
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

An AI-Based Planning Framework for HAPS in a Time-Varying Environment

Jane Jean Kiam,1 Enrico Scala,2 Miquel Ramirez Javega,3 Axel Schulte1
1Bundeswehr University Munich, 2University of Brescia, 3The University of Melbourne

{jane.kiam, axel.schulte}@unibw.de, enrico.scala@unibs.it, miquel.ramirez@unimelb.edu.au

Abstract
A High-Altitude Pseudo-Satellite (HAPS) is a fixed-wing,
solar-powered Unmanned Aerial Vehicle (UAV) developed to
become a flexible alternative to satellites with fixed-orbits for
monitoring ground activities over long periods of time. How-
ever, given its lightweight build and weak electro-motors, the
platform is rather sensitive to weather and cannot fly around
hazardous weather zones swiftly. In this work, we formulate
the problem of planning missions for multiple HAPS as a
hybrid planning problem expressed in PDDL+. The formula-
tion also considers the problem of modeling the platform dy-
namics, the time-varying environment, and the heterogeneous
tasks that need to be carried out. Additionally, we propose a
framework that combines a PDDL+ automated planner with an
Adaptive Large Neighborhood Search (ALNS) approach, de-
veloped to couple the automated planner with a meta-heuristic
that is specific for the problem. The task and motion planning
are done in an intertwined way within the framework, pre-
serving hence a common decision/search space. We validate
our approach with a third-party realistic simulator for HAPS,
as well as with a set of benchmark tests, showing that our
integrated approach produces executable mission plans.

Introduction
High-Altitude Pseudo-Satellites (HAPS) (see Figure 1a) are
solar-powered, High-Altitude Long-Endurance (HALE) Un-
manned Aerial Vehicles (UAVs) operating in the lower strato-
sphere (∼18 km), and are intended as an alternative to satel-
lites with fixed-orbits or aircraft that need refueling to mon-
itor ground activities. To maximize endurance, HAPS are
built of lightweight material (∼100 kg), therefore suscepti-
ble to impairment in difficult weather conditions, such as
strong winds, thunderstorms etc. The weak electro-motors
(∼1.7 kW) hardly allow the platform to maneuver around
hazards. With its low airspeed (∼9 m/s), the effects of wind
cannot be neglected (Müller, Kiam, and Mothes 2018).

HAPS operate in a managed airspace (Everaerts and
Lewyckyj 2011) above FL600. Therefore, a flight plan with
details on the operation must be made available prior to exe-
cution (EUROCONTROL and EASA 2018). Successful tests
have motivated plans for large scale deployments of HAPS

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Zephyr 7 at launch c�ADS GmbH

(b) A typical airspace structure defined for repetitive
monitoring tasks

Figure 1: HAPS and its deployment as a satellite substitute

in the near future (Airbus Defence and Space GmbH 2018)1.
However, planning can be laborious, due to the idiosyncratic
operating characteristics discussed above. We will show that
planning can be automatized to a great degree.

Mission Scenario and Problem Statement
Figure 1b illustrates a typical mission scenario involving
multiple HAPS hi deployed to monitor Points of Interest
(PoIs), which are marked with triangles, within an operating
area. Each HAPS is equipped with a passive sensor, either
an electro-optical (EO) or an infrared (IR) camera. The PoIs
must be monitored (repeatedly) using an appropriate sensor.
Each PoI is associated to a task oPoI(p,Ws,e,mc,m) where p
is the position of the PoI, Ws,e is a set of time windows within

1The test on Zephyr from Airbus in 2018 has set the
longest continuous unmanned flight record of almost 26 days.
https://www.airbus.com/defence/uav/zephyr.html

412

which an image taken of the PoI is rewarded, mc is the type
of sensor required, and m is a Boolean variable, set to true
when the task is active, or false when the task is inactive, e.g.
when the limits of the revisit frequency is exceeded.

Since each HAPS has limited onboard memory, after mon-
itoring a certain number of PoIs, it is required to send the
recorded images to the ground control station (GCS) at the
black circle in Figure 1b, where a line-of-sight (LoS) com-
munication link to the GCS is available. This task, oLoS(p, a),
is characterized by p the position enabling communications
with the GCS, and a the Boolean representing the availability
of a communication channel. In the scenarios we consider,
the GCS can only communicate with one HAPS at a time.

For mission safety and plan executability, besides the dy-
namics of the platform, a realistic time-varying model of the
environment must be considered too. (Köhler et al. 2017)
suggests the use of high-resolution numerical global weather
data for operating weather-sensitive platforms. For example,
COSMO-DE (COnsortium for Small-scale MOdeling) has a
resolution of ∼2.8 km (Baldauf et al. 2011). Prediction of
dynamic no-fly zones D = {vi (t)}, polygons given by an
(ordered) set of vertices, can subsequently be derived from
the models to exclude areas with dangerous weather pat-
terns (Köhler, Gerz, and Tafferner 2016). Additionally, four-
dimensional wind fields (Baldauf et al. 2011)2 are useful to
predict the movement of the HAPS induced by the surround-
ing airflow vwind(p, t). Furthermore, the image recorded by an
EO-camera is strongly affected by the cloud layer(s) between
the ground and the operating altitude, implicating hence the
need to consider the time-varying cloud coverage cc(t).

