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Abstract

When scheduling drivers for public transport, in addition to
covering the demand and dealing with the spatial dimension,
a range of legal requirements, collective agreements and com-
pany policies need to be respected. The level of concentra-
tion required while driving leads to strict rules for break as-
signments. This results in a complex problem where creat-
ing cost-efficient and employee-friendly schedules is chal-
lenging. This paper deals with bus driver scheduling using
the rules of the Austrian collective agreement for private om-
nibus providers. The contributions are the formalization of
the complex Austrian rules for bus drivers, a new set of pub-
licly available instances based on the characteristics of real-
life instances, and a metaheuristic solution approach for the
problem. The algorithm was able to significantly improve the
solutions of real-life instances and is evaluated on the gen-
erated instances. Further we provide insight in the necessity
of objectives for employee satisfaction and their effects. Our
method can even be successfully applied to improve results
on a problem with very different constraints from Brasil.

Introduction

When there is varying demand for employees at different
times of the day, it is important to have efficient schedules in
order to cover the demand with minimal cost. On the other
hand, there is a range of legal requirements, collective agree-
ments and company policies that need to be taken into ac-
count to create feasible schedules. Further, not every sched-
ule that is feasible will be readily accepted by the employees,
purely optimizing cost might result in reduced employee sat-
isfaction and potential conflicts with labour unions.

An area that is especially restricted by various constraints
is scheduling for drivers in public transport. As these em-
ployees have a great responsibility keeping their passengers
safe, legal requirements enforce strict break assignments in
order to maintain concentration. In addition to that a spatial
component needs to be considered. This makes the goal to
create cost-efficient and employee-friendly schedules even
more challenging. This paper deals with optimizing sched-
ules for bus drivers in Austria, using the regulations from
the Austrian collective agreement for employees in private
omnibus providers serving regional lines.
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The contributions of this work are as follows. Based on
real-life problems from different cities in Austria we gen-
erate a publicly available set of benchmark instances that
can be reused for further research. We formalize and opti-
mize the rules from the Austrian collective agreement which
are more complex than most other regulations presented in
literature so far. We present a metaheuristic based on Sim-
ulated Annealing that was able to significantly improve the
results in real-life scenarios and evaluate this method on the
newly generated instances. We explain the practical rele-
vance of optimizing not just cost, but also objectives for em-
ployee satisfaction. Finally, we also include a comparison
with work on Brasilian bus driver scheduling, highlighting
that our approach can be adapted to driver scheduling prob-
lems with completely different objectives and still improve
some of the best known results.

Related Work

Due to its high practical relevance, the topic of employee
scheduling has seen tremendous research for many years.
Several surveys (Ernst et al. 2004; Van den Bergh et al.
2013) provide a good overview of work in different areas.
A survey for the different objectives in operating bus trans-
port systems is provided by (Ibarra-Rojas et al. 2015). Driver
scheduling is located between vehicle scheduling and driver
rostering in a six step process. Driver scheduling belongs
to the area of crew scheduling problems (Ernst et al. 2004)
that is also frequently applied to airline (Gopalakrishnan and
Johnson 2005) and train crew scheduling.

Research on Bus Driver Scheduling Problems started
decades ago (Wren and Rousseau 1995). Previous work ex-
plored different solution methods. Exact methods mostly
use column generation with a set covering or set parti-
tioning master problem and a resource constrained short-
est path subproblem (Smith and Wren 1988; Desrochers
and Soumis 1989; Portugal, Lourenço, and Paixão 2009;
Lin and Hsu 2016). Heuristic methods like greedy (Martello
and Toth 1986; De Leone, Festa, and Marchitto 2011; Tóth
and Krész 2013) or exhaustive (Chen et al. 2013) search,
tabu search (Lourenço, Paixão, and Portugal 2001; Shen
and Kwan 2001), genetic algorithms (Lourenço, Paixão, and
Portugal 2001; Li and Kwan 2003) are used in different vari-
ations. A problem in Brasil (Constantino et al. 2017) uses a
method based on iterated assignment problems on published
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Table 1: Example bus tour
� tour � start� end � startPos� endPos�
1 1 360 395 0 1
2 1 410 455 1 2
3 1 460 502 2 1
4 1 508 540 1 0

benchmarks that we compare with.
Our solution method is based on Simulated Annealing

