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Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{caelan, tlp, lpk}@csail.mit.edu∗

Abstract

Many planning applications involve complex relationships
defined on high-dimensional, continuous variables. For ex-
ample, robotic manipulation requires planning with kine-
matic, collision, visibility, and motion constraints involv-
ing robot configurations, object poses, and robot trajecto-
ries. These constraints typically require specialized proce-
dures to sample satisfying values. We extend PDDL to sup-
port a generic, declarative specification for these procedures
that treats their implementation as black boxes. We provide
domain-independent algorithms that reduce PDDLStream
problems to a sequence of finite PDDL problems. We also
introduce an algorithm that dynamically balances exploring
new candidate plans and exploiting existing ones. This en-
ables the algorithm to greedily search the space of parameter
bindings to more quickly solve tightly-constrained problems
as well as locally optimize to produce low-cost solutions. We
evaluate our algorithms on three simulated robotic planning
domains as well as several real-world robotic tasks.

1 Introduction

Many important planning domains occur in continuous
spaces involving complex constraints among variables. Con-
sider planning for an 11 degree-of-freedom (DOF) robot
tasked with rearranging blocks. The robot must find a se-
quence of move, pick, and place actions involving con-
tinuous variables such as robot configurations, robot trajec-
tories, block poses, and block grasps that satisfy compli-
cated kinematic, collision, visibility, and motion constraints,
which affect the feasibility of the actions. Often, special pur-
pose procedures for evaluating and producing satisfying val-
ues for these constraints, such as inverse kinematic solvers,
collision checkers, and motion planners, are known.

We propose PDDLStream, a planning language that in-
troduces streams as an interface for incorporating sam-
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Figure 1: Left: Domain 1 (with 5 blocks). Right: A real-
world robot planning to “serve a meal” on the brown tray.

pling procedures in Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Streams have both a pro-
cedural and declarative component. The procedural compo-
nent is a conditional generator, a function from input values
to a possibly infinite sequence of output values. Conditional
generators construct new values that depend on existing val-
ues, such as new robot configurations that satisfy a kinematic
constraint with existing poses and grasps. The declarative
component specifies the facts that these input and output val-
ues satisfy. Streams allow a planner to reason about condi-
tions on the inputs and outputs of a conditional generator
while treating its implementation as a black box.

We apply two existing algorithms (Garrett, Lozano-Pérez,
and Kaelbling 2018) to PDDLStream and introduce two
new PDDLStream algorithms. Each algorithm constructs
and solves a sequence of finite PDDL problems, any off-the-
shelf PDDL planner to be used as a search subroutine. Our
Adaptive algorithm balances the exploration-exploitation
trade-off (Robbins 1952) when deciding whether to search
for new optimistic plans or to continue sampling parameter
values for existing ones. By adaptively balancing the time
spent searching versus sampling, Adaptive is often able to
more aggressively find parameter bindings for existing op-
timistic plans. We experiment in three robotic planning do-
mains (figures 1, 2, and 3) to compare the algorithms. Adap-
tive greatly outperforms the two existing algorithms (Gar-
rett, Lozano-Pérez, and Kaelbling 2018) on constrained and
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cost-sensitive problems. Finally, we apply PDDLStream to a
real-world robot to plan for manipulation and kitchen tasks.

2 Related Work

Several PDDL extensions such as PDDL2.1 (Fox and Long
2003) and PDDL+ (Fox and Long 2006) support plan-
ning with numeric variables that evolve over time. Most
numeric planners are limited to problems with linear or
polynomial dynamics (Hoffmann 2003; Bryce et al. 2015;
Cashmore et al. 2016); however, some planners can handle
non-polynomial dynamics by discretizing time (Della Penna
et al. 2009; Piotrowski et al. 2016). While it may be techni-
cally possible to analytically model, for example, collision
constraints among 3D meshes using PDDL+, the resulting
encoding would be enormous, far exceeding the capabili-
ties of numeric planners. One approach addresses problems
with convex dynamics without discretization (Fernández-
González, Williams, and Karpas 2018); however, it requires
a convex decomposition of the robot’s configuration space,
which is intractable for 3D articulated robots.

Semantic attachments (Dornhege et al. 2009b; 2009a;
Gregory et al. 2012; Hertle et al. 2012; Dornhege 2014;
Dantam et al. 2016), functions computed by an external
module, are an existing method that integrates blackbox
procedures and PDDL planners. Condition-checker mod-
ules test Boolean action preconditions, and effect-applicator
modules modify numeric state variables. Actions must be
parameterized by finite types, which restricts the technique
to finite action spaces. In the context of robotics, this restricts
the applicability of semantic attachments to domains that are
prediscretized, where a human specifies a finite set of ob-
ject poses, object grasps, and robot configurations that can
be considered. Thus, semantic attachments are not sufficient
for modeling the domains we consider, where the planner
must produce these continuous values. In contrast, PDDL-
Stream is able to model domains with infinitely-many ac-
tion instances. Finally, semantic attachments are evaluated
eagerly (section 6) during the forward state-space search as
opposed to lazily (section 7). This results in many unneeded
module calls and thus poor planner performance when the
attachments are computationally expensive.