The plans must be optimized so that, 1) as many PoIs as
possible are visited at their requested time windows, 2) the
image quality is acceptable and 3) the geographical distri-
bution of the visited PoIs is homogeneous. The weighted
objective function is given by Equation 1, where nop (s) is
the total number of PoIs monitored in the plan s, R(op) the
preference/reward over tasks op, probsucc(op) is the proba-
bility of an acceptable image taken of the PoI of op, which is
the inverse of the cc(t) above the PoI. dnop (A) is the density
of PoIs, i.e. the number of monitored PoIs divided by the
number of PoI requests of a number of cellsA the operation
area is divided into.

f (s) = ω1nop (s) + ω2
∑

op∈s
R(op) · probsucc(op)+

ω3(max
A

(dnop (A)) −minA (dnop (A))) (1)

Contributions
In this work, we focus on performing task and motion plan-
ning in an integrated manner for HAPS, by intertwining task
and motion planning decision.

To achieve that, we explore extensively the expressivity
of PDDL+ (Problem Domain Definition Language), i.e. be-
sides encoding for task planning, we also use processes and
global constraints of PDDL+ to model a complex kinody-
namic motion planning problem. The capacity of a PDDL+

2Daily wind data in GRIB-format available on
https://www.dwd.de/EN.

compatible automated planner to solve the latter is com-
pared, in an experimental setting, against a state-of-the art
motion planner, distributed with the Open Motion Planning
Library (OMPL) (Sucan, Moll, and Kavraki 2012). Results
show that the PDDL+ motion planning is competitive. The
simplified motion model in PDDL+ is also validated us-
ing a six degrees-of-freedom (6-DoF) HAPS simulator and
real weather data. For scalability, we use an Adaptive Large
Neighborhood Search (ALNS) framework to wrap around
the automated planner, in order to use heuristics devised for
our planning problem, while ensuring that the searches for
task and motion intertwine, thereby avoiding a decoupled
task+motion planning approach.

The aim is to overcome the difficulties arising from de-
coupling task and motion planning, which relies on first gen-
erating a task plan (by ignoring details on the motion), and
refining it with a motion planner. This results often in non-
usable task plans. We show how the tasks (associated to
the PoIs) and the motion planning (considering the platform
dynamics and the mission constraints) can be formulated all
together, and how to tackle them, to yield a good compromise
between fidelity of the model and overall optimality.

Task + Motion Planning in PDDL+ for HAPS
In this section, we summarize how PDDL+ (Fox and Long
2006) can be used to capture the continuous and discrete
dynamics of the planning problem, as well as the tasks to
be assigned to the HAPS by the planner executive in the
development of a plan.

Task Planning
As a derivative of PDDL, PDDL+ captures classical plan-
ning (McDermott 2000; Fox and Long 2003; 2006). Figure 2
depicts typical classical planning actions necessary for our
planning problem. assign-poi-to-haps assigns a PoI ?p
to a HAPS ?h if 1) ?h is not assigned a task, 2) the memory
of ?h is not full, 3) ?p is not yet assigned to a HAPS, and
4) ?h has the required sensor. monitor-poi commands the
monitoring of a PoI ?p when the HAPS ?h is in the vicinity.
assign-send-image-to-gcs engages the HAPS to com-
municate images to the GCS, if the LoS communication link
is available. The action negates the predicate GCS-is-free,
i.e. the GCS communication terminal is engaged.

Kinodynamic Motion Planning Problem
To ensure feasibility, the time varying environment and plat-
form dynamics must be considered during planning. Ac-
cording to (Donald et al. 1993), a kinodynamic planning
problem includes consideration of kinematic constraints,
e.g. obstacles and boundaries to avoid, as well as dynam-
ics constraints, e.g. time-derivatives of the agent’s physi-
cal configuration. Most motion planning tools are sampling-
based; if dynamics constraints are involved, control-based
motion planners are used, among which the most com-
monly exploited are approaches based on Rapidly ex-
ploring Random Tree (RRT) (Allen and Pavone 2015;
Webb and van den Berg 2013) and on A* (De Filippis
and Guglieri 2012). Particularly with RRT, the control-based

413

(:action assign-poi-to-haps

:parameters (?h -haps ?p -poi)

:precondition (and (not (assigned-haps ?h))

(< (collected-images ?h) max-images)

(active ?p)

(matching-payload ?p ?h)

:effect (and (haps-goal ?h ?p) (not (active ?p))

(assigned-haps ?h))

(:action monitor-poi

:parameters (?h -haps ?p -poi)

:precondition (and (isnear ?h ?p) (haps-goal ?h ?p))

:effect (and (= (last-visit ?p) time-elapsed)

(not (assigned-haps ?h))

(increase (collected-images ?h) image-size))

(:action assign-send-image-to-gcs

:parameters (?h -haps)

:precondition (and (>= (collected-images ?h) 0)

(GCS-is-free) (not (assigned-haps ?h)))

:effect (and (not (GCS-is-free))

(assigned-haps ?h)

(haps-goal ?h los))

Figure 2: Tasks encoded as actions in PDDL+

variant is also available on OMPL (Sucan, Moll, and Kavraki
2012), an open source library with a well-defined API to be
used off-the-shelf, i.e. the problem modelling (state space and
constraints) and the solver are two independent entities3.