(Kirkpatrick, Gelatt, and Vecchi 1983). We focus on a com-
bined objective that includes aspects for generating prac-
tically usable solutions, while most work so far focuses
mainly on cost, only sometimes minimizing idle time and
vehicle changes (Ibarra-Rojas et al. 2015), (Constantino et
al. 2017). Further, break constraints are mostly simple, often
just one meal break. However, break scheduling within shifts
has been considered by authors in different contexts (Beer et
al. 2008; 2010; Widl and Musliu 2014). There is not much
work on multi-objective bus driver scheduling (Lourenço,
Paixão, and Portugal 2001), but multi-objective approaches
are used in other bus operation problems (Respı́cio, Moz,
and Vaz Pato 2013).

Problem Description

The Bus Driver Scheduling Problem deals with the assign-
ment of bus drivers to vehicles that already have a prede-
termined route for one day of operation. The shifts that are
generated need to respect a range of constraints regarding
length and complex break assignment rules.

The specification presented here is taken from the Aus-
trian collective agreement for employees in private omnibus
providers (WKO.at 2019), using the rules for regional lines
(up to 50 km per line). In case of ambiguities we use an in-
terpretation from practice.

Problem Input

The bus routes are given as a set of individual bus legs
L, each leg � ∈ L is associated with a tour tour � (corre-
sponding to a particular vehicle), a start time start�, an end
time end �, a starting position startPos�, and an end position
endPos�. The amount of time within the leg that is actually
spent actively driving is specified as drive�. This problem
uses drive� = length� = end � − start�.

Table 1 shows a short example of one particular bus tour.
The vehicle starts at time 360 (6:00 as our time units are min-
utes) at position 0, which could be the bus depot. 35 minutes
later it arrives at position 1. Before the next leg of the bus
tour there is a 15 minutes waiting time which might qual-
ify as a break for the employee depending on the constraints
explained later. After four legs, the bus returns to the depot
at time 540. Valid input never has overlapping bus legs for
the same tour and consecutive bus legs i, j of the same tour
always respect endPosi = startPosj .

Further input is a distance matrix, which, for each pair of
positions i and j, denotes a time di,j it takes a driver to get
from i to j when not actively driving a bus. If no transfer is
possible, we set di,j = ∞. di,j with i �= j is called passive

ride time. di,i represents the time it takes to switch tour at
the same position, but is not considered passive ride time.
We define the occurrence of a tour change as when a driver
has an assignment of two consecutive bus legs i and j with
tour i �= tour j .

Finally, for each position i an amount of working time for
starting a shift at that position startWork i and for ending a
shift endWork i are given. At any depot i preparing the bus
(startWork i = 15) and finalizing the bus (endWork i =
10) are considered, for other positions the value is 0.

Solution

A solution to the problem is an assignment of exactly one
driver to each bus leg. A feasible solution must satisfy the
following criteria:

• No overlapping bus legs are assigned to any driver.

• Whenever tour or position changes for a driver between
assigned bus legs i and j, then startj ≥ end i + di,j .

• Each shift respects all hard constraints regarding work
regulations as specified in the next section.

Within the set of feasible solutions, different criteria
might be optimized as explained later.

Work and Break Regulations

Valid shifts for drivers are constrained by work regulations
and require frequent breaks. First, we need to distinguish
different measures of time related to a shift s containing the
set of bus legs Ls:

• Driving time Ds =
∑

i∈Ls
drivei: The total amount of

driving time.

• Total time Ts = end �s + endWork �s − (startfs −
startWorkfs), where fs = argmini∈Ls

{start i} and
�s = argmaxi∈Ls

{end i}: Span from the start of work
until the end of work for shift s.

• Working time Ws = Ts − unpaids: Actual working time
which does not include certain unpaid breaks.