Many approaches to robotic task and motion planning
have developed strategies for handling continuous spaces
that go beyond prediscretization (Kaelbling and Lozano-
Pérez 2011; Srivastava et al. 2014; Garrett, Lozano-Pérez,
and Kaelbling 2015; Toussaint 2015; Garrett, Lozano-Pérez,
and Kaelbling 2017). However, these approaches are each
specialized to a particular class of manipulation problems.
Moreover, they cannot be applied new domains, such as the
rovers domain in figure 2, without substantial engineering
effort because they do not offer a modular, domain-agnostic
problem description language with clear semantics.

3 PDDLStream

We build PDDLStream on PDDL (McDermott et al. 1998)
to enable ease of use for AI practitioners as well as to lever-
age any PDDL planner, without modification, as a subrou-
tine. We provide an example PDDLStream specification for

a robotic pick-and-place domain in section 4. For clarity of
exposition, we formalize STRIPS (Fikes and Nilsson 1971)
PDDL problems; however, our approach also applies to Ac-
tion Description Language (ADL) (Pednault 1989) features
such as typing, disjunctions, negative preconditions, existen-
tial quantifiers, finite universal quantifiers, conditional ef-
fects, and derived predicates.

A predicate p is a Boolean function. We treat types as
unary predicates. An atomic fact p(x̄) is a predicate p evalu-
ated on object tuple x̄ = 〈x1, ..., xk〉 that evaluates to true. A
literal is a fact or a negated fact. A state I is a set of literals.
By the closed world assumption, facts not explicitly speci-
fied within a state are false. An action a is given by a param-
eter tuple X̄ = 〈X1, ..., Xk〉, a set of literal preconditions
pre(a) on X̄ , and a set of literal effects eff (a) on X̄ . In cost-
sensitive planning, each action may have a nonnegative cost
function c(X̄) as an additive cost term. An action instance
a(x̄) is an action a with its parameters X̄ replaced with ob-
jects x̄. An action instance a(x̄) is applicable in a state I if
(pre+(a(x̄)) ⊆ I) ∧ (pre−(a(x̄)) ∩ I = ∅) where the +
and − superscripts designate the positive and negative lit-
erals respectively. The result of applying an action instance
a(x̄) to state I is a new state (I \eff −(a(x̄)))∪eff +(a(x̄)).
To compactly model the domain in section 4, we make
use of derived predicates (axioms) (Fox and Long 2003;
Thiébaux, Hoffmann, and Nebel 2005), which are defined
by a logical formula on a state. We treat positive-mentioned
instantiated axioms roughly as actions for the purpose of de-
scribing the algorithms. A STRIPS PDDL problem (A, I,G)
is given by a set of actions A, an initial state I, and a goal
set of literals G. A plan π = [a1(x̄1), ..., ak(x̄k)] is a finite
sequence of k action instances such that each ai(x̄i) is appli-
cable in the (i − 1)th state resulting from their application.
The preimage of a consistent plan π is the set of facts that
must hold to make π executable:

PREIMAGE(π) =

k⋃
i=1

(
pre(ai(x̄i))−

⋃
j<i

eff (aj(x̄j))
)
.

3.1 Streams

A generator g = [ȳ1, ȳ2, ...] is a finite or infinite, enumer-
able sequence of object tuples ȳi. Let next(g) evaluate the
generator and return the subsequent ȳi in the sequence if it
exists. Otherwise, let next(g) return None. Let count(g) = i
return the current number of times next(g) has been called.
A conditional generator f(X̄) is a function from an object
tuple x̄ to a generator f(x̄) = gx̄ that produces a sequence
of output object tuples gx̄ that relate to input object tuple x̄.

A stream s is a conditional generator s(X̄) endowed with
a declarative specification of any facts its inputs and out-
puts always satisfy. Let s.domain = {p | ∀x̄ ∈ X̄. p(x̄)}
be a set of facts p on input parameters s.input that spec-
ify the set of object tuples x̄ for which s(X̄) is defined. Let
s.certified = {p | ∀x̄ ∈ X̄, ∀ȳ ∈ s(x̄). p(x̄+ ȳ)} be a set of
certified predicates on both s.input and output parameters
s.output that assert any facts that 〈x̄, ȳ〉 pairs satisfy. Intu-
itively, domain facts specify “typing” information by declar-
ing legal inputs, and certified facts declare properties that all
outputs are guaranteed to satisfy. A stream instance s(x̄) is
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a stream s with its input parameters s.input replaced by an
object tuple x̄. Let s(x̄)→ȳ denote a stream instance s(x̄)
that generates output object tuple ȳ. An external cost func-
tion c(X̄)→[0,∞) is a nonnegative function defined on pa-
rameter tuple X̄ . Like streams, the domain of c is declared
by a set of facts c.domain on inputs X̄ . However, external
cost functions do not produce objects or certify facts.

A PDDLStream problem (A,S, I,G) is given by a set of
actions A, a set of streams S , an initial state I, and a goal
state set G. To ensure PDDLStream is Turing-recognizable,
we require that stream-certified predicates are never negated
within action preconditions. The set of streams S augments
the initial state I, recursively defining a potentially infinite
set of facts I∗ that hold initially and cannot be changed:

I∗ = I ∪ {p(x̄+ ȳ) | s ∈ S, |x̄| = |s.input |,
∀p′ ∈ s.domain. p′(x̄) ∈ I∗, ȳ ∈ s(x̄), p ∈ s.certified}.
A solution π for PDDLStream problem (A,S, I,G) is a

plan such that PREIMAGE(π + [G]) ⊆ I∗. For cost-sensitive
planning, the objective is to minimize the sum of solution ac-
tion costs. In the extended version of this paper (https://arxiv.
org/abs/1802.08705), we prove that PDDLStream planning
is undecidable, but prove our algorithms are semi-complete,
i.e., complete over feasible instances.

