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Abstract

Recently, the D3WA system was proposed as a paradigm shift
in how complex goal-oriented dialogue agents can be speci-
fied by taking a declarative view of design. However, it turns
out actual users of the system have a hard time evolving their
mental model and grasping the imperative consequences of
declarative design. In this paper, we adopt ideas from exist-
ing works in the field of Explainable AI Planning (XAIP) to
provide guidance to the dialogue designer during the model
acquisition process. We will highlight in the course of this
discussion how the setting presents unique challenges to the
XAIP setting, including having to deal with the user persona
of a domain modeler rather than the end-user of the system,
and consequently having to deal with the unsolvability of
models in addition to explaining generated plans.
Quickview http://ibm.biz/d3wa-xaip

Introduction

The state of the art (Sreedhar 2018) in the design of sophis-
ticated goal-directed conversational agents – e.g. for appli-
cations such as customer support – requires the dialogue de-
signer to either manually specify the entire dialogue plan
(e.g. Google Dialogue Flow or Watson Assistant) or train
end-to-end systems from existing logs of conversation. The
former, of course, becomes intractable pretty soon which
means conversational agents of any reasonable sophistica-
tion are still comfortably out of reach (Computer Generated
Solutions 2018); while the latter provides no control over
the emergent behavior of the agent, as seen in the infamous
deployment of “Tay” (Metz 2018), and are thus unusable in
the enterprise scene where customer experience has to be
guaranteed to a reasonable certainty.

The topic of making the design of conversational agents
easier for the dialogue designers – especially the task of
making the specification of the conversation flow more
tractable – remains of immense interest (Amazon 2019;
Google 2019) to the AI community, and consequently to
the world of automated planning as well due to its unique
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value proposition in the declarative specification of agents
and the composition of higher order behavior from it. For
example, recently authors of (Muise et al. 2019a; Botea
et al. 2019) proposed a planning-based approach to bring
down the effort in specification of such agents. These works
present a paradigm shift in how goal-directed conversational
agents can be designed using automated planning technol-
ogy, demonstrating a tight synergy of symbolic and non-
symbolic AI techniques to achieve a fully functional embod-
iment of reasoning, learning, and natural language process-
ing under the same roof. We build on this work here and
hence start with a brief description of the same below.

A Brief History of D3WA

At the core of the declarative specification proposed in
(Muise et al. 2019a) is an agent-centric view of the world –
the dialogue designer specifies “capabilities” that are avail-
able to an agent and lets a non-deterministic planner gener-
ate (Muise, McIlraith, and Beck 2012) and execute (Muise
et al. 2019b) the composed dialogue plan in the background.
We demonstrated in ICAPS 2019 (Chakraborti et al. 2019b)
how this can lead to an exponential scale-up from the size of
the specification to the complexity of the composed agent,
as an illustration of the exciting fusion of planning based
technologies (especially non-deterministic planning) and the
design of dialogue agents. This is especially useful in the de-
sign of certain kinds of conversations, especially ones with
an underlying process – e.g. a business process (Chakraborti
and Khazaeni 2020) – that drives the conversation. How-
ever, it turns out that while this provides a powerful tool
for an experienced domain writer with expertise in planning,
and declarative programming in general, for the uninitiated
it presents too steep a learning curve. Since designers no
longer explicitly compose the dialogue plan, they lose con-
trol over the composed agent if they do not grasp the imper-
ative consequences of their declarative specification.

In this paper, we thus build on this work with the aim of
making the core domain authoring engine more amenable
to dialogue designers who are usually outside the planning
community and do not readily subscribe to the declarative
mental model. In order to do so, we build upon recent tech-
niques from the explainable AI planning (XAIP) commu-
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Figure 1: Illustration of the salient aspects of declarative de-
sign of conversational agents on the D3WA interface, repro-
duced with permission from (Muise et al. 2019a).

nity (Chakraborti, Sreedharan, and Kambhampati 2020) to
bridge the gap with the end user. Before we get to the spe-
cific contributions of this paper, we start with a brief intro-
duction to D3WA so as to make the rest of the presentation
self-contained to the extent possible.

Actions, Outcomes and Context Variables The original
system D3WA is illustrated in Figure 1. The interface sur-
faces two key elements to the dialogue designer: 1) context
variables that model the agent’s world; and 2) actions that
are defined in terms of these variables. For a dialogue agent,
these actions model the different capabilities available to it
in terms of dialogue actions towards the end user, or internal
system actions such as API calls or logical inferences.

Each action (Figure 1) has a set of NEEDs (or precondi-
tions) and a set of OUTCOMEs which house a set of non-
deterministic UPDATEs to a variable. The outcomes within
an action are mutually exclusive and model how the user
may respond or, in general, how the world may evolve in
response to any action done by the agent. For example:

1. Dialogue Action: If the agent wants to ask the user their
name, the corresponding dialogue action would have one
outcome when the user responds with their name, and an-
other one that models a digression in the conversation.

2. System Action: In order to make an API call, the agent
would require as NEEDs, access to the link and the rele-
vant payload. Two possible outcomes of the call may be a
successful response (in which case the agent updates the
values of the relevant variables it was looking for) or a
404 error (in which case the agent gets nothing).