Corresponding to those definitions there are also different
notions of breaks called driving breaks and rest breaks as de-
fined in the remainder of this section. Note that a particular
break might qualify as both of those types at the same time
or just one of them.

Driving Time Regulations. The maximum driving time
is restricted to Dmax = 9 hours. Breaks from driving need
to be enforced at the latest after 4 hours of driving time.
In case of splitting the break, all parts of the break need to
occur before a driving block exceeds the 4 hour limit. Once
the required amount of break time is reached, a new driving
block starts. The following options are possible:

• One break of at least 30 minutes

• Two breaks of at least 20 minutes each

• Three breaks of at least 15 minutes each

Total Time Regulations. A hard limit Tmax = 14 hours
is enforced.
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Working Time Regulations. The working time Ws has a
maximum of Wmax = 10. The minimum paid working time
Wmin is set to 6.5 hours for full time employees. If the em-
ployee is working for a shorter period of time, the difference
has to be paid anyway. It is possible for part time employees
to set this limit to 3 hours, however, due to limited avail-
ability of part time bus drivers in practice we use the limit
for full time employees. We define W ′

s = max{Ws; 390} to
denote the actual paid working time.

A minimum rest break is required according to the fol-
lowing options:
• Ws < 6 hours: no rest break
• 6 hours ≤Ws ≤ 9 hours: at least 30 minutes
• Ws > 9 hours: at least 45 minutes

The rest break might be split into one part of at least 30
minutes and one or more parts of at least 15 minutes. The
first part of the rest break has to occur after at most 6 hours
of work.

A rest break is unpaid as long as it not located within the
first 2 or the last 2 hours of the shift. More precisely, the
area of a (partial) rest break not located within the first 2 or
last 2 hours is unpaid as long as this area itself is at least 15
minutes long.

The maximum amount of unpaid rest is limited:
• If the 30 minute part is located within the first 3 or the last

3 hours of the shift: at most one hour of unpaid rest
• Otherwise: at most 1.5 hours of unpaid rest

Rest breaks beyond this limit are paid. Regarding the 30
minute part, our interpretation is as for the 15 minute breaks,
e.g., as long as 30 minutes of a longer rest break are not
within the first 3 or last 3 hours, the requirement is met.

Split Shifts. A shift might contain up to two shift splits.
Each of them must be at least three hours long, is unpaid
and does not count towards Ws. However, such splits are
typically regarded badly by the drivers. A break less than 3
hours long is considered a rest break. A shift split resets the
driving time (i.e., counts as a driving break), but does not
contribute to rest breaks.

Objectives

There are several optimization criteria, setting a different
and often conflicting focus on the resulting schedules. Typi-
cal minimization objectives regarding operation cost are:
• Number of employees
• Sum of working times

∑
s Ws or

∑
s W

′
s

• Sum of extra hours
However, there are additional minimization objectives

that need to be considered in order to get schedules that are
actually workable in practice:
• Sum of total times

∑
s Ts

• Sum of passive ride times
• Number of tour changes
• Number of shift splits

While some of these additional objectives correlate with
operational objectives (e.g., reducing the number of tour
changes typically requires less change time, contributing to
the working time objective), others like the number of shift
splits actually reduce options like the possibility to use the
same driver at two different peak times. However, schedules
without such objectives typically are not acceptable in prac-
tice as they completely disregard driver needs.

We use a linear combination of several objectives in this
work. Note that there is hardly a universal notion which ob-
jectives to consider, much less a perfect set of weights. In
practice, depending on the scenario, often many different
schedules are evaluated to figure out what works best. In this
evaluation, we propose the following objective function that
stems from practical experience.

objective =
∑
s

2 ·W ′
s + Ts + rides + 30 · changes

+ 180 · splits (1)

In Equation (1) we use the sum of working times as the
main objective, but also the sum of total times to reduce long
unpaid periods for employees. The further objectives aim
to reduce passive ride time rides and the number of tour
changes changes that are beneficial for employees, but also
for efficient schedules. The last objective aims to reduce the
number of split shifts splits as they are very unpopular. The
weight of 30 for tour changes corresponds to 10 minutes of
paid working time (paid working time contributes to Ws and
Ts), the weight of 180 for a shift split corresponds to 1 hour
of paid working time.