3.2 Domain Description

In order to enable easy use for AI practitioners, PDDL-
Stream adheres to the PDDL standard when possible
and adapts PDDL style and syntax when describing
streams. PDDL problems are typically described using text
files. A domain.pddl file specifies the domain dynamics
through a set of actions (:action) and derived predicates
(:derived). A problem.pddl file specifies the problem
instance through a set of objects (:objects), the initial
state (:init), and a goal formula (:goal).

In order to represent first-class objects such as real-
valued vectors and implement conditional generators that
operate on them, PDDLStream problems are partially de-
scribed using a programming language. However, the declar-
ative components of PDDLStream are still described in
PDDL. Actions and derived predicates are listed using
a standard domain.pddl text file. The input parameters
(:inp), domain facts (:dom), output parameters (:out), and
certified facts (:cert) of each stream are specified in a
stream.pddl text file using PDDL-style syntax.

The conditional generator for each stream is stored pro-
grammatically in a map from each stream name to its gen-
erator function. Because the initial state typically contains
many constant objects that may be non-string entities, the
initial state and goal formula are also expressed program-
matically instead of using a problem.pddl text file.

4 Example Domains

We apply PDDLStream to model two robotic manipulation
domains with a single manipulator and a finite set of mov-
able blocks. Domain 1 (figure 1) is mobile manipulation task
requiring a PR2 robot to tightly pack each blue block into the
green region. The goal in Domain 2 (figure 3) is to place one

of the two blue blocks on the green region while minimiz-
ing the robot distance traveled. The right blue block is much
closer to the robot and the goal region than the distant left
blue block. However, the red block must be moved out of
way in order to safely grasp the right blue block. Optimal
plans, which pick the near blue block, require more actions
but travel less distance than plans that pick the far blue block.

Our model uses the following parameters: ?b is the name
of a block; ?r is the name of a region on a stable sur-
face; ?p is 6 DOF block pose placed stably on a fixed sur-
face; ?g is a 6 DOF block grasp transform relative to the
robot gripper; ?q is an 11 DOF robot configuration; and
?t is a trajectory composed of a finite sequence of way-
point robot configurations. The fluent predicates AtConf,
AtPose, Holding, Empty model the changing robot con-
figuration, object poses, and gripper status. The static predi-
cates Block, Conf, Pose, Grasp, Kin, Motion, Contain,
CFree are constant facts. Block declares that ?b is a block.
Conf declares that ?q is a robot configuration. Pose and
Grasp indicate that a pose ?p or grasp ?g can be used for
block ?b. Kin is a kinematic constraint. Motion is a con-
straint that ?q1, ?q2 are the start and end configurations for
trajectory ?t, and ?t respects joint limits, self-collisions,
and collisions with the fixed environment. Contain states
that when block ?b is at pose ?p, it is within region ?r.
CFree states that if block ?b were placed at pose ?p, the
robot, executing trajectory ?t, would not collide with it. The
cost function Dist gives the distance traveled along trajec-
tory ?t. The domain.pddl file is specified as follows:

(:derived (In ?b ?r)
(exists (?p) (and (Contain ?b ?p ?r)

(AtPose ?b ?p))))
(:derived (Safe ?t ?b) (or
(exists (?g) (and (Grasp ?b ?g)

(Holding ?b ?g)))
(exists (?p) (and (CFree ?t ?b ?p)

(AtPose ?b ?p)))))
(:action move
:param (?q1 ?t ?q2)
:pre (and (Motion ?q1 ?t ?q2) (AtConf ?q1)

(forall(?b)(imply (Block ?b) (Safe ?t ?b))))
:eff (and (AtConf ?q2) (not (AtConf ?q1))

(incr (total-cost) (Dist ?t)))
(:action pick
:param (?b ?p ?g ?q)
:pre (and (Kin ?b ?p ?g ?q) (AtPose ?b ?p)

(Empty) (AtConf ?q))
:eff (and (Holding ?b ?g)

(not (AtPose ?b ?p)) (not (Empty))))
(:action place
:param (?b ?p ?g ?q)
:pre (and (Kin ?b ?p ?g ?q) (Holding ?b ?g)

(AtConf ?q))
:eff (and (AtPose ?b ?p) (Empty)

(not (Holding ?b ?g))))

Three actions are defined: move, pick, and place. The
In derived predicate expresses whether block ?b is currently
contained within region ?r by expressing a condition on
its current pose ?p. The Safe derived predicate encodes
whether trajectory ?t does not collide with placed block ?b
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at its current pose. For simplicity, we omit the description of
an additional condition within move that checks collisions
between grasped blocks and placed blocks.

The stream.pddl file is defined below. The poses
stream randomly samples an infinite sequence of stable
placements ?p for block ?b in region ?r. The grasps
stream enumerates a sequence of force-closure grasps ?g for
block ?b. The ik stream calls an inverse kinematics solver to
sample configurations ?q from a 4D manifold of values (due
to manipulator redundancy) that enable the robot to manip-
ulate a block ?b at pose ?p with grasp ?g. It is important for
ik to have ?p and ?g as input parameters so it can operate
on poses and grasp objects in the initial state as well those
produced by poses and grasps. The motion stream re-
peatedly calls a motion planner to generate safe trajectories
?t between pairs of configurations ?q1, ?q2. The cfree
stream tests whether block ?b when at pose ?p is collision
free with respect to all robot configurations along trajectory
?t. It is a test stream, a stream with no output parameters. If
it generates the empty tuple 〈 〉, its certified conditions are
proven. As a result, it can be interpreted as a Boolean func-
tion. cfree is checked by calling a collision checker along
trajectory ?t. The Dist external cost function returns the
sum of the distance between each pair of adjacent configu-
ration waypoints on trajectory ?t.