A non-deterministic planner receives this specification,
plans for all possible outcomes, and generates the resulting
dialogue plans in Figure 1. This offline approach has two ad-
vantages: it allows the dialogue designer to inspect and sign

off on the agent to be deployed, while also being able to sup-
port complex dialogues without having to plan and replan in
real time. For more details on D3WA, and on how this specifi-
cation is compiled to a planning problem in the background,
we refer the reader to (Muise et al. 2019a).

D3WA + XAIP→ D3WA+

The “explainable” version of D3WA – henceforth referred to
as D3WA+ – developed in this paper provides a suite of de-
bugging tools on top of the existing core model acquisition
framework described above. This is aimed to make the dia-
logue designer more self-sufficient when they are faced with
modeling errors. Specifically, based on difficulties observed
during preliminary internal testing, we tackle two core is-
sues faced frequently by dialogue designers grappling with
the declarative paradigm:

• Specification cannot be solved by the planner. This is
the case when the graph in Figure 2e does not appear at
all, and the dialogue designer is left with an inscrutable
“no solution found” message and nothing else to work
with. Our goal here is to surface features from the cur-
rent specification back to the designer so that they can fix
identify the root cause of the unsolvability.

• Solution does not match expectations. Here, the prob-
lem is solvable but the solution does not match the de-
signer’s expectations – i.e. the graph in Figure 2e looks
nothing like what they were aiming for. The goal here for
us is to be able to respond to questions from the designer
such as Why is this a solution? and Why is this not a so-
lution?, so that they can modify the specification accord-
ingly until they are satisfied with the outcome.

Some of these questions might look familiar with the line
of investigation in (Smith 2012; Fox, Long, and Magazzeni
2017; Cashmore et al. 2019). However, the setting here in-
volves the domain designer and not the end user. Thus the
suite of challenges not only include the unsolvability ques-
tion, not addressed in those works, but also the explanatory
dialogue here is geared towards the model acquisition task
rather than the exploration of the decision making process.

Contributions

- We formalize the XAIP problem for the model acquisition
scenario and illustrate the salient challenges involved on a
tool for the design of goal-directed conversational agents.

- To this end, we motivate how the XAIP framework
must also consider the unsolvability problem in addi-
tion to the explanation of generated plans, as has been
mostly focused on in existing literature.

- We build on recent work in explaining unsolvability of
classical planning problems (Sreedharan et al. 2019) and
extend it to handle non-determinism as required by the
particular tool under consideration.

- We demonstrate the usefulness of the approach via illus-
trations and empirical evaluations.

Note that, while unsolvability has been explored before,
such as in the generation of excuses (Göbelbecker et al.
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2010) (which focus on counterfactuals that are not neces-
sarily useful for the domain acquisition task) or in the gen-
eration of certificates (Eriksson, Röger, and Helmert 2017)
(which are mostly only machine consumable), here we are
concerned primarily with assisting a domain writer who
needs an easily understandable explanation of unsolvability
rather than a certificate for verification or an excuse that does
not provide any insight on how to fix their specification.

XAIP for Model Acquisition

We now formalize the notion of explainable planning in the
context of model acquisition, particularly extended to non-
deterministic planning used by the tool in our case study. We
start with a brief introduction of the planning problem and a
set of transformations that can be applied to a it in order to
make it more amenable to the XAIP setting.

Planning Problems

A planning problem Π : M �→ {π} takes in as input a
modelM = 〈F ,A, I,G〉 where F is a set of propositions
that describe the state of the world and we will use S to
represent the set of possible states that can be constructed
from F . A is a set of operators or actions available to an
agent and produces a set of plans π that transform the initial
state I ⊆ F to the goal state G ⊆ F .

- For a deterministic model, each action produces a single
next state:A � a : S → S. The solution to a deterministic
problem are plans represented as a sequence of actions.

- The execution of a non-deterministic actionA � a : S →
{S} can result in more than one possible state. The solu-
tion to a non-deterministic planning problem Π is thus a
contingent plan which induces a set of plans. The behavior
of the agent is described by one of those plans depending
on which outcomes occur at the time of execution.

Since we are primarily concerned here with goal-directed
agents (e.g. goal-directed conversations), we consider the
space of behaviors represented by Π(M)) as the solution
space. The discussion generalizes to a “space of plans” en-
abled by a domain in the absence of a goal or initial state.
Throughout the paper, we will refer to a non-deterministic
problem as having a plan if a weak solution exists (Cimatti
et al. 2003) – i.e., there is some sequence of actions and out-
come selections that achieves the goal.

Transformations onM
We now introduce a few operations in the space of models
that we will deploy later to tackle the various challenges in
model space reasoning for XAIP and model acquisition.

Model Edits Model edits δ : M �→ M′ (Keren et al.
2017; Chakraborti et al. 2017) change one or more condi-
tions in the model to generate a new model. For example,
this could involve adding or removing a condition from the
initial or goal state or from the set of preconditions and ef-
fects of an action. Search in the space of models propagates
by the application of one or more such model edits. The size
of a model edit is denoted by |δ|.