Instances

This section describes the kind of instances that are typically
seen in real-life applications and highlights their most rele-
vant features for the optimization. The features were drawn
from analysing different real-life scenarios in Austria, look-
ing at local bus lines both in urban and rural areas.

While the original instances cannot be shared in public, an
instance generator was created to generate instances with the
same characteristics that are shared along with this paper to
allow comparison in further work1. There are 50 instances,
5 each for 10 different sizes ranging from 10 tours (about 70
legs) to 100 tours (almost 1000 legs).

Instance Size

Real-life instances come in a variety of sizes. This is due
to different scenarios that are considered. Small instances
are typically composed of a few lines that have one or more
common or at least closely located stations. When bus com-
panies have to compete for providing service in an area, they
often have to apply with a cost calculation for such line clus-
ters. Typically, the vehicle routes are already predetermined,
leaving the personnel calculation to the competitors. There-
fore, the small instances reflect such clusters of lines.

On the other hand, some scenarios involve larger bus com-
panies optimizing their whole bus network for a town or city,

1https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
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Figure 1: Demand distribution for instance 100 50.

giving rise to very large instances with more than 1000 legs,
making the problem very challenging to solve. While the
problem is very large and there are many constraints to take
into account, in practice still much work is done manually.

Demand Distribution

The instances encountered in real-life scenarios have a very
typical shape highlighted in Figure 1. There is a large de-
mand peak in the morning, where both employees and pupils
require many buses in short amount of time, while there is
a major depression until lunch time. This results in a prob-
lematic conflict with the constraints for valid shifts as a min-
imum work time of 6.5 hours needs to be paid, while after
the peak there is not enough demand.

The other parts of the demand distribution are less of a
problem for the optimization. There are often a few shifts
that start very early and end very late, this might rarely also
include night buses running the whole night. We do not in-
clude night buses in the generated instances. At lunch time
there is often a slight peak, in particular when schools need
to be served, further there is a significant peak in the evening,
however, far less pronounced compared to the morning peak.

Waiting Times

Figure 2 shows the bus legs for one of the small instances.
Depending on the instance, real-life scenarios might include
significant waiting times within the tours. This typically oc-
curs when the bus arrives at the final stop of a line and has
to wait before starting the next trip. There might be longer
waiting times on lines with less demand, especially in rural
areas, while some lines have only very short waiting times.
E.g., tour 2 in the example repeatedly shows long waiting
times, while tour 3 has mostly short waiting times.

The crucial importance of these waiting times is the abil-
ity to use them for breaks in the schedule. Lines with waiting
times make it very important to consider all break options,
as splitting breaks in many parts often allows to place those

naturally within the schedule of the line, reducing the need
to exchange the driver on a tour.

Therefore, the generated instances exhibit a range of dif-
ferent waiting times that might allow usage as breaks. The
evaluation section will present more detail on how that in-
fluences optimal schedules for the problem.

Solution Method

This section presents the solution methods used to handle
the complex constraints and solve the problem, in particu-
lar the representation of the problem-specific constraints, a
construction heuristic, and Simulated Annealing including
the proposed moves and their selection.

Constraint Representation

The general idea for the representation of the complex con-
straints is to parse shift candidates from start to end, main-
taining accumulators for several resources. These can then
be used to check the constraints and, if violated, add penal-
ties to the objective function.

Accumulators are initially assigned to 0. Assume that i
and j are two bus legs assigned consecutively to shift s in
the step of calculating the values at leg j. We define diff ij =
startj − end i.

Drive time constraints use the following accumulators:

dtj = dt i + drivej (2)
block j = diff ij ≥ 30 ∨ (diff ij ≥ 20 ∧ b20 i = 1)

∨ (diff ij ≥ 15 ∧ b15 i = 2) (3)

dcj =

{
drivej if block j

dci + drivej else
(4)

b20 j =

⎧⎨
⎩
0 if block j

1 if diff ij ≥ 20

b20 i else
(5)

b15 j =

⎧⎨
⎩
0 if block j

b15 i + 1 if diff ij ≥ 15

b15 i else
(6)

Equation (2) sums up total drive time, (4) the drive time
in the current driving block. The driving block resets de-
pending on (3), formalizing the different splitting options
for driving breaks. Equations (5) and (6) keep track of the
number of driving breaks of length at least 20 respectively
15 minutes in the current driving block.