(:stream poses (:stream ik
:inp (?b ?r) :inp (?b ?p ?g)
:dom (and (Block ?b) :dom (and
(Region ?r)) (Pose ?b ?p)
:out (?p) (Grasp ?b ?g))
:cert (and (Pose ?b ?p):out (?q)
(Contain ?b ?p ?r))) :cert (and (Conf ?q)
(:stream grasps (Kin ?b ?p ?g ?q)))
:inp (?b) (:stream motion
:dom (Block ?b) :inp (?q1 ?q2)
:out (?g) :dom (and (Conf ?q1)
:cert (Grasp ?b ?g)) (Conf ?q2))

(:stream cfree :out (?t)
:inp (?t ?b ?p) :cert (and (Traj ?t)
:dom (and (Traj ?t) (Motion ?q1 ?t ?q2)))
(Pose ?b ?p)) (:function (Dist ?t)
:cert (CFree ?t ?b ?p)):dom (Traj ?t))

4.1 Rovers Domain

We also apply PDDLStream to a multi-robot surveying
domain to demonstrate the generality of our formalism.
Domain 3 (figure 2) extends the classic PDDL domain
rovers (Long and Fox 2003) by incorporating 3D visibility,
distance, reachability, and collision constraints. Two rovers
(green TurtleBot robots) must together collect a rock sample
(black objects), collect a soil sample (brown objects), photo-
graph each objective (blue objects) without occlusions, and
communicate the results back to the lander (yellow Husky
robot) via line of sight. Due to obstacles that limit reach-
ability, both rovers must be utilized in order to complete
the task. The actions are: move, take image, calibrate,
send image, sample rock, send analysis, drop rock.

Figure 2: Domain 3 (with 4 objectives).

5 PDDLStream Algorithms

We present four PDDLStream algorithms that share several
common subroutines. The first two algorithms (Incremen-
tal, Focused) are the direct application of the algorithms
of Garrett et al. (2018) to PDDLStream. The second two
algorithms (Binding, Adaptive) are new algorithms. Each
algorithm operates by solving a sequence of finite PDDL
problems of increasing size. Let SEARCH(A, I,G) be any
sound and complete algorithm for classic PDDL problems.
For cost-sensitive planning, assume SEARCH returns a solu-
tion with cost below a cost bound C. SEARCH can be imple-
mented using an off-the-shelf PDDL planner without modi-
fication to take advantage of existing, efficient search algo-
rithms. Although each algorithm is presented in its decision
form, each can easily be run in an anytime fashion.

In order to reduce a potentially infinitely-large PDDL-
Stream problem to a sequence of finite PDDL problems,
our algorithms control two infinite sources of objects. First,
the generator for a stream instance may enumerate an in-
finitely large set. Second, it may be possible to compose a se-
quence of stream instances of unbounded length. Thus, both
the maximum width and depth of generated objects must be
limited. We capture both of these properties by introducing
the notion of the level of a fact. Intuitively, a level relates
to the number of stream evaluations that are required to cer-
tify a fact. The level recursively incorporates both the stream
evaluations required to certify its domain facts as well as the
number of evaluations of s(x̄) itself. This idea is similar to
the concept of layer for facts and actions in a relaxed plan-
ning graph (Bonet and Geffner 2001) with the distinction
that a stream instance can be evaluated many times.

Each algorithm maintains a map U from each certified
fact to both the level (level ) of the fact and the stream in-
stance (instance) that certified it. More formally, the level
of stream instance s(x̄) is the maximum level of its domain
facts in U plus one more than the count of its past evalua-
tions. See section 8.2 for an example using levels.

LEVEL(U, s(x̄)) = 1 + count(s(x̄)) + max
p∈s.domain

U [p(x̄)].level

To ensure that external cost functions are evaluated on the
earliest level possible, define the level of an external cost
function instance c(x̄) to be the max of its domain, i.e.
LEVEL(U, c(x̄)) = maxp∈f.domain U [p(x̄)].level .
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6 Incremental Algorithm

The Incremental algorithm enumerates I∗ by iteratively in-
creasing the maximum level l. For each level, the subrou-
tine APPLY-STREAMS instantiates and evaluates all stream
instances s(x̄) at level k ≤ l and adds any new certified
facts to U . The meta-parameter OUTPUT specifies the proce-
dure that is used to generate output objects when evaluating
each stream instances. In this case, OUTPUT = next sim-
ply queries the next output tuple in the generator. Let proce-
dure INSTANTIATE ground all stream instances that are legal
given the input objects in U and the currently certified facts:

INSTANTIATE(S, U) = {s(x̄) | ∀s ∈ S, ∀p ∈ s.domain.

|x̄| = |s.input |, p(x̄) ∈ U}.
The current set of certified facts U becomes the initial state
in a PDDL problem (A, U,G) that is solved using SEARCH.
If SEARCH finds a plan π, it is returned as a solution.

