing upcoming pages c = 0.3
rate a voters’ fans come to Digg ω = 0.002/min
page view distribution μ = 0.6, λ = 0.6
fans per new vote a = 51, b = 0.62
vote promotion threshold h = 40
upcoming stories queue location ku = 0.06 pages/min
front page queue location kf = 0.003 pages/min

story specific parameters
interestingness r
number of submitter’s fans S

Table 1: Model parameters.
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Figure 3: Evolution of the number of votes received by six
stories compared with model solution.

a reasonable match to our observations. For example, the
rate fans visit Digg and view stories via the friend’s inter-
face, given by ω in Table 1, has 90% of the fans of a new
voter returning to Digg within the next 19 hours. As an-
other example, for the page visit distribution, the values of μ
and λ in Table 1 correspond to about 1/6 of the users view-
ing more than just the first page. These parameters could in
principle be measured independently from aggregate behav-
ior with more detailed information on user behavior. Mea-
suring these values for users of Digg, or other similar web
sites, could improve the choice of model parameters.

As specific examples, we consider stories promoted to the
front page, though the model also describes stories that never
reach the front page. Fig. 3 shows the behavior of six sto-
ries. For each story, S is the number of fans of the story’s
submitter, available from our data, and r is estimated to min-
imize the root-mean-square (RMS) difference between the
observed votes and the model predictions. Table 2 lists these
values. The more interesting stories (with higher r values)
are promoted to the front page (inflection point in the curve)
faster and receive more votes than less interesting stories.
Overall there is qualitative agreement between the data and
the model, indicating that the features of the Digg user in-
terface we considered can explain the patterns of collective
voting. This highlights a benefit of the stochastic approach:
identifying simple models of user behavior that are sufficient
to produce the aggregate properties of interest.

S r final votes

5 0.51 2229
5 0.44 1921

40 0.32 1297
40 0.28 1039
160 0.19 740
100 0.13 458

Table 2: Parameters for the stories, listed in decreasing order
of total votes received by the story and hence corresponding
to the curves in Fig. 3 from top to bottom.

The only significant difference between the data and the
model is visible in the lower two lines of Fig. 3. In the data,
a story posted by the user with S = 100 is promoted before
the story posted by the user with S = 160, but saturates at
smaller value of votes than the latter story. In the model, the
story with larger r is promoted first and gets more votes.

More generally, the estimated r values for the stories in
our data set show the 510 promoted stories have a wide
range of interestingness to users. Specifically, these r val-
ues fit well to a lognormal distribution with maximum likeli-
hood estimates of the mean and standard deviation of log(r)
equal to −1.67 ± 0.04 and 0.47 ± 0.03, respectively, with
the ranges giving the 95% confidence intervals. A random-
ization test based on the Kolmogorov-Smirnov statistic and
accounting for the fact that the distribution parameters are
determined from the data (Clauset, Shalizi, and Newman
2007) shows the r values are consistent with this distribu-
tion (p-value 0.35). While broad distributions occur in sev-
eral web sites (Wilkinson 2008), our model allows factoring
out the effect of visibility due to the user interface from the
overall distribution of votes. Thus we can identify variation
in users’ inclination to vote on a story they see.

We compared model predictions with observed number of
votes, either at the end of our sample for a story or two days
after submission, whichever was earlier. For the promoted
stories, the RMS relative error between the number of votes
and the model prediction is 14%, corresponding to a RMS

error of 109 votes. For stories not promoted these values are
14% and 1.1 votes, respectively.

Our data set, examining the front page at one hour inter-
vals, only provides the hour within which the story was pro-
moted. Based on this coarse observation, our model tends
to underestimate the promotion time, with the median error
of about 4 hours. This error is likely due mainly to the large
variation in the number of fans for subsequent voters: the
model explicitly includes the submitter’s fans but only con-
siders the average subsequent growth in fans with Eq. 7.

The r values can be estimated from the early history of
each story. For instance, using just the first 4 observations
for each promoted story increases the RMS relative error in
the votes to 34%. The predicted numbers of votes have 87%
correlation with the observed numbers, so early observa-
tions provide a strong prediction of the relative ordering of
numbers of votes stories will receive. This corresponds to
predictability of eventual ratings from early reaction to new
content on Digg and YouTube (Lerman and Galstyan 2008;
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Figure 4: Story promotion as a function of S and r. The
model predicts stories above the curve are promoted to the
front page. The points show S and r for the stories in our
data set: black and gray for stories promoted or not, respec-
tively. A few promoted stories, with S > 300, and some
non-promoted stories, with r near zero, are not shown.

Szabo and Huberman 2008).

The general behavior, of slow vote growth on the up-
coming queue, mainly due to fans, followed by much faster
growth if the story is promoted, is qualitatively similar to
previous stochastic models of Digg (Lerman 2007a). Thus
these aggregate behaviors are somewhat robust with respect
to modeling details. Our model improves on this prior work
with a better motivated derivation and incorporating a more
principled description of a story’s visibility and the growth
in the number of fans. We also provide a more complete
empirical analysis of how fans affect story promotion.

Fig. 4 shows parameters required for a story to reach the
front page according to the model, and how that prediction
compares to the stories in our data set. The model’s predic-
tion is correct for 95% of the stories in our data set. For
promoted stories, the correlation between S and r is −0.13,
which is significantly different from zero (p-value less than
10−4 by a randomization test). Thus a story submitted by a
poorly connected user (small S) tends to need high interest
(large r) to be promoted to the front page (Lerman 2007b).