The problem constraints are enforced with dt i ≤ Dmax

and dci ≤ 240.
Next we need to specify work time and rest break con-

straints:

diff ′
ij =

{
0 if diff ij − rij ≥ 180

diff ij − rij else
(7)

Equation (7) denotes the length of a potential rest break
between legs i and j, using rij for the passive ride time
necessary between legs i and j. In case passive ride time
is needed, it is always placed after the rest break and before
the start of leg j. diff ′′

ij denotes the potentially unpaid break
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time by reducing diff ′
ij by parts located within the first 2 or

last 2 hours.

wtj = wt i + diff ′
ij + rij + lengthj (8)

restj = rest i +

{
diff ′

ij if diff ′
ij ≥ 15

0 else
(9)

first15 j = first15 i ∨ (diff ′
ij ≥ 15

∧ end i − start ′s ≤ 360) (10)

break30 j = break30 i ∨ diff ′
ij ≥ 30 (11)

unpaid j = unpaid i + diff ′′
ij (12)

center30 j = center30 i ∨ isCentered30(diff ij) (13)

Equation (8) sums up the work time, currently still includ-
ing unpaid rest breaks. Qualified rest breaks, whether unpaid
or not, are summed up in equation (9). Equations (10) and
(11) are required to monitor split rest breaks, ensuring that
the first part occurs no later than 6 hours into the shift (using
start ′s as shorthand for the start of the shift) and that there is
a break of at least 30 minutes.

Equation (12) sums up potential unpaid rest time. The
maximum amount might depend on breaks later in the
schedule, therefore the final calculation is done at the end of
the shift. Equation (13) keeps track whether there is a cen-
tered break of at least 30 minutes (according to the problem
definition).

The values from the last bus leg � of shift s are then used
as follows:

upmax s =

⎧⎨
⎩
90 if first15 � ∧ break30 � ∧ center30 �

60 if first15 � ∧ break30 � ∧ ¬center30 �

0 else
(14)

Ws = wt� + startWork ′
s + endWork ′

s

−min{unpaid �; upmax s} (15)

Equation (14) calculates the maximum rest time that can
be unpaid based on having a valid rest time at all and the
location of the 30 minute part. Equation (15) calculates the
total paid working time. Keep in mind that for the objective
Wmin still needs to be taken into account.⎧⎨
⎩
Ws < 360 if ¬first15 � ∨ ¬break30 �

Ws ≤ 540 if first15 � ∧ break30 � ∧ rest i < 45

Ws ≤ 600 else
(16)

Equation (16) bounds the maximum working time based
on the rest breaks that are present.

Further we need to check the maximum total time that
can be calculated without an accumulator and maintain the
following accumulators for the remaining objectives:

ridej = ridei + rij (17)

changej = changei +

{
1 if tour i �= tour j
0 else

(18)

splitj = split i +

{
1 if diff ij − rij ≥ 180

0 else
(19)

Construction Heuristic

The first part of the solution mechanism is to construct
an initial solution by using a greedy assignment heuristic.
While this heuristic is not meant to produce solutions of top
quality, it is an important base for the use of Simulated An-
nealing in the later part of the algorithm.