INCREMENTAL(A,S, I,G) :
1 U = {f : 〈0,None〉; f ∈ I} // Map from fact to level
2 for l ∈ [0, 1, 2, ...]:
3 U = APPLY-STREAMS(S, U, l; next)
4 π = SEARCH(A, U,G)
5 if π �= None: return π

APPLY-STREAMS(S, U ′, l; OUTPUT) :

1 U = copy(U ′)
2 for k ∈ [1, 2, ..., l]:
3 for s(x̄) ∈ INSTANTIATE(S, U): if LEVEL(U, s(x̄)) = k
4 ADD-CERTIFIED(U, s(x̄); OUTPUT)
5 return U

ADD-CERTIFIED(U, s(x); OUTPUT) :

1 l = LEVEL(U, s(x̄)); ȳ = OUTPUT(x̄)
2 F = {p(x̄+ ȳ) | p ∈ s.certified} if ȳ �= None else ∅
3 for f ∈ (F \ U): U [f ] = 〈l, s(x̄)〉
4 return ȳ

The incremental algorithm eagerly and blindly evaluates
all stream instances, producing many facts that are irrele-
vant to the task. This can result in significant overhead when
stream evaluations are computationally expensive as they
frequently are in robotics domains where inverse kinemat-
ics solvers and motion planners are required.

7 Optimistic Algorithms

The remaining algorithms (Focused, Binding, and Adaptive)
use the shared pseudocode OPTIMISTIC, which takes in a
meta-parameter procedure PROCESS-STREAMS that imple-
ments each algorithm. The key principle behind our algo-
rithms is to lazily explore candidate plans before checking
their validity (Dellin and Srinivasa 2016). In order to ap-
ply laziness to PDDLStream, we plan using optimistic ob-
jects that represent hypothetical stream outputs before eval-
uating actual stream outputs. These values are optimistic in
the sense that their corresponding stream instance may not
ever produce a satisfying value. For instance, an ik stream
with a particular pose and grasp pair as inputs may not ad-
mit any inverse kinematic solutions. By first planning with
optimistic objects, our algorithms are able to identify only

the stream instances that could possibly support a plan and
therefore focus sampling on useful aspects of the problem.

Let the procedure OPT-OUTPUT(s(x̄)) = ōsx create an op-
timistic object tuple for stream instance s(x̄). Critically, this
technique differs from the approach of Garrett et al. (2018)
in that here each optimistic object ōsx is unique to a single
stream instance s(x̄). In contrast, the approach of Garrett
et al., if directly applied to PDDLStream, would create an
optimistic object tuple OPT-OUTPUT(s(x̄)) = ōs for each
stream rather than each stream instance. As a result, ōs is
shared among all instances of stream s. This distinction is
significant because each unique optimistic object ōsx implic-
itly encodes a single partially-ordered set of stream instance
evaluations that could produce values for the optimistic ob-
ject. This property provides the basis for our novel Binding
(section 8.1) and Adaptive (section 8.3) algorithms.

A consequence of creating unique optimistic objects is
that the set of all optimistic objects may be infinitely large
in domains where it is possible to compose arbitrarily many
streams instances. In contrast, creating shared optimistic ob-
jects always results in a finite set of optimistic objects. In
order to limit the number of unique optimistic objects, we
regulate the current set of optimistic stream instances us-
ing their level (section 5). Namely, we iteratively increase
the maximum optimistic stream level l that can be consid-
ered on a given iteration. Finally, when applied to an exter-
nal cost function instance c(x̄), let OPT-OUTPUT(c(x̄)) = 0
produce an optimistic evaluation of c(x̄) by returning 0, a
lower bound on the nonnegative cost function value.

OPTIMISTIC(A,S, I,G; PROCESS-STREAMS) :

1 U = {f : 〈0,None〉 | f ∈ I} // Map from fact to level
2 for l ∈ [0, 1, 2, ...]:
3 while True:
4 U∗ = APPLY-STREAMS(S, U, l; OPT-OUTPUT)
5 π∗ = SEARCH(A, U∗,G)
6 if π∗ = None: break
7 ψ = RETRACE(U,U∗, PREIMAGE(π∗ + [G]))
8 π = PROCESS-STREAMS(U,ψ, π∗)
9 if π �= None: return π

RETRACE(U,U∗, F ) :

1 ψ = [ ] // Initialize stream plan
2 for f ∈ (F \ U):
3 s(x̄) = U∗[f ].instance
4 ψ += RETRACE(U,U∗, {p(x̄); p ∈ s.domain})+[s(x̄)]
5 return ψ

The outer loop of OPTIMISTIC iteratively increases the
maximum fact level l. The inner loop identifies all stream
instances at fact level l that optimistically support a plan. On
each iteration of the while loop, APPLY-STREAMS instanti-
ates and optimistically evaluates all stream instances s(x̄) at
level k ≤ l, this time using OUTPUT = OPT-OUTPUT. This
results in U∗, a map of all optimistic facts achievable at fact
level l. Next, OPTIMISTIC calls SEARCH to find an optimistic
plan π∗ for the PDDL problem (A, U∗,G). If π∗ = None,
no more plans can be found at the current fact level. And so
OPTIMISTIC breaks out of the while loop and increases the
fact level to l + 1. Otherwise, RETRACE extracts a stream
plan ψ of stream instances that, presuming successful eval-
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uations, certify the optimistic facts present in the precondi-
tions of π∗. For each optimistic fact in the preimage of π∗,
RETRACE adds the stream instance s(x̄) that produced it to
ψ and recursively applies RETRACE to the domain facts of
s(x̄). Once a stream plan ψ is identified, the meta-parameter
procedure PROCESS-STREAMS evaluates a subsequence of
ψ and returns a solution π if one is found.