Abstractions Model abstractions Abs : M× P �→ M′,
on the other hand, simulate a collection model edits together
that change one or more features of the model (Clarke et al.
2000). Here P is the set of variables that can be projected
away. For example, authors in (Sreedharan, Srivastava, and
Kambhampati 2018) use this technique of syntactic state
variable projection to determine the right level of abstrac-
tion to present explanations in, while in (Sreedharan et al.
2019) authors use the same technique to explain unsolvabil-
ity. We build on the latter in this paper, particularly extended
in service of non-deterministic planning used in the tool un-
der study. We will go into more details of this later.

Determinization Determinization is the process of turn-
ing a non-deterministic model M into a deterministic one
Det(M) – e.g. an “all-outcomes” determinization scheme
(Yoon, Fern, and Givan 2007) transforms an action a : S →
{Si} into a set of actions ∀i ai : S → Si so that all the out-
comes of an action with non-deterministic effects can be re-
alized in the determinised model. With the fairness assump-
tion (Cimatti et al. 2003), a solution to Det(M) is also a
valid behavior forM, i.e. Π(Det(M)) = Π(M).

Plan Preservation The model transformation Obs :M×
{π} �→ M′ receives a model and a (partial) sequence of
actions (equivalent to a set of possible plans) and produces
a compiled model where this sequence must be preserved,
i.e. {π} ⊆ Π(M′). In the past, such techniques have been
used in the compilation of the goal recognition task into a
classical planning problem (Ramı́rez and Geffner 2009) or
in the construction of partial foils from the end user for the
purposes of explanation (Sreedharan, Srivastava, and Kamb-
hampati 2018). In the preservation technique used here for
deterministic models, we allow for partial observation of
non-determinism as well, in addition to the usual partial
plans, in order to account for the specific needs of the tool
under study. This means that an action may be specified in a
plan but its outcome may be left unspecified.

The XMAS Problem

Explanations in the context of the model acquisition task
provide a unique twist to a well known framework in XAIP
– model reconciliation (Chakraborti et al. 2017). There, the
task is to compute, given the agent model, the mental model,
and a plan to explain, a set of updates that when applied to
the mental model would render the given plan optimal (and
hence without any foil) in the updated mental model.

Here also, we have two models – the one currently speci-
fied by the domain writer or the revealed model, and the one
that they wanted to specify or the mental model. Further-
more, similar to the case of model reconciliation process,
here too we have model differences – the revealed model and
the mental model do not match due to mistakes made by the
domain writer. However, unlike in the case of explanations
in the model reconciliation framework, the target here is for
the explainable AI system to transform the revealed model
to the mental model, rather than updating the mental model
to agree with the revealed model as focused on traditionally
in the model reconciliation framework.
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This is an iterative process with the human (in this case,
the domain writer) firmly in the loop. This is because, un-
like in standard closed world model estimation tasks where
the features of the model are known, and a transition func-
tion between domain models can be specified (Bryce, Ben-
ton, and Boldt 2016; Keren et al. 2017), here the problem is
open ended as the domain writer gradually builds their agent
model. Thus, the model acquisition task is strictly not one of
estimation of the mental model.1
An Explainable Model Acquisition Setting XMAS is de-
fined by the tuple Ψ = 〈M,MH〉 whereM is the revealed
model andMH is the mental model of the domain writer.

Since the eventual goal of writing a domain is to enable
a desired set of behaviors, and there may be many ways to
specify the same agent behavior, we condition the end goal
of an XMAS in terms of the space of plans afforded by the
agent model that is being specified. The solution to Ψ is a
sequence of model updates Δ = 〈δ1, δ2, . . . δn〉 such that:

Π(
∑

i

δi(M)) = Π(MH)

This means that at the end of the model acquisition pro-
cess the domain writer has successfully captured the space of
behaviors of the agent they were trying to model. In contrast
to the model reconciliation process, for the model acquisi-
tion task, these updates are, of course, generated by the do-
main writer. From the XAIP perspective, the task of the plan-
ner here is to empower the domain writer to come up with
the most efficient Δ – e.g. min

∑
i |δi| to reduce the overall

complexity of the model acquisition process or just min |Δ|
to reduce the number of steps to reach the final model. The
evaluation of the entire process requires research on the UX
of abstractions, and is out of scope of this paper.

Instead, in the following discussion, we tackle key diffi-
culties faced by domain writers for individual interactions
during this process (as experienced in preliminary internal
tests of D3WA). The focus of the proposed solutions here is to
address the computational limitations of the domain writer
using XAIP techniques like domain abstractions that have
been shown to be useful in user studies (Sreedharan et al.
2019) as a vehicle for explanations in complex domains.

Q1. Why is there no solution?

This is the case when: Π(MH) 	= Π(M) = ∅, i.e. the
domain writer mistakenly thinks that they have a solvable
model. As we mentioned before, for a model acquisition
task, it is not enough to surface a cause for unsolvability but
one must also make sure that the domain writer gets action-
able information in order to remedy the situation. The direc-
tive from the planner thus has the following components:

1. Minimal Unsolvability We present to the domain writer
the smallest possible abstraction Abs(Det(M),P) such
that this model too does not have any solution.