We demonstrate in the following subsections more detailed
and richer expressions of PDDL+ than in (Kiam, Schulte, and
Scala 2019) to model the kinodynamic motion planning prob-
lem of a HAPS navigating in a time-varying envirionment
with dynamic obstacles. Figure 3 provides a mapping of the
problem formulation in PDDL+ and OMPL side-by-side.

Dynamics Constraints for HAPS The kinematic model of
HAPS in a wind field with a spherical Earth assumption can
be represented by the following (Müller, Kiam, and Mothes
2018):

λ̇(t) = (vwind,E(t) + vTAS cosγ(t) sin χ(t))/(R + h) cosφ(t),

φ̇(t) = (vwind,N(t) + vTAS cosγ(t) cos χ(t))/(R + h), (2)
ḣ(t) = vwind,U(t) + vTAS sinγ(t),

where λ, φ and h denote respectively the longitude, latitude
and altitude of HAPS. χ and γ are the yaw and pitch angle,
R the radius of the Earth, vwind = (vwind,E, vwind,N, vwind,U)T

the wind velocity in the East-North-Up coordinates, and vTAS
the True Air Speed (TAS). As a fixed-wing aircraft, it is
desired to fly at the optimal equivalent airspeed (EAS), which
can be scaled to obtain the TAS at different altitude levels
vTAS = vEAS

√
ρ0/ρ(h), where ρ(h) and ρ0 are respectively

the ambient and sea-level air densities.
The HAPS can be controlled via its attitude configuration,

by considering Aχ̇ = {−| χ̇max |,−| χ̇max | + Δ χ̇, ..., | χ̇max | −
Δ χ̇, | χ̇max |} the set of feasible turn rate and Aγ =

3OMPL is also integrated as part of Robot Operating System
(ROS).

{−|γmax |,−|γmax | + Δγ, ..., |γmax | − Δγ, |γmax |} the set of
climb angles. The decision for the control parameters can
also be formulated as actions in PDDL+, for example
increase-turn-rate in Figure 3 to increase turn rate χ̇(t+
Δt) := χ̇(t) + Δ χ̇, applicable only if χ̇(t) < | χ̇max | − Δ χ̇.
Similar formulation also applies for decreasing turn rate, in-
creasing and decreasing climb angle.

Subsequently, the position of the HAPS in WGS84 coor-
dinates can be updated using Equations 2 with processes, for
example update-chi and update-latitude in Figure 3 to
update the heading and latitude respectively. Similar formu-
lations are also used for updating longitude and altitude.

Kinematic Constraints for HAPS Weather critical no-go
areas (e.g. strong wind, turbulences, thunderstorm clouds
etc.) predicted by weather forecast sources (Köhler et al.
2017), as well as the operation area (since HAPS operates
at a constant flight level) can be represented as convex-
polygonal obstacles applicable for each altitude level. Algo-
rithm 1 checks if a point p lies within a polygon represented
by a set of ordered vertices V = (vi). The parameters of the
edges (Line 1 to 6) can be pre-processed and parsed to the
PDDL+ problem instance definition file. Line 7 to 11 are in-
tended to examine if the HAPS lies on the same side of each
edge vivi+1 of the polygon as an arbitrary interior point, and
can be formulated as given in Figure 3 using an existential
quantified formula, which we include in our set of global
constraints. This either ensures that HAPS fly within the al-
located operation area or that the HAPS are not an interior
point of the no-go areas.

Algorithm 1 Determine the inclusion of a point p = (λ, φ)
in a convex polygon
Require: V , an ordered set of vertices of a convex polygon
1: for each edge vivi+1 do
2: determine ai , bi , ci such that
3: aiλi + biφi == ci and
4: aiλi+1 + biφi+1 == ci and % ∗: circular indexing
5: aiλi+2 + biφi+2 ≤ ci
6: end for
7: if ∧i (aiλ + biφ ≤ ci) then
8: p is in the convex polygon described by V
9: else

10: p is NOT in the convex polygon V
11: end if

Wind Vector Field for HAPS High-resolution wind
data (e.g. from COSMO-DE) provides independently zonal
wind vλ, meridional wind vφ , and vertical wind vup
for a discrete four-dimensional grid (longitude-latitude-
altitude-time), with regular spacing for the altitude and
time dimensions, but irregular spacing for the longitude-
latitude grid, forming hence at a given altitude, cells
of arbitrary quadrilaterals (see Figure 4) (Baldauf et
al. 2011). The mean value of the wind components of
each 4D-grid can be pre-determined and parsed into the
problem file in PDDL+ as (***-wind ?lat-lon-grid
?altitude-level ?time-interval), where *** can be

414

Figure 3: Mapping between the problem definition for a classical sampling-based motion planner and the formulation in PDDL+

(λ2,φ1)

(λ2,φ2)(λ1,φ2)

(λ1,φ1)

Figure 4: 3D (longigude-latitude-altitude) cell of a wind grid

east-, north- or up-wind. An event in PDDL+ can be used
to continuously determine (using the assign operator) the
wind in the vicinity of the HAPS, by using Algorithm 1 (and
exists quantificator of Figure 3) to check which cell the
HAPS is in, as well as inequalities to determine its altitude
level and the current time interval.