7.1 Focused Algorithm

The Focused algorithm implements PROCESS-STREAMS us-
ing the procedure FOCUSED-PROCESS-STREAMS. If ψ = [],
the plan π∗ uses no optimistic objects and is returned as a so-
lution. Otherwise, FOCUSED-PROCESS-STREAMS evaluates
streams instances that have satisfied domain facts and adds
new certified facts to U . The first stream instance ψ[0] is
always evaluated. Because evaluation with next increments
the level of s(x̄), the same stream plan ψ cannot be used on
the following iteration. This forces SEARCH to find an opti-
mistic plan π∗ supported by a new stream plan or report that
no more exist, causing the level l to increase.

FOCUSED-PROCESS-STREAMS(U,ψ, π∗) :

1 if ψ = [ ]: return π∗

2 for s(x̄) ∈ ψ: if {p(x̄) | p ∈ s.domain} ⊆ U :
3 ADD-CERTIFIED(U, s(x̄); next)
4 return None

8 Binding and Adaptive Algorithms

The primary shortcoming of Focused is that it fails to take
full advantage of the plans produced by SEARCH. Our two
new algorithms implement PROCESS-STREAMS by operat-
ing on more of the associated stream plans at a time. Ul-
timately, our Adaptive algorithm balances the time spent
in SEARCH versus PROCESS-STREAMS, often reducing the
number of calls to SEARCH required to find a solution.

8.1 Binding Algorithm

The key idea of Binding is to propagate stream outputs that
are inputs to subsequent streams to evaluate more of the
stream plan at once. PROCESS-STREAMS-BINDING main-
tains a set of bindings B, assignments of each optimistic
object to an actual object, that are produced while evalu-
ating the stream plan ψ. Bindings are used to replace any
optimistic objects that serve as stream instance inputs in ψ
or action arguments in π∗. Recall from section 7 that opti-
mistic objects osx̄ are unique to a particular stream instance
s(x̄). Thus, there is a bijective mapping between each op-
timistic object osx̄ and its corresponding output object from
s(x̄). The procedure UPDATE-BINDINGS substitutes the op-
timistic objects in x̄∗ with their bindings x̄ fromB, evaluates
the stream instance s(x̄), and if an output tuple ȳ �= None is
produced, updates B by mapping each optimistic output y∗
to its new object y. If all stream evaluations are successful,
then ψ is satisfied, and procedure APPLY-BINDINGS substi-
tutes each optimistic object within π∗ with its value inB and
returns the new plan as a solution. If a stream instead returns
None or the evaluated cost exceeds the current cost bound
C, BINDING-PROCESS-STREAMS terminates early to avoid
unnecessarily evaluating any subsequent stream instances.

BINDING-PROCESS-STREAMS(U,ψ, π∗) :

1 B = { } // Initialize bindings
2 for s(x̄∗) ∈ ψ:
3 B = UPDATE-BINDINGS(B, s(x̄))
4 if B = None: return None
5 return APPLY-BINDINGS(B, π∗)

UPDATE-BINDINGS(B, s(x̄∗)) :

1 x̄ = [B[x∗] if x∗ ∈ B else x∗ for x∗ ∈ x̄∗]
2 ȳ = ADD-CERTIFIED(U, s(x̄); next)
3 if ȳ = None: return None
4 for y∗, y ∈ zip(OPT-OUTPUT(s(x̄)), ȳ): B[y∗] = y
5 return B

The performance of Binding depends on the number times
BINDING-PROCESS-STREAMS fails to bind each stream plan
ψ that is considered. And the likelihood that BINDING-
PROCESS-STREAMS fails depends on the properties of the
streams specified for a domain, such as the fraction of stream
instances that fail to produce output values (next(s(x̄)) =
None), as well as the objects present in a specific prob-
lem instance. For example, in Domain 1, the first optimistic
plan considered is always satisfiable; however, most calls
to BINDING-PROCESS-STREAMS fail due to fact that the
cfree stream often fails due to the highly-constrained na-
ture of packing blocks into a small region. In Domain 2, the
first optimistic plan is never satisfiable because the red block
obstructs all ways of picking the blue block, but an opti-
mistic plan that first moves the red block and then the blue
block admits many bindings. In Domain 3, if a rover config-
uration sampled to photograph a particular objective is not
reachable, it is likely that most configurations sampled for
that particular rover and objective pair are not reachable.

8.2 Example Execution

As an example of BINDING-PROCESS-STREAMS, consider
a PDDLStream problem in the robotics domain (section 4)
requiring that block b be moved from initial pose p0 to a goal
region r. The objects q0, p0, g1, t1, ... are real-valued vectors
(e.g. q0 = [1.71,−2.44, ...]). The initial state is:

I = {(Region r) (Block b) (Pose b p0)
(Conf q0) (AtPose b p0) (Empty) (AtConf q0)}.
The goal is G = {(InRegion b r)}. OPTIMISTIC fails to
find a plan for level l ≤ 2. When l = 3, the optimistic stream
instances instantiated by APPLY-STREAMS are:

[grasps(b)→γγγ1,poses(b,r)→ρρρ1,ik(b, p0, γγγ1)→ζζζ1,
ik(b, ρρρ1, γγγ1)→ζζζ2,motion(q0, q0)→τττ1,
motion(q0, ζζζ1)→τττ2,motion(ζζζ1, q0)→τττ3, ...].