1It is for this reason that we, while pointing out problems with
the current domain (and foils raised by the domain writer), do not
suggest possible fixes. This is something that the domain expert is
in charge of authoring. At the end of the paper, we will point to
some future work in this direction.

Find: P
s.t. Π(Abs(Det(M),P ∪G)) = ∅

and min |P|
Show: Abs(Det(M),P ∪G)

By the properties of the abstraction used, Π(M) 	= ∅
only if Π(Abs(Det(M))) 	= ∅. Thus the domain writer
can fix the root cause of unsolvability in this simpler do-
main first. We will later show in the empirical evaluations
how this approach can significantly reduce the size of the
specification that the domain writer has to inspect in or-
der to fix an unsolvable model. We include the goal in all
abstractions – this fluent is not directly accessible to the
designer.2

2. Maximal Solvability & Exemplary Plan Failure While
the previous component of the explanation provides a
simpler version of the model for the user to debug, it does
not illustrate failures of any potential solutions to moti-
vate fixes that the designer might attempt. The following
complements it with an illustrative failure in the current
model of a plan generated from the maximally solvable
abstraction, while letting the domain writer continue fix-
ing the issue on the minimally unsolvable one.3

Find: P
s.t. Π(Abs(Det(M),P ∪G)) = {π} 	= ∅

and max |P|
Show: Π(Obs(M, {π})) = ∅.

The point here is to find the most complete simplifica-
tion of the model where a solution exists and illustrate –
for example, using VAL (Howey, Long, and Fox 2004) –
to the user why that solution does not apply to M. The
domain writer could also use this sample plan to explore
where exactly a possible solution becomes invalid in the
current specification, or even use it as a starting point to
create more complex foils to investigate further.4

2This does not mean that the designer cannot specify a goal.
They can specify any starting condition and point out which of the
outcomes in one or more actions ends the conversation. The latter
is then compiled internally to a single goal achieving condition.
Thus the framework is quite generic for modeling any goal-directed
process and not necessarily tied to any specific initial condition or
goal state. For more details, please refer to (Muise et al. 2019a).

3Note that we cannot generate a plan from a minimal unsolv-
able abstractions since there are no solutions there. One possibility
would be to choose a model more abstract than the minimally un-
solvable one. Unfortunately, these model would ignore most model
features and provide no useful plan for the user to debug.

4To improve the efficiency of the search, we will restrict the
search for abstraction set over subsets of (F \ Pmin) ∪ G (where
Pmin is minimum abstracting set). Since the abstraction techniques
followed here guarantees that abstractions formed from supersets
of Pmin ∪ G will not result in solvable model. Moreover if Pmin

is the only subset of fluents leading to the unsolvability then (F \
Pmin) ∪ G should automatically be a solvable domain. So we will
start our search from (F \Pmin)∪G and will look at systematically
relaxing the model until we get a solvable one. We evaluate this
approximation against the exact approach in our evaluations.
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3. Subgoals and Landmarks In addition to presenting the
abstractions and an exemplary plan failure, we can further
help the domain writer debug the problem by presenting
them with a subgoal that is necessary for achieving the
goal in the current specification but can not be achieved.
This is meant to serve as a prompt for the domain writer
for a possible issue to focus on. We follow (Sreedharan
et al. 2019) and use landmarks (Hoffmann, Porteous, and
Sebastia 2004) for identifying such subgoals.

The earlier work constructs landmarks from models that
are more abstract than the minimally unsolvable model but
this can lead to less informed subgoals as it may not be con-
sidering many of the state factors. We will instead extract
landmarks directly from the the minimally unsolvable model
using the following proposition:

Proposition 1 IfM is unsolvable, and Abs(M,P) is solv-
able while Abs(M,P ∪ {f}) is not, then either the delete
relaxation of Abs(M,P ∪{f}) is solvable or there must be
an unmet landmark corresponding to f .

This follows from the fact that in the abstraction scheme
we follow, when we consider the delete relaxation of
Abs(M,P ∪ {f}) over that of Abs(M,P), the only pos-
sible differences can be that f may be part of preconditions
and adds for an action. If this addition makes the delete re-
laxation unsolvable then that means that all relaxed plans for
Abs(M,P) contained actions that required f as a precondi-
tion. The problem becomes a bit more involved when we
allow for negative precondition as we need to test whether
the possible landmark is f or ¬f .

Given this proposition, we first test if delete relaxation of
Abs(M,P) is solvable so we can extract landmarks from
it similar to (Sreedharan et al. 2019). Otherwise we test if
addition of f in initial state makes the delete relaxation of
Abs(M,P ∪ {f}) solvable. If it does, then the landmark is
f , else it is ¬f . While this can lead to more informed land-
marks, for cases where the delete relaxation is unsolvable,
we would not be able to leverage the ordering of the land-
marks to find subgoals appearing earlier in the sequence.

Q2. Why is this not a solution?