Some no-go areas (e.g. clouds), move along with the wind.
In our work, this movement is assumed linear, with each
vertex moving at the speed of the wind evaluated at the
barycenter of the polygon. The variation over time of the
inequality parameters in Algorithm 1 are given by

a(t + δt) = a(t), b(t + δt) = b(t) (3)
c(t + δt) = c(t) + vφ,wind (t) · b(t) · Δt + vλ,wind (t) · a(t) · Δt,

where vλ,wind and vφ,wind are the zonal and meridional wind
components in rad/s at the barycenter of the polygon. Al-
though this assumption is simplified, it is practical, and nec-
essary given the low airspeed of the HAPS and the wide
mission areas. A safety margin can be added to the polygons
to allow for deformation of the clouds and the neglected
non-linear movements. Equations 3 can be represented as
processes in PDDL+ using basic algebraic functions.

Top-Level Implementation Framework
The encoding in PDDL+ allows the use of automated plan-
ners off-the-shelf to solve a task+motion planning problem

in a tightly-coupled manner. However, this does not always
scale with the complexity of the problem. Moreover, even
if PDDL+ allows the expression of objective functions like
Equation 1 using a plan metric (with the keyword :metric),
few planners support the optimization of it.

Therefore, we propose a top-level intelligent framework
(see Algorithm 2) to wrap around the automated planner
in order to 1) scale the planning for larger problems, i.e.
more HAPS, more goals, and 2) support the optimization
of complex objective functions. The framework intends to
take over the burden to assign PoI/LoS-zone to HAPS (high-
level tasks), rather than leaving it to the PDDL+ automated
planner, in which an action that assigns a PoI to one of the
HAPS is considered at the same level as an action that de-
cides for a control parameter for the guidance of a HAPS.
While the implementation is no longer a true tightly-coupled
approach to solve a task+motion planning problem, it enables
task+motion planning to be done in an integrated manner, i.e.
the search switches from the assignment of high-level tasks to
the low-level control-based numeric planning in a intertwin-
ing fashion. Therefore, the decision of each high-level task
to be inserted to the plan solution is followed immediately by
a lower-level numeric planning. By doing so, the feasibility
and quality of the explored solutions at each search step can
be more precisely estimated. Beside encouraging scalability,
our integrated task+motion approach has another obvious
advantage: The common search space for task and control
actions is still preserved, although the search heuristics for
task-actions and for control-actions can be different.

ALNS
As described in Algorithm 2, the task assignment for multiple
HAPS in the intelligent framework uses the Adaptive Large
Neighborhood Search (ALNS) adapted from (Ropke and
Pisinger 2004). ALNS is a commonly used method to solve

415

job-shop scheduling problems with metaheuristics (Dang,
Rudová, and Nguyen 2019). The advantage of ALNS is mul-
tifold:
1. Given the complex objective function, a single heuris-

tic often works poorly. ALNS allows the use of multiple
heuristics to explore the search space and exploit the good
solutions.

2. Only one initial solution plan is needed to initialize the
algorithm, which greatly reduces the effort of numeric
planning at initialization.

3. The algorithm is anytime, i.e. the (initial) solution plan is
improved as much as possible within the allocated plan-
ning time ptmax.

Algorithm 2 PDDL+ automated planner wrapped around by
ALNS to perform integrated task+motion planning
Require: Rop the request-list of tasks oPoI and oLoS, H a

set of HAPS, T = [Tmin,Tmax] the plan horizon, ptmax
allocated planning time

1: generate initial solution plan s0 = {o1, ..., oi, ..., o |s0 | }
2: s ← s0 % assign s0 as the current solution
3: sbest ← s0 % assign s0 as the best solution
4: while pt < ptmax do
5: update request bank
6: flag_neighbor_plan_not_found = true
7: while flag_neighbor_plan_not_found do
8: s′ ← s
9: remove with a heuristic hRi a task oi from s′

10: insert with a heuristic hIi a task o
′
i into s′

11: call automated planner to stitch oi−1 and o′i
12: call automated planner to stitch o′i and oi+1
13: if automated planning is successful then
14: flag_neighbor_plan_not_found = false
15: end if
16: end while
17: update all time stamps of oj , j > i
18: while Tmax is not reached do
19: insert with a heuristic hIi ok into the end of s′
20: end while
21: if valid(s′) ==true and f (s′) > f (sbest) then
22: accept sbest ← s′

23: else if f (s′) > f (s) or rp < exp
f (s′)− f (sbest)

T p then
24: s ← s′
25: update T p
26: end if
27: update scores for the remove/insert heuristics
28: update Rop

29: end while

The initial solution plan s0 (see Line 1) is generated by
assigning the PoI ofRop with the shortest Euclidean distance
to the HAPS at each step. If the planner cannot compute a
plan (at the control-action level) before timeout, the PoI is
removed and the next closest is assigned.