Each γγγi, ρρρi, ζζζi, and τττ i represents a unique optimistic output.
In total, 13 stream instances are created. Here, the poses
and grasps stream instances are all level 1, the ik stream
instances are all level 2, and the motion stream instances
are all level 3. A possible optimistic plan π∗

1 and stream plan
ψ1 produced by SEARCH and RETRACE are:
π∗
1 = [move(q0, τττ2, ζζζ1),pick(b, p0, γγγ1, ζζζ1),move(ζζζ1, τττ4, ζζζ2),

place(b, ρρρ1, γγγ1, ζζζ2)]

ψ1 = [grasps(b)→γγγ1,poses(b,r)→ρρρ1,ik(b, p0, γγγ1)→ζζζ1

ik(b, ρρρ1, γγγ1)→ζζζ2,motion(q0, ζζζ1)→τττ2,motion(ζζζ1, ζζζ2)→τττ4]
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Assuming each stream evaluation is successful, the follow-
ing objects are produced, which correspond to bindings
B = {γ1γ1γ1 : g1, ρ1ρ1ρ1 : p1, ζ1ζ1ζ1 : q1, ζ2ζ2ζ2 : q2, τ2τ2τ2 : t1, τ4τ4τ4 : t2}.
After substituting these values for their corresponding opti-
mistic objects in π∗

1 , the plan π1 is returned as a solution.

next(grasps(b)) = g1, next(poses(b,r)) = p1

next(ik(b, p0, g1)) = q1, next(ik(b, p1, g1)) = q2

next(motion(q0, q1))) = t1, next(motion(q1, q2)) = t2

In the event that, for example, an inverse kinematic
stream evaluation fails, e.g. next(ik(b, p0, g1)) = None,
BINDING-PROCESS-STREAMS terminates, and the levels of
grasps(b) and ik(b, p0, g1) are incremented to 2 and 3. As
a result, both of the following optimistic stream sequences
are only possible when maximum level l ≥ 4, preventing
them from being applied again until l is incremented due to
SEARCH failing to find a plan (π∗

i = None).

1) [grasps(b)→γγγ1,ik(b, p0, γγγ1)→ζζζ1,motion(q0, ζζζ1)→τττ1]

2) [ik(b, p0, g1)→ζζζ2,motion(q0, ζζζ2)→τττ2]

8.3 Adaptive Algorithm

The Binding algorithm will reconsider each previously iden-
tified stream plan ψ using BINDING-PROCESS-STREAMS.
However, it may perform many calls to SEARCH, each of
which is expensive, before ψ can be revisted. Rather than
always explore new optimistic plans, it may be beneficial to
exploit our current set of optimistic plans by expending more
computation to find feasible bindings for them. Doing so
can be advantageous because these plans can be repeatedly
processed without any overhead from SEARCH. As a result,
an algorithm can aggressively search through the space of
bindings to attempt to find a satisfying set as well as locally
optimize for bindings that correspond to low-cost instantia-
tions of the optimistic plan. However, there may be stream
plans that are not satisfiable, such as in Domain 2 and Do-
main 3, so an algorithm still may need to explore additional
optimistic plans. This goal of balancing the exploration-
exploitation trade-off (Robbins 1952) when planning opti-
mistically is the basis for our Adaptive algorithm.

Instead of evaluating each stream instance only once,
ADAPTIVE-PROCESS-STREAMS maintains a queue Q of
bindings to repeatedly consider. Each entry contains a
stream plan ψ, an optimistic plan π∗, bindings B, and the
next stream plan index i to process. Q persists across all
invocations and thus contains bindings for previously iden-
tified entries that can be reattempted indefinitely. On each
invocation, the queue Q is processed until it is either empty
or the time elapsed exceeds a timeout parameter T . The
best choice of T varies per domain depending on whether
it more beneficial to explore (small T ) or exploit (large
T ). We maintain a running sum of the time spent by both
SEARCH and ADAPTIVE-PROCESS-STREAMS as Ts and Tp
respectively. This enables us to adaptively choose T ←
max (0, Ts − Tp), equating the time spent by both proce-
dures and ensuring that neither dominates the total runtime.

ADAPTIVE-PROCESS-STREAMS(U,ψ+, π
∗
+;T ) :

1 Q = [〈ψ+, π
∗
+, { }, 0〉] // Initialize queue with empty binding

2 while Q �= [ ] and not TIMEOUT(T ):
3 ψ, π∗, B, i = POP(Q)
4 if i = len(ψ): return APPLY-BINDINGS(B, π∗)
5 B′ = UPDATE-BINDINGS(copy(B), ψ[i])
6 if B′ �= None: PUSH(Q, 〈ψ, π∗, B′, i+ 1〉)
7 PUSH(Q, 〈ψ, π∗, B, i〉) // Return 〈ψ, π∗, B, i〉 to Q
8 return None

Additionally, we implement Q as a priority queue that
sorts entries by increasing count(ψ[i]) followed by len(ψ)−
i. This approach lexicographically prefers evaluating entries
with stream instances s(x̄) = ψ[i] that have been evaluated
fewer times followed by stream plans where fewer unbound
optimistic objects remain. This strategy applies the optimism
in the face of uncertainty (Sutton and Barto 2018) principle
by prioritizing partially-bound stream plans that have been
explored less. Finally, we continue popping entries off of Q,
despite the fact that the timeout may be exceeded, as long
as count(si(x̄)) = 0 in order to greedily evaluate stream
instances that have yet to be evaluated.