Algorithm 1: Construction heuristic.
1 for leg in Lunassigned do
2 e←bestEmployee(leg);
3 assignLegToEmployee(leg, e);
4 while leg ←nextTourLeg(leg) do
5 if ¬evaluateAssign(leg, e) then
6 break;
7 end
8 assignLegToEmployee(leg, e);
9 end

10 end
11 for e in Employees do
12 for f in startLater(Employees, e) do
13 if reassignLast(e, f) then
14 break;
15 end

16 end

17 end

Listing 1 shows the high-level view of the algorithm. The
first loop goes through all bus legs and assigns them to the
best employee, identified as the employee where the assign-
ment results in the lowest objective after assignment. Then
as many legs from the same tour as possible without vio-
lations are assigned to the same employee. These legs are
skipped in the outer loop. This saves much effort compared
to building combinations for the same tour in later stages of
the algorithm.
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Table 2: Results for the benchmark dataset
Construction Heuristic Simulated Annealing Hill-climbing

Instances Time Empl. Value Time Empl. Best Mean Time Empl. Best Mean
10 0.2 12.2 15747.2 22.8 11.6 14717.4 14740 7.8 12 14904.4 14988
20 0.54 24.2 32627.8 62.2 22.6 30860.6 30971 28 22.8 30931.4 31276
30 1.68 41 54141.6 108.8 38.4 50947.4 51258 99.4 38.8 51544.2 51917
40 3.1 55 73417 267 52.2 69119.8 69380 151.2 52 69533.6 71338
50 6.26 68.2 91372.8 329 66 87013.2 87557 295.4 65.8 86718.6 87263
60 10.62 80.8 109293.8 543.6 78.8 103967.6 104333 432.8 79 103780 104296
70 18 92.8 130024.2 751.4 90.4 122753.6 123226 718.6 90.4 122912.8 123304
80 26.54 107 148889 1140.2 104.6 140482.4 140914 959.4 104 139765.2 140508
90 37.62 120.2 165171.6 1453 118 156385 157426 1516.6 117.2 156239.4 156863

100 48 130.4 183456.4 1449.4 128.2 173524 174502 1483.2 127.4 172327.8 172909

The second loop performs some reassignments from em-
ployees with earlier shift to those with later shifts. The rea-
son is that the greedy assignment of legs results in late legs
often forming very short, expensive shifts. Therefore, reas-
signing legs from the end of earlier shifts to the start of later
shifts results in a more balanced schedule. Reassignments
are only done if they improve the overall objective.

Simulated Annealing

The improvement stage of the algorithm is based on Sim-
ulated Annealing, as this is a flexible method that has pro-
vided very good results for other scheduling problems.

Algorithm 2: Simulated annealing implementation.
1 t← tstart ;
2 changeCount ← 0;
3 while changeCount < maxCount do
4 for j ← 0 to innerIterations do
5 move ← chooseMove();
6 change ← move.evaluate();
7 if acceptMove(change, t) = true then
8 move.execute(solution);
9 solution.value ←

solution.value + change;
10 if change < 0 then
11 changeCount ← 0;
12 end

13 else
14 move.abort();
15 end

16 end
17 changeCount ← changeCount + 1;
18 t← t · coolingRate;
19 end

Listing 2 shows the structure of the algorithm. The moves
used for the improvement phase are different kinds of swaps.
They apply to a pair of employees and exchange either
one or more bus legs in a selected time window between
those employees. The selection where to apply happens in
chooseMove. While the base move of reassigning one bus

leg could be applied repeatedly, moving multiple legs at
once is critical as it avoids intermediate penalties.

As the larger instances have up to hundreds of employ-
ees, it is important to focus the application of moves towards
areas that have high objective values. Therefore, with 50%
probability the first employee for a move is selected among
the 10 employees with the highest objective values, oth-
erwise randomly. The second employee is always selected
randomly. The split allows potential improvements to occur
everywhere, while the focus allows faster convergence by
higher chance of eliminating highly penalized duties.

A move is accepted in acceptMove, where change is the
change in objective, if it does not make the solution worse
or otherwise with probability exp

(
− change

t

)
. The termina-

tion criterion is maxCount iterations without improvement,
ensuring the algorithm settles to a stable solution.

Evaluation

This section presents the evaluation of our method. First it
presents the setup of the experiments, then it provides the re-
sults for the new benchmark instances. The results are com-
pared to using just paid work time as the objective, high-
lighting the importance of additional objectives. Finally, we
provide a comparison with publicly available instances from
Brasil, improving some best known solutions.