This is the case when (for a set of plans {π} presented by
the domain writer): {π} ⊆ Π(MH) but {π} 	⊆ Π(M). This
is really a special case of Q1 – we perform the following
transformation to solve this:

Set: M← Obs(M, {π})
If: Π(Obs(M)) 	= ∅ (the compilation is solvable) then

demonstrate to the user that 	 ∃π ∈ Π(Obs(M, {π}))
such that cost(π) > cost(πi) ∀πi ∈ {π} – this means
that the foil is not better than anything else already in
the solution. At this point, the user can ask Q3.

Else: Follow Q1 withM.

Note that we cannot run VAL directly on the foil since:
1) It is very unlikely that the domain writer will provide full
foils – this is largely due to the effort required in doing so but
also uniquely infeasible for the current setting of dialogue
design since internal system actions such as web calls and

logical inferences are not part of logs that are used to stress
test the design of the agent; and 2) in the case of a partial
foil, Obs(M) may not have a solution to run VAL with.

Q3. Why is this a solution?

This is the case when (for a set of plans {π} presented by
the domain writer): {π} 	⊆ Π(MH) but {π} ⊆ Π(M).
Here, the domain designer is surprised that a solution they
did not expect is part of Π(M). The provenance of ac-
tions along such a solution of M can be communicated
to the designer through the visualization of the necessary
causal links as done, for example, in (Seegebarth et al. 2012;
Chakraborti et al. 2019a; Bercher, Behnke, and Biundo
2015). We do not repeat this line of inquiry here.

Non-deterministic XMAS
In this section, we go into specific details of the abstraction
and landmark formulation for non-deterministic models that
we had to develop specifically for the tool under study.

Each action a in the non-deterministic model is defined
as: a = 〈preca,Oa〉 where preca ⊆ F is the set of precon-
ditions that needs to be true for the action a to be executable
and Oa = {oa1 , . . . , oak} is the set of k possible outcomes
for action a. Each outcome is further defined as the tuple
oai = 〈addsoai , delsoai 〉, where addsoai and delsoai are the adds
and deletes corresponding to the outcome. We now show that
syntactic projection in fact results in logically complete ab-
stractions, i.e. they allow for more behavior and not less.

Definition 1 A model abstraction M′ = Abs(M,P) is
logically complete if there exists a surjective mapping from
states inM toM′ and Π(M) ⊆ Π(M′).

Now let us consider the syntactic projection function
Absp :M× 2F �→ M′.

Definition 2 Given a non-deterministc modelM and a set
of fluents P: Absp(M,P) = 〈F \P, Â, I \P ,G \P〉 where
∀a ∈ A, ∃â ∈ Â such that: precâ = preca \ P and every
outcome becomes Oâ

i = 〈addsOâ
i
\ P, delsOâ

i
\ P〉.

This is a logically complete abstraction. Consider a tran-
sition 〈Si, ai, Si+1〉 that is valid for tM, we can see that,
Si ⊆ precai

and there must exist an outcome oai

k for ai such
that Si+1 = (Si \delsOâi

k

)∪addsOâ
i

. Then there must exist
a corresponding transition 〈Si \P, âi, Si+1 \P〉 that is valid
for Absp(M,P) with an outcome oâi

k .
With these tools in place, we can generate explanations

described in earlier sections by doing a search over the space
of non-deterministic models. Though it would be easier if
we can just focus on settings where we are testing solvabil-
ity of classical planning model and extracting subgoals from
these simpler models. We can in fact to do this, by show-
ing that all of our explanation generation procedures can be
performed on the determinised version of the original non-
deterministic model. Specifically, we will show that the ab-
straction of a determinised model is the determinization of
the abstracted non-deterministic model:

Proposition 2 Given a non-deterministic model M and a
set of fluents P: Det(Absp(M,P)) = Absp(Det(M),P).
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(a) Snapshot of D3WA+ illustrating model abstraction in response to unsolvability. Since the model has no solution, there is no generated
dialogue plan and the canvas for visualization is empty – our user story starts with a white XMAS. The minimal unsolvable abstraction is
presented to the designer so that they can devise a fix in the simpler model first, before translating that to the full specification. Note how
some variables in the domain have disappeared in the minimal abstraction, in comparison to Figure 1. The designer can toggle back and forth
between the full and projected models using the red button, until they are able to devise a fix. The highlight feature communicates to the user
which of the projected fluents (orange hover) are associated with which of the actions (blue highlight).

(b) XMAS Past: Solu-
tion of the minimal
abstraction. Now
that the designer
was able to fix the
simplified domain,
they can try applying
the fix to the full
specification.

(c) XMAS Present: This is the solution
when the fix to the minimal abstraction
is applied to the full specification. Now it
is at least solvable but something doesn’t
look quite right: the solution does not
match the expectation of the domain de-
signer. Now that they have a solution to
work with, they now direct questions of
the form of Q2 to D3WA+. Figure 3 illus-
trates one such interaction.

(d) XMAS Present:
The domain writer
solves the minimal
abstraction again.
Applying this fix to
the original spec-
ification takes the
domain writer from
Figure 2c to 2e.

(e) XMAS Future: This is the final (target) so-
lution: a model that is equivalent to MH . The
domain writer, of course, does not have access
to this until they get there – and neither does
D3WA+– but instead they continue working on
their current specification and its solution (or
the lack thereof) until they are satisfied. Dur-
ing the course of XMAS, the system was able
to guide the designer along this journey by ex-
posing the mistakes in their past models.