8.4 Rebinding

Optimistic plans may contain objects that were generated by
streams. For example, in Domain 2, the second optimistic
plan π∗

2 identified (move actions are omitted) has the stream
output objects g1, q1, p1, q2 as arguments to the pick and
place for the blue block. Because these objects are not
optimistic, they are not present as outputs in stream plan ψ2,
and thus ADAPTIVE-PROCESS-STREAMS cannot bind them.

π∗
2 = [pick(red, p′0, γγγ

′
1, ζζζ

′
1),place(red, ρρρ

′
1, γγγ

′
1, ζζζ

′
2),

pick(blue, p0, g1, q1),place(blue, p1, g1, q2)]

However, the new optimistic objects γγγ′1, ζζζ
′
1, ρρρ

′
1, ζζζ

′
2 are

still subject to constraints and costs involving the fixed
objects g1, q1, p1, q2. For instance, the stream plan tail
[motion(ζζζ ′2, q1)→τττ4,Dist(τττ4)] implicitly tests whether
q1 is reachable from ζζζ ′2 and imposes a cost based on
the distance traveled along a trajectory τ4 between them.
Intuitively, we would instead want to explore combi-
nations of all these arguments as free parameters. To
do this, we alter line 7 in OPTIMISTIC to be ψ =
RETRACE(I, U∗, PREIMAGE(π + [G])), which additionally
extracts the sequence of stream instances that produced
each non-optimistic object. As a result, fixed objects are
now treated as optimistic objects that can take on new val-
ues through rebinding. This allows ADAPTIVE-PROCESS-
STREAMS to explore additional combinations of bindings to
more quickly find both feasible and low-cost solutions.

9 Experiments

We experimented using the Incremental, Focused, Binding,
and Adaptive algorithms on 100 randomly-generated prob-
lems within 3 domains in section 4. The Incremental and
Focused algorithms serve as baselines that are representa-
tive of prior work (Garrett, Lozano-Pérez, and Kaelbling
2018). We enforced a 2 minute timeout that includes stream
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Figure 3: From left to right: Domain 1 success percent, Domain 1 mean runtime, and Domain 2.

Figure 4: From left to right: Domain 3 success percent, Domain 3 mean runtime, and plan cost over time for Domain 2.

evaluation time. An open-source Python implementation is
available at https://github.com/caelan/pddlstream. We use
the FastDownward (Helmert 2006) planning system to im-
plement SEARCH. The stream conditional generators were
implemented using PyBullet (Coumans and Bai 2016).

Figure 4 shows the success rate and mean runtime of suc-
cessful trials for Domain 1 as the number of blocks increases
from 3 to 5, which causes the problem to become more con-
strained. Adaptive outperforms Incremental, Focused, and
Binding due to its ability to aggressively search over many
bindings of a single stream plan. Figure 4 shows the average
plan cost over time with a 0.5 standard deviation confidence
interval for Domain 2. Incremental is omitted because it only
solved 83% of the problem instances Adaptive converges to
a low-cost solution more quickly than Focused and Bind-
ing. Figure 3 shows the success rate and mean runtime of
successful trials for Domain 3 as the number of objectives
increases from 2 to 4. Focused, Binding, and Adaptive all
outperform Incremental and perform about equivalently due
to the less geometrically constrained nature of the domain.
The additional stream binding computation only marginally
increases the runtime of Adaptive.

9.1 Real-World Validation

We applied PDDLStream to four real-world task and mo-
tion planning problems. For each task, a PR2 robot ob-
serves the initial state, solves for a plan, and executes it
in an open-loop fashion. Our PDDLStream domain descrip-
tion includes 9 actions: move, pick, place, stack, push,

press, pour, scoop, stir, and cook. Each action is sup-
ported by one or more streams that sample its continuous
control parameters. Figure 1 shows the PR2 solving the
serve task, where it “prepares a meal” by serving a bever-
age (blue cup) and a cooked cabbage (green block) on the
brown tray. The robot “cooks” the cabbage by placing it
on the stove, turning the stove on, waiting, and turning the
stove off. Like in Domain 1, this problem requires tightly
packing the beverage and cabbage on the tray. Adaptive is
able to quickly identify a collision-free pair of placements
supporting a solution. See the extended version of this pa-
per (https://arxiv.org/abs/1802.08705) for descriptions of the
other tasks. Videos of the PR2 completing each task are
available at https://tinyurl.com/pddlstream.

10 Conclusion

PDDLStream is a general-purpose framework for incorpo-
rating sampling procedures in a planning language. We in-
troduced two new algorithms that reduce PDDLStream plan-
ning to solving a series of finite PDDL problems. Our Adap-
tive algorithm balances the time spent searching and sam-
pling, allowing it to aggressively explore many possible
bindings. As a result, it outperforms existing algorithms,
particularly on tightly-constrained and cost-sensitive prob-
lems by greedily optimizing discovered plans. Finally, we
demonstrated that PDDLStream can be used to plan for real-
world robots operating using a diverse set of actions.
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Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2017.
Ffrob: leveraging symbolic planning for efficient task and

motion planning. The International Journal of Robotics Re-
search.
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