Our model gives a reasonable qualitative account of how
user behavior leads to stories’ promotion to the front page
and the eventual saturation in the number of votes they re-
ceive due to their decreasing visibility. Additional properties
of the interface and user population could be added to the
model for a more accurate analysis of the behavior. For ex-
ample, a submitter’s fans may find the story more interesting
than the general Digg audience, corresponding to different r
values for these groups of users. Digg has additional mech-
anisms for presenting stories, e.g., by topic and “top stories”
that have received especially many votes in recent time pe-
riods. Users finding stories via these parts of the Digg inter-
face could be included with additional terms in Eq. 2.

We model users coming to Digg independently with un-
form rates ν and ω. In fact, the rates vary systematically over
hours and days (Szabo and Huberman 2008), and individual
users have a wide range in time between visits (Vázquez et

al. 2006). This variation gives time-dependent values for
ν, describing the rate users come to Digg, and kf and ku,
which relate to the rate new stories are posted and promoted.
Another time-dependence arises from the decreasing nov-
elty of stories over time (Wu and Huberman 2007). In our
model, this behavior would arise from a combination of the
story’s reduced visibility and a time-dependent decrease in
the story’s interest to users (i.e., a reduction in r). Moreover,
in some cases, the interestingness of web content, not just its
visibility, depends on how many votes it has received (Sal-
ganik, Dodds, and Watts 2006). The model could include
this behavior with r depending directly on Nvote. Additional
dynamics arises if users change behavior with experience on
the web site, or the site’s algorithms or interface are modi-
fied. In this case, user model parameters would need occa-
sional reestimation.

These possibilities of incorporating additional details in
the user models illustrates how the stochastic approach pro-
vides insights into how aggregate behavior arises from the
users, in contrast to models evaluating regularities only in
the aggregate behaviors. In particular, user models can help
distinguish aggregate behaviors arising from intrinsic prop-
erties of the stories (e.g., their interestingness to the user
population) from behavior due to the information the web
sites provides, such as ratings of other users and how stories
are placed in the site, i.e., visibility.

Discussion
We described a general approach to relating simple models
of user choices to aggregate properties of systems involving
many users. Modeling user-participatory web sites is one
application of this approach, as we illustrated for Digg. Ob-
servations allow estimating the rate parameters appearing in
the model. Comparing solutions to the model with obser-
vations can also help identify approaches to improving the
model, e.g., by including heterogeneous preferences among
users. The user state diagram is determined by the ac-
tions and information the web site makes available to users.
Whether this approach results in a tractable model depends
on the questions one is interested in and how much user be-
havior depends on details of user history or on the specific
choices of other users rather than just a few aggregate mea-
sures provided by the web site.

Although we focus on Digg, many user-contributory sites
have similar structural properties, including broad distri-
butions of user activity and graphical properties of their
social networks (Newman 2003; Wilkinson 2008). Thus
the stochastic formalism relating user behavior to aggregate
content rating should generalize to other web sites.

The connection between user state transitions and aggre-
gate behavior allows investigation of how changes to the
web site may change aggregate behaviors. Such hypothet-
ical uses of the modeling approach can suggest improve-
ments to the web site. For example, Digg’s promotion algo-
rithm could take into account the number of fans a submitter
has, making it more difficult for highly connected users to
get uninteresting stories promoted to the front page.

This framework is particularly relevant when information
on specific users is limited, as is their set of actions (e.g.,
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posting stories and voting on them in Digg). The frame-
work is less well suited to describing complicated history-
dependent actions (e.g., individual users who remember how
others treated them in the past as when forming reputations
in an e-commerce context). Moreover, while the model can
suggest how changes to underlying parameters or user be-
haviors will affect overall observations, the model provides
correlations rather than causal connections between users
and observed behavior. In general, there could be other ef-
fects, not included in the available observations of the users,
that significantly affect behavior and therefore may limit in-
ference from the model of changes that may achieve some
more desired behavior (e.g., users spending more time at
a web site). Nevertheless, the relations seen with stochas-
tic models can suggest ways to improve the behavior which
could be tested, either directly through experimental manip-
ulation of the web site (Salganik, Dodds, and Watts 2006) or
through smaller-scale experiments (Kagel and Roth 1995).

A practical challenge for using these models is identify-
ing the relevant states for the users and estimating the tran-
sition rates among these states (Brown and Sethna 2003;
Ellner and Guckenheimer 2006). To some extent, online
activities simplify this problem through their limited set of
actions and information provided to users. However, web
sites can become more personalized over time, e.g., with col-
laborative filtering for recommendations based on history.
This leads to more history-dependence in user behavior and
the open question of whether the history-dependence can be
summarized in simple additional state variables for the user
– such as probability a recommendation is relevant being a
function of number of visits the person has had to a site. If
so, the model only requires a few additional state variables
– in this case number of visits – to regain the Markov prop-
erty. Alternatively, we can generalize the model to allow the
transition to the next state to depend not just on the current
state but also some fixed number of past states, as has been
applied to dynamic task allocation (Lerman et al. 2006).

As web sites develop greater complexity and personaliza-
tion, model-based design tools could help identify aggregate
consequences of design choices of actions and information
provided to users. More broadly, such models could com-
plement economic or game theory analyses of the incentives
for participation provided to the users.
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