Figure 2: Examples of generated dialogue graphs illustrating the reconciliation ofMH toM during XMAS. The nodes in the
graph stand for agent actions while the edges are the non-deterministic outcomes. The graph is meant to give the reader a sense
of the sizes of the abstract solutions. Though the actual labels on the nodes and edges are not visible here, the system does allow
the domain designer to drill down further as required.

The determinised model will contain an action for each
possible outcome, i.e. ∀oai , Det(M) contains an action
aoi = 〈preca, addsoai , delsoai 〉. So the projection of this de-
terminised action will be 〈preca\P, addsoai \P, delsoai \P〉,
and you would get the same action if you were determinising
based on projected oai .

Illustrations on D3WA+
We will now illustrate each of the use cases covered above
on our tool D3WA+. In the context of the design of dialogue
agents using planning, each “solution” is a potential conver-
sation path allowed by the agent design. Hence, the model
acquisition process is one of the dialogue designer ensuring

which conversations are allowed and which are not.

Demonstration While we attempt to illustrate as much of
the use cases as possible in the limited space available here,
please refer to the video here: http://ibm.biz/d3wa-xaip for
a more detailed walkthrough of all the use cases discussed
in the paper. (Duration: 7min 55sec excluding explanation
generation time reported in Table 1)

Car Inspection Bot For purposes of illustration, we con-
sider the design of a conversational agent tasked with help-
ing in the inspection of a car. This domain is adapted from
(Muise et al. 2019a) as a typical demonstration of the design
of conversational agents using automated planning tech-
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Figure 3: Snapshot of D3WA+ illustrating foil-based interactions when a model is solvable but does not match expectations.
Note how small this projection is (inset), even smaller compared to the first unsolvable model in Figure 2a: the corresponding
solution in Figure 2d is similarly smaller than the one in Figure 2b. This showcases an interesting property of XMAS– the size
of abstractions is non-monotonic in the course of the model acquisition task. On the right, we can see here the foil generated by
D3WA+ from the maximal abstraction with diagnostic information on how this fails in the current specification.

niques. The final dialogue plan, as seen in Figure 2e, has
63 nodes and 272 edges and is thus quite comfortably out of
scope for the state of the art in dialogue design. The declar-
ative specification as seen in Figure 1, on the other hand,
has just 8 variables and 7 non-deterministic actions. Let us
consider the following dialogue in this domain:

Bot: Ready to record.
User: Break pads pass.
Bot: Ok, break pads pass.
User: What’s next? <-- initiative switch!
Bot: Check the spark plugs.
User: What are the options.
...
Bot: Inspection complete!

The interesting part is the potential for initiative switch
during the conversation – either the user can go through all
the parts by themselves or hand over control to the bot to
guide them, or a combination of both.5 The salient feature
of the specification is thus: there is a catch-all dialogue ac-
tion to respond to the user when they have initiative and a
set of actions to ask the user for information when the bot
has initiative. There is one outcome in all these actions that
switch initiative based on what the user has said, while the
other outcomes update the state of the inspection by logging
the correct variables based on the user utterance. Next, we
follow the designer’s journey to get to this specification.

5The PDDL models of the inspection domain are available on-
line at the following link (along with snapshots of the specification
on the D3WA+ interface) for all the use cases discussed in the paper:
http://ibm.biz/d3wa-inspection.

Q1. Why is there no solution? In our user story, the de-
signer has forgotten to add a few critical domain conditions
– the OUTCOME for the initiative switch is missing in the
catch-all action while the UPDATE for spark plugs is also
missing in the corresponding OUTCOME (refer back to the
introduction to D3WA for a refresher of this modeling arti-
facts). As a result the model has become unsolvable – there
is no way for either the inspector or the bot to drive the initia-
tive and visit all the parts. In Figure 2a the user is presented
with the minimal abstraction where the model is unsolvable.
They fix this simpler specification to arrive at the solution in
Figure 2b. The fix – adding the UPDATE for spark plugs –
when applied to the original specification takes the designer
to the current dialogue plan in Figure 2c. This interaction
with D3WA+ allowed the user to find a fix for an unsolvable
model by inspecting a much simpler model.

Q2. Why is this not a solution? However, the missing
OUTCOME for the initiative switch in the catch-all action
is still missing.6 As a result, all solutions right now only
involve the user driving the conversation and the resulting
solution in Figure 2c looks different from what the designer
was expecting – i.e. it does not contain any conversation flow
where the bot has initiative. The domain writer expects the
sample conversation to be possible but do they know it’s un-
solvable, at all? In the spirit of XMAS, the domain writer gets
to query D3WA+ with this foil – see Figure 3. The system
again responds with a minimal abstraction to fix, along with