Experimental Setup

The experiments are run on a PC with an Intel Core i7-
7500U at 2.7 GHz. The algorithm receives a maximum num-
ber of employees that it is allowed to use and typically set-
tles on a good number due to the working time objective.
However, the algorithm can often find slightly better solu-
tions when restricting the employees even further, therefore,
several exploration runs decreasing the employee limit are
performed per instance.

Based on experiments we set the parameters for the al-
gorithm as follows. Hard constraint violations are penalized
by a cost of 1000 per minute of violation. We report the re-
sults from the construction heuristic and compare Simulated
Annealing with randomized hill climbing (temperature set
to 0). The starting temperature is set to 100, the exploration
runs use a cooling rate of 0.9 and 10 as the number of itera-
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Figure 4: Best solution for instance 10 1 using only working time as objective

tions without change. More precise runs use a cooling rate of
0.99 and 100 iterations without change as they trade speed
for result quality. The number of inner iterations (moves per
temperature level) is set to 1000. We repeat the best config-
uration three times to get an understanding of the variation
introduced by random decisions in the algorithm.

Results

Table 2 shows the results for the 50 benchmark instances,
for brevity reasons using the average over each size cate-
gory of instances. Runtimes are in seconds. The construc-
tion heuristic produces fast results of reasonable quality. In
comparison, the best obtained results are typically 5 to 7
percent better at the cost of higher runtime. Greedy strate-
gies work well as taking the best option to finish the current
employee’s schedule yields a range of very good schedules.
However, in the end there are typically several parts that do
not fit together, leading to the need for more sophisticated
improvement methods.

After the construction heuristic, a few fast runs are per-
formed to determine if better results can be obtained with
lower employee limits. The results show that the best found
solutions use only a few employees less than the original
number. Runtime and number of employees for Simulated
Annealing and hill-climbing are reported from the run pro-
ducing the best result, the mean result from three runs with
equal configuration per instance.

In comparison, Simulated Annealing and hill-climbing
produce similar results. While differences are not signif-
icant, a tendency shows better results for Simulated An-
nealing on smaller instances and better performance of hill-
climbing on larger instance. The most likely cause is that
Simulated Annealing helps to avoid local optima in smaller
instances while in larger instances the search space is so

large that the effort of repairing deteriorating moves is
higher than the benefit from escaping local optima. Further,
hill-climbing is faster on smaller instances, but looses the
advantage on larger instances.

Detailed Solution Analysis

In order to understand how the characteristic features of the
instances influence the results, Figure 3 shows the best found
solution for instance 10 1 using objective (1). Note that this
instance is chosen to illustrate observations that are found
across the whole set of instances.

The high peak in the morning typically leads to several
short shifts in the morning, despite the minimum of at least
6.5 hours. Some of them might be combined with later parts
of the schedule using shift splits, however, as their use is
discouraged, at least some short shifts will usually remain.

The shifts use the waiting time available on the tours to
fill their breaks. Therefore, most long tours only need to be
handed over once. Note that tour 3 does not have enough
breaks, therefore it needs to be handed over more frequently.
The algorithm combines it with short tours in the morning
and evening in order to utilize employees well, or generates
shorter shifts.

When talking about objectives for optimization, the pri-
mary motivation for bus companies is to reduce cost. How-
ever, we are using the combined objective (1) that includes
several aspects that create better schedules for employees.
While on first sight this narrows the possibilities to reduce
the cost as much as possible, in practice reasonable sched-
ules for employees not only benefit them, but can also con-
tribute to a better work atmosphere that might lead to lower
personnel fluctuations and fewer sick leaves.