While there is still planning time left (Line 4), local search
in the neighborhood is performed by removing a task (and

the associated actions), and by inserting a task to be assigned
to the HAPS that is supposed to perform the removed task
(see Line 9 to 10). The task removal and insertion are carried
out using the heuristics in Table 1, followed by stitching the
inserted task o

′
i with the previous task oi−1 and the following

task oi+1. This is achieved by calling the automated planner
to plan from the initial problem instance defined by the last
state (including time) after oi−1 is completed toward the goal
defined by the state to be reached after o

′
i is performed. This

is done similarly to stitch o
′
i and oi+1. Subsequently, the state

the HAPS are supposed to reach after 10% of the original
partial plan trace from oi+1 to oi+2 will be set as the new goal
to plan from the state and time reached after performing oi+1.
The rest of the plan (actions list) remains the same except
for the shifted timestamps resulting from the stitching. If
the plan horizon is not reached, tasks are added to the end
of the plan (Line 18 to 20). s′ is accepted as the new best
solution sbest, if it is valid and if its objective value is better
than the best solution sbest. Or else, s′ is accepted as the

current solution s with a probability exp
f (s′)− f (sbest)

T p , even if s′
is not valid (see Line 23). The underlying reason is to benefit
from the simulated annealing to avoid convergence to a local
minimum. T p is the "temperature" that decreases at the rate
c with each iteration of a segment (T p ← T p · c), to reduce
the "exploring" effect of ALNS.

For the adaptive selection of heuristics, the entire search
is divided into segments, i.e. the number of iterations of the
local search from Line 1 to 27. Heuristic hRi and hIi are
chosen (in Line 9 to 10) in segment j + 1 with a probability
wi, j+1 = wi, j (1 − r) + rSi, j/ai, j where Si is the score of
heuristic i in segment j, and ai is the total number of times
heuristic i has been used in segment j. r is an exploitation
factor, i.e. when r is 1, we favor heuristic wi based solely
on the score it has obtained so far. Lastly, the score of a
heuristic increases by 1) σ1 if the new solution becomes
the global best solution, 2) σ2 if f (s′) > f (s), 3) σ3 if
f (s′) < f (s), but the solution is accepted, 4) σ4 if the
numeric planner finds a plan before timeout. The weighting of
heuristics encourages convergence to an optimum, while the
random selection broadens the exploration of search space.

The remove and insert heuristics devised specifically for
our planning problem are listed in Table 1. The remove
heuristics intend to include any factor that could disfavor
the mission, and insert heuristics try to exploit favorable
factors. Some randomness is encouraged in the remove and
insert mechanism for more exploration in the search space.

Experimental Evaluation
This section describes the validation and performance tests
(based on the described scenario) conducted on the AI plan-
ning framework for an integrated task+motion planning.

Experimental Setup
Although many automated planners come with a PDDL+
front-end interface, to the best of our knowledge, ENHSP4 is

4https://gitlab.com/enricos83/ENHSP-Public

416

(a) Equivalent airspeed of HAPS during plan
execution

(b) Lateral deviation between planned and
simulated path

(c) Lateral position error (mean, standard
deviation and distribution) vs. turn rate

Figure 5: Validation of the planned paths

the only one capable of solving a problem involving kinody-
namic motion planning, given its ability to cope with more
advanced mathematical operations (Scala et al. 2016), such
as exponential and trigonometric functions, necessary to de-
scribe the dynamics of the HAPS (see Figure 3). ENHSP
is a heuristic search forward state planner (Ghallab, Nau,
and Traverso 2004; Geffner and Bonet 2013), with built-in
heuristic components to guide the search to the goal state, by
extending the search tree rooted at the initial state with edges
corresponding to spontaneous (processes) or instantaneous
(actions) state transitions. It was experimentally determined
that the greedy best-first search (GBFS), combined with the
AIBR heuristic (Scala et al. 2016), produces the best results
for our problem. Therefore they are used to perform the fol-
lowing tests. ENHSP also offers the possibility to set the
search step #ts and the plan validation step #tv to reduce the
computational complexity without compromising feasibility.
They are set to 150 s and 10 s respectively, unless specified
otherwise. All planning processes were carried out with an
Intel i7-6700K, 4GHz x 8 processor and 32GB RAM.

Table 1: Remove and insert heuristics used in ALNS

Remove heuristics Insert heuristics
hR1 : randomly remove a
task

hI1 : insert a random new
task

hR2 : select randomly
among the tasks that take
the most time to reach

hI2 : insert a task that is
closest to the HAPS of
which the task is removed

hR3 : select randomly
among the tasks that are
most likely to be unsat-
isfactory (due to the bad
image quality or onboard
memory full)

hI3 : insert a random task
that has a better chance of
being successful (either a
PoI with less dense cloud
under or encourage com-
munication of images)

hR4 : select randomly
among the tasks positioned
in a region densely visited

hI4 : insert a random task
that is positioned in a re-
gion that is least visited

hR5 : select randomly
among the tasks in which
the HAPS is required to
move against head-winds

hI5 : insert a random task
that moves along tail-winds

Validation Tests: Executability of Plans
In this set of tests, we validate the model of the problem, i.e.
the correctness of the higher abstraction of the HAPS dy-
namics in the wind field. We use a third-party 6-DoF HAPS
simulator (Müller, Kiam, and Mothes 2018) coupled with a
four-dimensional flight controller (Müller and Looye 2013)
to keep up with the reference path in terms of vertical and
lateral positions, as well as the times of arrival. Historical
weather forecast data from COSMO-DE of a summer day in
2015 was used, containing high-resolution (i.e. 2.8 km on the
horizontal plane) four-dimensional wind field vectors (Bal-
dauf et al. 2011) and weather-critical convex-polygonal no-
go areas marked by the likely presence of Cumulonimbus
clouds, strong winds and turbulences (Köhler et al. 2017).
Nowcast data was used in the simulator. We consider only
weather forecast data that is not too erroneous (i.e. substan-
tial deviation from the nowcast data), in order to isolate the
source of error of the HAPS movement model and that of the
weather forecast.