6We want to impress on the reader at this point that this discus-
sion of “mistakes” or missing components are in hindsight – the
target model does not exist until the domain designer gets there.
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problem instance
maximal abstraction (approx) maximal abstraction (exact) minimal abstraction

size time size time size time

|P| abstraction size in % plan abstraction plan |P| abstraction size in % plan abstraction plan |P| abstraction size in % plan abstraction plan landmark

p1 21 286 86.405 5 0.882 0.956 22 307 92.749 5 5.711 0.987 2 47 14.199 1 111.363 1.014 1.103
Car p2 21 293 88.52 5 0.911 1.011 22 314 94.864 5 10.816 1.057 2 40 12.085 1 175.995 0.826 1.158

Inspection p3 21 286 86.405 5 1.069 0.967 22 307 92.749 5 13.561 1.117 2 47 14.199 1 208.862 0.863 1.088
p4 21 282 85.196 5 0.926 0.981 22 303 91.541 5 16.290 0.987 2 51 15.408 2 154.084 0.891 1.140
p5 21 286 86.405 5 0.995 0.978 22 307 92.749 5 16.351 1.058 2 47 14.199 1 237.173 0.984 1.041

p1 25 338 94.15 1 0.999 0.993 25 338 94.15 1 11.606 17.452 1 23 6.407 1 9.216 0.936 1.056
Data p2 25 338 94.15 1 1.288 1.162 25 338 94.15 1 14.279 1.157 1 23 6.407 1 13.302 0.971 1.196

Doppelganger p3 25 338 94.15 1 2.405 2.914 25 338 94.15 1 25.561 1.050 1 23 6.407 1 23.444 0.973 1.211
p4 25 338 94.15 1 0.834 0.924 25 338 94.15 1 11.035 0.935 1 23 6.407 1 11.115 0.923 1.000
p5 25 338 94.15 1 2.661 2.845 25 338 94.15 1 13.157 4.792 1 23 6.407 1 12.895 0.792 1.136

p1 75 2104 97.227 8 1.139 1.209 76 2161 99.861 8 31.396 1.202 2 61 2.819 2 1106.939 0.950 1.137
Credit p2 76 2161 99.861 7 1.113 1.070 76 2161 99.861 7 46.256 1.051 1 5 0.231 1 40.325 0.934 1.093

Card p3 76 2153 99.492 4 1.155 1.069 76 2153 99.492 4 33.903 1.105 1 12 0.555 1 29.498 0.935 1.165
p4 76 2160 99.815 7 1.040 1.149 76 2160 99.815 7 54.096 1.159 1 3 0.139 1 47.422 0.878 1.016

Table 1: Empirical properties of XMAS in three typical conversational domains modeled in D3WA+. Notice the massive reduction
in size for the minimal abstraction, intended to make it easier for the domain writer to inspect issues with the domain. Also
notice the large difference in size between the minimal and maximal abstractions, thereby indicating the need for a maximal
abstraction to capture enough model information in order to produce a useful foil for the domain writer to fix.

a sample plan and an unachieved landmark in the maximally
solvable abstraction illustrating why that foil fails in the cur-
rent model. This not only explains the unsolvability but also
provides powerful directive to fix the model.

Empirical Evaluations

We empirically investigate the properties of XMAS in terms
of the size of the abstractions relative to the size of the orig-
inal specifications, and the time taken to generate them. The
size of the abstraction allows us to measure how much sim-
plification of the model is achieved by our method, while
the time taken is a measure of viability of our approach. We
focus on Q1 here since the properties of the solutions to Q2
are derived from Q1 while, as we mentioned before, Q3 is
already quite well understood in existing literature.

Test Domains To test out the empirical properties of our
approach, we use two new domains, in addition to the car in-
spection domain used in the illustrative examples. The first
of them – Data Doppelganger – is an assistant chat-bot that
that helps a user perform variety of data science tasks, such
as plotting a graph, given a data set. The other new domain
– Credit Card Recommendation – is again adopted from
(Muise et al. 2019a), and takes the user through choices of
credit cards and their features until they make a selection.

To evaluate the effectiveness of XMAS, we needed to eval-
uate the systems on plausible mistakes on these test do-
main. For Table 1, we tried to create unsolvable problems
for the first three domains by removing three model con-
ditions at random. Specifically, we deleted adds and ini-
tial states from the model. Unfortunately, for the credit card
domain randomly removing a subset of model components
weren’t yielding unsolvable problems. So instead, we went
with a unique domain-specific mistake for each of the five
cases. Each mistake was centered around the domain au-
thor missing adds for a specific outcome or initial state for
a specific proposition. After identifying a reason for unsolv-
ability, we further delete two additional adds per unsolvable
instance. The solvability of the determinized problems was
tested using FastDownward (Helmert 2006) implementation
of A∗ and LM-Cut (Helmert and Domshlak 2009). The land-

# edits 1 2 3

problem |P| size time |P| size time |P| size time

p1 2 47 49.477 2 51 87.685 � � �
p2 2 40 152.989 2 51 193.358 - - -
p3 2 40 184.747 � � � � � �

Table 2: Size of abstractions along the entire model recon-
ciliation process during the model acquisition task.

marks were extracted using FastDownward implementation
of (Keyder, Richter, and Helmert 2010) with m = 1. All
experiments had a timeout of 60 mins.7

Model Compression Table 1 shows the amount of com-
pression offered by the abstraction, against the size of the
full models, for five randomly generated unsolvable in-
stances. Here the size of each possible model is reported in
terms of the number of non-goal fluents that are part of it
(|P|), the number of model conditions that are part of the
problem (denoted as size in the table) and the percentage of
model conditions remaining as compared to the original do-
main model (denoted as ‘size in %’ in the table). The larger
the compression, the easier we make it for the domain writer
to understand the cause of unsolvability, as has been estab-
lished in existing literature (Sreedharan et al. 2019). Clearly,
we are able to significantly reduce the size of the specifi-
cation for this purpose using the proposed abstraction ap-
proach. For the credit card domain, where the original model
contains close to 2k components, being able to focus on a
subset containing only 5 conditions is a massive reduction.