In order to understand how tremendous the differences in
generated schedules can be, Figure 4 shows the best found
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Table 3: Objective values of the different solutions
Working time Span Passive ride Tour changes Shift splits

Combined 4840 4611 66 2 0
Working time 4680 8470 375 19 13

Change −3.3% +83.7% +468.2% +850% +∞%

Table 4: Comparison on Brasil instances
CC130 CC251 CV412 CC512 CC761 CC1000 CC1253 CC1517 CC2010 CC2313

GrBDSP 8389.4 17600 29512.5 35105 47532.9 64873.6 82842.9 99852.8 128964.2 147215
SA 8432 17009.7 30395.2 33743 48862.8 65015.6 82332.6 99439 130410 150215.5

solution for instance 10 1 when only using paid working
time (W ′

s) as the objective.
Both schedules are feasible according to all constraints

and represent the best found solutions for their respective
objective. However, it would be very hard to convince any
operating company to adopt the schedule from Figure 4.
Here, almost every employee has at least one shift split, as
these do not add any cost to the objective and are therefore
easily used to combine bus legs at different times of the day.

Table 3 compares the results for the objective values of
the different solutions. The paid working time could indeed
be reduced by 3.3% percent using only the working time
objective. However, this is in a strong contrast to an increase
in total span by 83.7% and even more extreme increases in
the remaining objective values.

When comparing all 50 instances, the average reduction
in work time is very considerable with 7.9%. However, the
average increase is 60.9% in total span, 209% in passive ride
time, 219% in tour changes and 1060% in shift splits.

This comparison clearly shows why it is very important
to use a balanced set of objectives that actually produce so-
lutions that are well suited to be used in practice.

Comparison

As the randomized search procedure can not prove optimal-
ity, we provide several arguments for the quality of the so-
lutions. First, our aim is to compare to exact methods, how-
ever, direct CP formulations cannot even solve reduced ver-
sions of the problem. Therefore, techniques using column
generation are under investigation, however, also leading to
complex subproblems. So far, we were able to obtain exact
results for size 10 and lower bounds from a linear relaxation
for sizes 20 and 30. For size 10 our method reaches the op-
timum in 4 out of 5 instances, the mean is 0.2% above the
optimum (HC 1.9%). For size 20 the mean of SA is 2.5%
above the lower bound (HC 3.5%), for size 30 the mean of
SA is 3.4% above the lower bound (HC 4.7%).

Second, we were able to successfully improve schedules
for a large-scale real-life application with slightly different
constraints using more than 2700 legs by about 4% com-
pared to their previous schedule, which was incrementally
optimized by a human expert over a long period of time. As
personal cost is typically the highest cost factor, this directly
results in savings for the company while maintaining the
same or even slightly better level of service and employee

satisfaction. We also successfully applied the method to sev-
eral smaller problems for clusters of lines in a major city.

Comparing with other work in the area is difficult for this
problem as most often each work uses a different set of con-
straints, and applies their method on their own set of in-
stances that are not publicly available. However, for a prob-
lem from Brasil (Constantino et al. 2017), where instances
with more than 2300 bus legs are available online, we are
able to compare our approach to their work.

However, their constraints are different from the ones we
use. There are no driving breaks and only at most one rest
break as well as no passive ride times. There is a minimum
working time like in our problem, but also overtime cost as
soon as the time is above the minimum, leading to a much
more pronounced balancing objective in this problem. As we
developed our solution method with potential application to
similar problems in mind, we only need to exchange the part
for the constraint representation and can then directly apply
our method. Additionally we added a term to the objective
function penalizing a combination of paid time between legs
and overtime for speeding up convergence

Table 4 shows the comparison of our method SA with
their method GraphBDSP (Constantino et al. 2017). We can
improve 4 out of 10 benchmark instances with our method,
showing that it is applicable to problems with very different
constraints and still able to provide good results.

Conclusion

In this paper, we presented the bus driver scheduling prob-
lem using the complex set of rules in the Austrian collective
agreement. We analysed characteristic features of real-life
instances, in particular the demand distribution and waiting
times and discussed their implications on scheduling. We
provided new publicly available benchmark instances for
further research and presented a solution method based on
a construction heuristic and Simulated Annealing. We suc-
cessfully applied these methods to the new benchmark in-
stances and discussed the importance of a well-designed ob-
jective function. We provided insights in the successful ap-
plication in real-life scenarios and compared with a problem
from Brasil, where we could improve several benchmark in-
stances. Further work will focus on improving exact solu-
tions and lower bounds by investigating more sophisticated
methods based on column generation.
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