The HAPS manages to follow the planner path, while fly-
ing at a stable equivalent airspeed around the optimal value
of 9 m/s (see Figure 5a). The lateral deviation bounded by
420 m (as observed in Figure 5b) is acceptable, since the no-
go areas marking weather critical zones include a margin of
at least several kilometers to allow for uncertainties (Köhler
et al. 2017). It is however interesting to identify the causes
of the lateral deviation, which can be due to 1) the time dis-
cretization of 10 s to compute the planned path from the plan
trace in ENHSP, as opposed to the integration time step of
1 ms in the flight simulator, 2) difference in the now- and
forecast wind, and 3) the substantial turn rate, which can be
observed in Figure 5c (i.e. the greater the turn rate is, the
harder it is to follow the planned path).

Tuning of the ALNS in the Framework
The efficiency of ALNS in performing the search is affected
by the parameter choices of T p, c, r , and σ∗. As advised
by (Ropke and Pisinger 2004), a reasonable setting for T p is
to ensure that the probability of accepting an inferior solution
at the start of each segment equals 0.5. The rest are tuned by
running multiple tests (20 test runs) for each parameter set,
the mean of the objective values is examined to decide for the
best parameter setting. Empirical results show that changing
a single PoI in a solution seldom result in an improvement of

417

Success rate of obtaining a plan within 5 s timeout for point-to-point kinodynamic motion planning
without obstacle with obstacles

Wide area Fitting area Narrow area occ = [0, 30] occ =]30, 50]
distance to goal [km] [0,50]]50,100]]100,150] [0,50]]50,100]]100,150] [0,50]]50,100]]100,150]]100,150]]100,150]
RRT #t = 30 s 0.02 0.01 0.01 0.88 0.65 0.23 0.92 0.89 0.85 not tested not tested
RRT #t = 150 s 0.035 0.02 0.01 0.94 0.98 1 0.98 0.89 0.88 0.04 0.05
ENHSP #ts = 30 s, #tv = 10 s 0.73 0.15 0.02 0.78 0.25 0.11 0.65 0.52 0.48 not tested not tested
ENHSP #ts = 150 s, #tv = 10 s 0.95 1 1 0.96 1 1 0.28 0.17 0.06 0.87 0.58

Task + kinodynamic motion planning
2 PoIs 5 PoIs 8 PoIs

1 HAPS 2 HAPS 1 HAPS 2 HAPS 5 HAPS 1 HAPS 2 HAPS 5 HAPS
ENHSP

Standalone
success rate 0.2 0.62 0 0 0.4 0 0 0

monitored PoIs 2 2 0 0 5 0 0 0
Task planner +

ENHSP (decoupled)
success rate 1 0.9 1 0.9 0.6 1 0.9 0.7

monitored PoIs 1 2 2.4 4.7 5 1.9 6.3 8
ALNS + ENHSP

(integrated)
success rate 1 1 1 1 1 1 1 1

monitored PoIs 2 2 2.4 3.8 5 3.1 6.1 7.1

Table 2: Performance tests 1) to evaluate the planning efficiency of ENHSP as a motion planner for HAPS and 2) to evaluate
the integrated task and motion planning architecture in terms of efficiency and executability

the objective value. This effect is rather intuitive, since the
overall objective depends a lot on the flight routes connect-
ing PoI. Setting c = 0.9 yields empirically the best results,
prolonging thus the exploitation of an accepted inferior so-
lution. r is set to 0.7, which is empirically the best setting for
the same reason: It allows longer exploitation of an accepted
solution. The score increment for the heuristics as described
in the “ALNS" section, σ1, σ2, σ3 and σ4, are set to 0.9, 0.7,
0.1 and 0.3 respectively.

Performance Evaluation Tests
Being aware that using PDDL+ automated planners to solve
a problem involving kinodynamic motion planning is novel
but also unusual, a first set of performance tests is designed
to evaluate the aptitude of this approach, by isolating the mo-
tion planning problem and by comparing the performance
with RRT from OMPL that can also be used off-the-shelf.
Although other motion planning methods could be used, they
do not provide an interface that separates the problem defi-
nition from the search algorithm. Out of fairness, they were
not considered (Hooker 1995), so that the search efficiency
is not affected by any workarounds necessary to model the
HAPS planning problem. 20 problem files for each test set-
ting are randomly generated (randomly set wind field with
wind vectors of speed between 0-3 m/s, and obstacles). In
the top part of Table 2 are the success rates to obtain a plan
within 5 s to guide the HAPS from a start to a goal position
for each planner configuration. Compared to ENSHP, RRT
performs comparably in a fitting operation area, in which the
distance start-goal is similar to the longest diagonal of the
area, or even better in a narrow operation area, in which the
transverse dimension of the area is narrow. However, due to
its lack of heuristic-guided search, RRT is outperformed by
ENHSP in a wide operation area, which is also the kind of
setting we aim for (see Figure 1b). In the presence of obsta-
cles, with an obstacle occlusion of 0-30% (occ = [0, 30]) or

30-50% (occ =]30, 50]), the success rate for ENHSP drops,
but remains satisfactory, especially for occ = [0, 30], which
is also the usual case in an operation (or the operation will
be aborted due to high risk).