Maximal versus Minimal Abstractions Table 1 also
shows the difference in size of the plans in the minimal8
and maximal abstractions. As we mentioned before, this was
a specific design choice made so as to ensure that the do-
main writer has a reference point while inspecting an un-

7p5 for credit card domain timed out (removed from Table 1).
8Note that since the minimal model is also unsolvable, the plans

used here for comparison are from the models that are one abstrac-
tion simpler than the minimal unsolvable model.
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solvable model – they can use this either to debug the current
model or to explore newer foils. The point of computing this
reference point in the maximal as opposed to the minimal
model (as evident from Table 1) is to provide more helpful
debugging information to the domain writer – XMAS is not
just about explaining unsolvability but also completing the
model acquisition task. The reference point uses the maxi-
mal model in order to make sure maximal number of model
features are considered so that the generated foil is as close
as possible to a plan the user might be looking for inMH .
In Table 1, we refer to generating maximal model by starting
from abstraction corresponding to F \ Pmin while the exact
one refers to a systematic search starting from the most con-
crete domain to one where it is solvable. While search for
maximal model was in general fast, we can see that the ap-
proximate method is much faster and finds models that are
quite comparable to the exact minimal solution.9

Model Evolution In Table 2, we illustrate the evolution
of the size of the abstractions as the domain writer progres-
sively fixes the car inspection model. To simulate this, we
needed to create models with potentially multiple causes for
unsolvability. We generated nine pairs of model conditions
(adds or initial state), each of whose removal can lead to
an unsolvable problem. We then created three problems by
removing three of those pairs. This means the model could
have from one to potentially six unique causes for unsolv-
ability. We passed each of these problems through our sys-
tem, looked at the abstractions, made fixes and then tested if
there were further issues. For p1 and p3, we were able to suc-
cessfully make the problem solvable. While for p2, we were
able to fix two issues, but the explanation system timed out
on the third trial. This illustrates the journey of the domain
writer towards converging the space of solutions inM and
MH and the massive simplification of the model complexity
offered by the proposed approach along this journey.

Computation Finally, we report the time taken to com-
pute the different components of the planner’s directive to
the domain writer, in Table 1. We do not explore optimiza-
tions in this paper, but we are well within the bounds of real-
time use even for the massive credit card domain.

Conclusion and Future Work

In this paper, we formulated the explainable planning chal-
lenges in model acquisition tasks and demonstrated them in
the context of a tool for the design of goal-oriented conversa-
tional agents using automated planning. Perhaps one of the
most compelling aspects of our work is how powerful plan-
ning techniques and concepts themselves can be in helping
with the acquisition of planning specifications to begin with.

9An interesting course of investigation in the future would
be adopting the considerable body of work in the determination
of dead ends during planning (Steinmetz and Hoffmann 2017;
Muise 2014; Kolobov, Mausam, and Weld 2010) for XMAS. While
our motivation here is user facing and is thus quite different to
those works – i.e. we want to use abstractions to facilitate explana-
tions, particularly in the model acquisition task, rather than speed
up planning – it would be interesting to explore whether those tech-
niques can speed up the explanation generation step in the future.

An exciting opportunity for future work is in the adoption
of open world extension of models based on domain knowl-
edge or data. In the techniques discussed in the paper, we
outlined possible issues with the current domain but stopped
short of suggesting fixes for it. For an open world problem
such as domain acquisition, this would require elements of
counterfactual reasoning (Göbelbecker et al. 2010; Herzig
et al. 2014) and certain elements of creativity (Sarathy and
Scheutz 2018; Sarathy 2018; Freedman et al. 2020) so that
the hypothesised fixes to a model are consistent with the un-
derlying domain and thus useful to the domain modeler.

Going forward, we intend to evaluate the approach with a
wide base of seasoned dialogue designers. This is a signif-
icant undertaking since one must design the interface care-
fully in order to separate confounds that can mix up whether
the designers could grasp the declarative mental model or
not with indicators of whether the explanations themselves
proved to be useful during debugging. While we laid the the-
oretical foundations of XMAS here, UX design is out of scope
for this work. We hope to report on the results of investiga-
tion in that direction in the future.
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Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolvabil-
ity Certificates for Classical Planning. In ICAPS.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. IJCAI Workshop on Explainable AI (XAI).
Freedman, R.; Friedman, S.; Musliner, D.; and Pelican, M.
2020. Creative Problem Solving Through Automated Plan-
ning and Analogy. In AAAI Workshop on Generalized Plan-
ning (GenPlan).
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