The second set of tests is designed to analyse the perfor-
mance of the implemented framework to cover as many PoIs
as possible (without repetition) within T = 2 hours; we com-
pare it with the following planning framework:
Standalone PDDL+ planner (ENHSP in GBFS + AIBR
setting) that is not wrapped in the framework described by
Algorithm 2. Since ENHSP does not support the optimiza-
tion of a metric, it cannot be tested to cover as many PoIs as
possible within a given duration. ENHSP is called once; the
goal is reached only when all PoIs are monitored.
Decoupled task planner and ENHSP designed for HAPS
in (Kiam et al. 2019). A plan for the symbolic tasks is first
determined with a task planner without consideration of the
realistic dynamics and the time-varying environment. The
task plan is subsequently refined (in terms of time of arrival)
using a motion planner. The planners were given 5 minutes
to compute plans for a plan duration of 2 hours.

For each planner setting, again 20 test configurations were
generated, of each the initial HAPS positions, wind field
(|vwind | < 3 m/s) and obstacles (occ = [0, 30]) are set ran-
domly. The success rate of finding a plan and the mean num-
ber of PoIs covered are shown in the lower part of Table 2.
Standalone ENHSP, as a tightly-coupled task+motion plan-
ner, cannot scale up (for more HAPS and PoIs). The de-
coupled, as well as the integrated task+motion planning ap-
proaches, scale up well and determine plans of comparable
qualities in terms of the number of POIs monitored within
2 hours. Although not shown on the table, the other terms
in the objective function, i.e. the cumulative reward, and the
homogeneity in PoI distribution found by the decoupled and
the integrated task+motion planning are comparable, since
both work with the same objective function (see Equation 1).

418

However, in the "decoupled planning", some task plans can
be invalid. Therefore no viable plan is found by the numeric
automated planner at the motion planning step.

Discussion and Conclusion
Planning for real-world applications requires often "refine-
ment" of coarsely computed plans, to remove assumptions
made in the planning with higher-level actions (Ghallab, Nau,
and Traverso 2016). Many applications in robotics (Pecora
et al. 2018) and autonomous driving (Srivastava et al. 2014)
adopt a "loosely-coupled" architecture: First task planning,
followed by refinements (Dantam, Kingston, and Kavraki
2016).

In this paper we investigate the use of planning for control-
ling a set of HAPS. Similar to other works (Pecora et al. 2018;
Srivastava et al. 2014), this problem has previously been dealt
with a hierarchical architecture (Kiam and Schulte 2018;
Kiam et al. 2019) that decouples the task and motion plan-
ning. Task plans are suggested without considering the dy-
namic or kinematic constraints, and are subsequently refined
by a motion planner.

The reason for a segregation lies in 1) the absence of a
symbolically and numerically expressive problem modelling
language, and 2) the lack of appropriate methods to overcome
the challenges in a combined symbolic-numeric search space.
A way to address this is by using PDDL+ (Fox and Long
2006) and relative planners (e.g. UPMurphi (DellaPenna et
al. 2009), DiNo (Piotrowski et al. 2016), ENHSP (Scala et
al. 2016)). Indeed, PDDL+ is a convenient formalism for
planning problems involving infinite discrete space (numeric
planning), time-stamped actions (temporal planning), contin-
uous processes, exogenous events etc. However, despite the
increasing use of domain-independent planners in robotics,
they are mostly limited to task planning (Cashmore et al.
2015; Srivastava et al. 2014; Lima, Ventura, and Awaad 2018;
Estivill-Castro and Ferrer-Mestres 2013). As far as we know,
there is no previous work attempting to use a PDDL+ domain
independent planner for the class of problem we deal with.

With the objective of leveraging the expressiveness of
PDDL+, we provide a PDDL+ encoding that comprehen-
sively captures the task+motion planning problem for mul-
tiple agents, allowing hence compatible automated planners
like ENHSP to be used off-the-shelf to solve the problem
in a tightly-coupled manner. However, due to the difficulty
to complement the planner(s) with problem-specific heuris-
tics, the approach suffers from scalability. To overcome this
issue, we implemented an ALNS-based high-level planning
framework to wrap around the automated planner, in order
to use heuristics specially devised for the problem to guide
the task assignments. The implementation keeps the search
levels intertwined, so that at each search step, even the fine
dynamics of the platform in the time-varying environment
is considered. Tests show that our integrated task+motion
planning approach results in less invalid plans.

The integrated task+motion planning architecture can be
employed for other similar problems, requiring however an-
other set of problem-specific heuristics. While this approach
is no longer domain-independent, it gives the user the possi-

bility to control the search using problem-specific heuristics,
which is necessary for a complex problem.

As a material for future work, the integrated task+motion
planning approach can be geared toward a domain-
independent framework for off-the-shelf use. This can be
achieved with an interface for defining the problem-specific
heuristics, as well as by including a generic method to remove
actions from the plan and repair, by extending the work by
(Siddiqui and Haslum 2015) and (Scala and Torasso 2015)
to PDDL+ problems. This is essential to stitch partial plans
after each local neighboring search step (see Algorithm 2).

Another dimension worth to be explored is to use a net-
benefit encoding of our problem (Keyder and Geffner 2009);
this could lead to a crisper formalisation for integrating a
more complex objective function into the planning problem.
However, how to combine this with our PDDL+ formulation
and relative techniques is unclear, but interesting to investi-
gate as a future work.

Acknowledgements
The authors would like to express gratitude to the German
Aerospace Center (DLR) for the access to their HAPS sim-
ulator and weather data, as well as to the partners of the
StraVARIA for the valuable exchanged of ideas and know-
how. StraVARIA is a project of Ludwig-Bölkow Campus.

References
Airbus Defence and Space GmbH. 2018. Airbus opens first
serial production facility for zephyr high altitude pseudo-
satellites.
Allen, R. E., and Pavone, M. 2015. Toward a real-time frame-
work for solving the kinodynamic motion planning problem.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschen-
dorfer, M.; and Reinhardt, T. 2011. Operational convective-
scale numerical weather prediction with the cosmo model:
description and sensitivities. Monthly Weather Review
139:3887–3905.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS).
Dang, Q.-V.; Rudová, H.; and Nguyen, C. 2019. Adaptive
large neighborhood search for scheduling of mobile robots.
In The Genetic and Evolutionary Computation Conference
(GECCO).
Dantam, N. T.; Kingston, Z. K.; and Kavraki, L. E. 2016.
Incremental task and motion planning: A constraint-based
approach. In Robotics: Science and System.
De Filippis, L., and Guglieri, G. 2012. Advanced Graph
Search Algorithms for Path Planning of Flight Vehicles, Re-
cent Advances in Aircraft Technology, Dr. Ramesh Agarwal
(Ed.). InTech.
DellaPenna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila,
B. 2009. UPMurphi: a tool for universal planning on PDDL+

419

problems. In In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS).
Donald, B.; Xavier, P.; Canny, J.; and Reif, J. 1993. Kinody-
namic motion planning. Journal of the ACM 40:1048–1066.
Estivill-Castro, V., and Ferrer-Mestres, J. 2013. Path-finding
in dynamic environments with pddl-planners. In 16th Inter-
national Conference on Advanced Robotics, ICAR.
EUROCONTROL, and EASA. 2018. UAS ATM integration:
Integration operational concept. European Organisation for
the Safety of Air Navigation (EUROCONTROL).
Everaerts, J., and Lewyckyj, N. 2011. Obtaining a permit-to-
fly for a hale-uav in belgium. In International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Science, ISPRS Zurich 2011 Workshop,.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR
20:61–124.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. JAIR 27:235–297.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Hooker, J. N. 1995. Testing heuristics: We have it all wrong.
Journal of Heuristics 1:33–42.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away. Journal of Artificial Intelligence Research 36:1547–
556.
Kiam, J. J., and Schulte, A. 2018. Multilateral mission
planning in a vector field with dynamic constraints. In IEEE
International Conference on Systems, Man, and Cybernetics
(SMC).
Kiam, J. J.; Besada-Portas, E.; Hehtke, V.; and Schulte, A.
2019. GA-guided task planning for multiple-haps in realistic
time-varying operation environments. In The Genetic and
Evolutionary Computation Conference (GECCO).
Kiam, J. J.; Schulte, A.; and Scala, E. 2019. Using AI-
planning to solve a kinodynamic path planning problem and
its application for haps. In Intelligent Human Systems Inte-
gration (IHSI).
Köhler, M.; Funk, F.; Gerz, T.; Mothes, F.; and Stenzel, E.
2017. Comprehensive weather situation map based on xml-
format as decision support for uavs. Journal of Unmanned
System Technology 5:13–23.
Köhler, M.; Gerz, T.; and Tafferner, A. 2016. Cb-like-
cumulonimbus likelihood: Thunderstorm forecasting with
fuzzy logic. Meteorologische Zeitschrift 25:1–19.
Lima, O.; Ventura, R.; and Awaad, I. 2018. Integrating
classical planning and real robots in industrial and service
robotics domains. In Proceedings of the 6th Workshop on
Planning and Robotics (PlanRob) at 28th ICAPS.

McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine 21(2).
Müller, R., and Looye, G. 2013. A constrained inverse mod-
eling approach for trajectory optimization. In AIAA Guidance
Navigation and Control Conference.
Müller, R.; Kiam, J. J.; and Mothes, F. 2018. Multiphysical
simulation of a semi-autonomous solar powered high altitude
pseudo-satellite. In IEEE Aerospace Conference.
Pecora, F.; Andreasson, H.; Mansouri, M.; and Petkov, V.
2018. A loosely-coupled approach for multi-robot coordina-
tion, motion planning and control. In International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic planning for PDDL+ domains.
In Proc. of IJCAI.
Ropke, S., and Pisinger, D. 2004. An adaptive large neigh-
borhood search heuristic for the pickup and delivery problem
with time windows. Technical Report no. 2004/13 13:1–27.
Scala, E., and Torasso, P. 2015. Deordering and numeric
macro actions for plan repair. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
European Conference on Artificial Intelligence (ECAI).
Siddiqui, F. H., and Haslum, P. 2015. Continuing plan qual-
ity optimisation. Journal of Artificial Intelligence Research
54:369–435.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer. In
IEEE International Conference in Robotics and Automation
(ICRA). Hong Kong, China: IEEE.
Sucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The open
motion planning library. In IEEE Robotics and Automation
Magazine.
Webb, D., and van den Berg, J. 2013. Kinodynamic rrt*:
Optimal motion planning for systems with linear differential
constraints. In IEEE International Conference on Robotics
and Automation (ICRA).

420

